文档库 最新最全的文档下载
当前位置:文档库 › 光通信技术论文

光通信技术论文

光通信技术论文
光通信技术论文

光通信技术论文

无线光通信技术

摘要:随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速

率数据传输的用户数量每年都在递增,光纤通信因为能传输高速率

的数据,成为广域通信网的骨干网络,如今在广域通信网中80%以

上的信息是通过光纤传输的。但是从光纤骨干网到用户之间的"最后

一英里",如果铺设光缆,不仅花费大而且耗时;许多无线通信技术

可以解决"最后一英里"的问题,但是这些技术需要向无线电管理委

员会申请频率执照,不仅要使用户支付大量的频率占用费,而且申

请也要花费数月的时间。

关键词:高速率数据传输系统构成

随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速率数据

传输的用户数量每年都在递增,光纤通信因为能传输高速率的数据,成为广域通信网的骨干网络,如今在广域通信网中80%以上的信息

是通过光纤传输的。但是从光纤骨干网到用户之间的"最后一英里",如果铺设光缆,不仅花费大而且耗时;许多无线通信技术可以解决"

最后一英里"的问题,但是这些技术需要向无线电管理委员会申请频

率执照,不仅要使用户支付大量的频率占用费,而且申请也要花费

数月的时间。

无线光通信因为无需频率申请,机型小方便架设,能够简单的解决最后一英里的问题,为宽带接入的快速部署提供一种灵活的解决

方案。

无线光通信可在以下一些范围发挥重要作用:

·可以作为预防服务中断的光纤通信和微波通信的备份;

·可以应用于移动通信基站间的互连,无线基站数据回传;

·应用于近距离高速网的建设以及最后一英里接入;

·不宜布线或是布线成本高、施工难度大、经市政部门审批困难的地方;

·用于企业内部网互连和数据传输。

1无线光通信系统的构成

无线光通信系统是以大气作为传输媒质来进行光信号的传送的。只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,就可以进行通信。

2无线光通信系统的特点和优势

2.1频带宽,速率高

从理论上讲,FSO的传输带宽与光纤通信的传输带宽相同,只是

光纤通信中的光信号在光纤介质中传输,而FSO的光信号在空气介

质中传输。FSO产品目前最高速率可达2.5Gbit/s,最远可传送4km。

2.2频谱资源丰富

与微波技术相比,FSO设备多采用红外光传输,有相当丰富的频

谱资源,不需要申请频率执照,也不需要交纳频率占用费,这是一

般微波通信和无线通信无法比拟的。

2.3适用任何通信协议

适用于任何环境,不依赖某种协议。现在通信网络常用的SDH、ATM、以太网、快速以太网等都能通过,并可支持2.5Gbit/s的传输

速率,用于传输数据、声音和影像等各种信息。

2.4架设灵活便捷

FSO可以直接架设在屋顶,以及在江河湖海上进行通信,可以完

成地对空、空对空等多种光纤通信无法完成的通信任务,而且无需

埋设光纤,可以在几小时内建立起通信链路,方便快捷,大大缩短

了施工周期。

2.5安全可靠

无线光通信的安全性是非常显著的,由于光通信具有非常好的方向性和非常窄的波束,因此窃听和人为干扰几乎是不可能的。

2.6经济

光纤网络的成本通常很高,铺设过程耗时,而且投资不可撤回,而可以在城域光网之外提供高带宽连接,而成本只有在地下埋设光

缆的五分之一。3无线光通信系统存在的问题

FSO是一种视距宽带通信技术,发射机与接收机之间需要严格的

视线传播,当通信设备安装在高楼的顶部时,在风力的作用下建筑

物会发生摆动,这样便会影响激光器的对准。由于大楼结构中某些

部分的热胀或轻微的地震等原因,有时也会导致发射机和接收机无

法对准。

恶劣的天气情况,会对传播信号产生衰耗。空气中的散射粒子,会使光线在空间、时间和角度上产生偏差。大气中粒子还会吸收激

光的能量,衰减信号的发射功率。

传输距离与信号质量的矛盾非常突出,传输距离越大,光束就会越宽,接收的光信号质量越差。

激光的安全问题必须考虑。发射功率必须限制在保证眼睛安全的功率范围内。

4国外研究现状

在FSO领域,国外已经开始了将近10年的研究,但是FSO产品

真正投入使用也就是最近几年的事情。在FSO这个领域里,国外几

个大的FSO厂家,包括LightPointe、AirFiber、Canon、Terabeam。

LightPointe将自由空间光学技术用于创造、设计和制造电信公

司等级的光传输设备,向电信服务商提供比传统光缆传输速度更快、成本更低的高速通讯解决方案。LightPointe的系统以超快的带宽

速度提供安全可靠的无线传输,速度最高可达2.5Gbit/s,产品适

应性强,可解决城市地区的连接问题。

AirFiber位于美国加洲SanDiego,主要服务于大城市大楼宽带

接入。它的产品称为OptiMesh,网络结构为网眼状拓扑结构,冗余

备份短距离622Mbit/s无线光传输系统。

Canon主要产品有:CanobeamDT-50,速率从25Mbit/s到

622Mbit/s,可连接FastEthernnet、FDDI、ATM。特点是具有自动

跟踪系统,调整探测器件的位置以检测激光束的光轴,所以不因建

筑物的摆动而使传输中断。同时,镜头自动跟踪特性增加传输距离

达2km。CanobeamIII:数据速率达到622Mbit/s,有不同的网络接口,如ATM、FDDI、FastEthernet,并可选择SNMP的TCP/IP。

TeraBeamInternetSystems产品是基于IP的无光纤点到多点网络,发送和接收机,固定在办公室窗户上小卫星碟。这些卫星碟型

天线的波束与安装在楼内的基站相连。

5国内研究现状

目前在中国,无线光纤技术基本处于起步阶段,有几家公司在实验室作出了样机,但是没有规模性的生产,主要原因有FSO本身的

可靠性问题,一些人对FSO技术存有一定程度的误解和疑虑;还有一

些用户对FSO技术了解不多。

桂林三十四所、清华同方有限公司、中科院成都光电技术研究所、深圳飞通有限公司、上海光机所等几家单位,有比较成熟的样机。

桂林三十四所产品的主要性能参数有以下一些,传输速率:

8Mbit/s,34Mbit/s,155Mbit/s;工作波长:850nm;通信距离:

1~4km;光发射功率:小于40mW。

清华同方推出了面向未来的无线光链路的自由空间通信产品OWLinkE100。清华同方在快速追踪系统具有自动校准功能获得了专利,其产品还遵循眼睛安全标准。

中科院成都光电技术研究所,开发的产品主要性能参数有传输速率:10Mbit/s;工作波长:850nm;通信距离:1~4km;发射功率:

3~30mW。

上海光机所承担的"无线激光通信系统"具有双向高速传输和自动跟踪功能。其传输速率可以达到622Mbit/s,通信距离可以达到2km。自动跟踪系统采用双波长同光路接收镜筒和高灵敏度位敏探测器,

实现灵敏的伺服跟踪。

深圳飞通有限公司开发出的样机,其速率有155Mbit/s、

622Mbit/s以及1.25Gbit/s几种,通信距离最远可达4km。

6FSO研究的发展趋势

FSO目前存在的问题主要集中在下面几个方面:针对大楼摆动的

瞄准问题;大气中粒子对光线的散射、吸收问题;提高传输速率问题。这些问题影响了传输的可靠性,所以对这些问题的研究成为FSO的

发展方向。

6.1发射、接收的瞄准的研究

在大风中或因地震引起大楼的摆动,发射机发送的光信号对不准接收机,产生的误差大,甚至通信无法实现。目前的研究方向在于

提高激光的瞄准,怎样利用非机械装置来实现精确的对准和快速瞄准;在接收机方面,散射光线也带有信息,接收散射光线越多,接收

的信号能量越大,但同时接收的噪声也越大,所以尽量提高接收机

接收信号总功率,又不能降低信噪比成为研究目标。

6.2减小大气对通信的影响

6.3传输速率的提高

FSO相对于其他接入设备最大的优势之一就是带宽。现在FSO产

品的速率从2Mbit/s开始,形成多个系列,比较典型的有10Mbit/s、100Mbit/s、155Mbit/s、622Mbit/s。有的公司采用波分复用技术,

速率可以达到2.5Gbit/s、10Gbit/s。

综上所述,FSO的发展方向是解决大楼的抖动引起的对不准问题、大气微粒的散射问题、大气湍流影响通信问题,提高系统可靠性,

在此基础上提高传输速率,使FSO发挥最大优势。

7结束语

无线光通信已经成为现实,它是连接宽带网的一种快捷方法。文中详细地介绍了国内外目前对FSO的研究以及研究成果,分析了目

前存在的问题,如果这些问题能得到解决,那么必能发挥FSO的最

大潜能和优势。随着的不断完善,它一定可以得到广泛的应用。

点击下页还有更多>>>光通信技术论文

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

大专通信技术论文题目

大专通信技术论文题目 1.移动短消息平台的研究与实现 2.基于Widget技术移动终端应用集成方案的设计与实现 3.第四代移动通信技术研究 4.基于GPRS的嵌入式系统无线通信技术的研究 5.基于GPS/GPRS的车辆管理系统的设计与研究 6.基于嵌入式技术的移动终端设计 7.公交车辆运营管理系统设计与实现(基于先进的CDMA数字移动通信技术及开放式信息处理技术) 8.移动支付技术研究 9.短消息业务服务系统的研制 10.GSM移动通信在煤矿井下应用的研究 11.基于嵌入式技术的GSM移动终端系统的软件开发 12.嵌入式移动通信技术的研究与应用 13.基于.NET技术的移动库存管理系统研究与实现 14.基于J2ME的移动通信技术的研究与应用 15.远程监控自动报警系统的研究与实现 16.第三代移动通信技术及其应用 17.现代移动通信技术研究的探讨 18.3G移动通信技术在电网管理中的应用 19.3G移动通信技术的分析

20.3G移动通信技术的应用 21.3G技术下手机购物模式分析 22.基于ARM的GPRS无线数据传输监控系统的分析 23.手机病毒分析及防范 24.基于手机的电子商务 25.图书管理系统手机终端的实现 26.移动通信技术的发展趋势 27.CDMA技术的3g系统和Wimax通信系统的比较 28.移动通信系统的关键技术,关键技术之一: 29.LTE系统的关键技术 30.LTE技术的发展及其应用 31.下一代无线网络技术 32.Wimax技术及其应用 33.CDMA2000系统的发展及其应用 34.WCDMA系统的发展及其应用 35.TD-SCDMA系统的发展及其应用 36.超宽带技术的发展及其应用 37.RFID在移动通信中的应用 38.RFID技术的发展及其应用 无线公网通信技术在配电自动化系统中的应用 随着通信技术的飞速发展,在配电网出现了光纤通信、公网无线通信、配电线载波通信等多种通信方式。而在配网主站与线路上的配网自动化终端之间的通信方式,则是现今配网自动化系统通信的

光通信中的重要技术及发展趋势

光通信中的重要技术及发展趋势 [摘要] 随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速率数据传输的用户数量每年都在递增,而光通信技术在过去几年中也有了长足的发展,光纤通信凭借其传输高速率的数据,成为广域通信网的骨干网络,如今在广域通信网中绝大部分是通过光纤传输的。本文主要讨论在光通信中的主要技术以及未来光通信的几个发展趋势。 [关键词] 光通信光接入光交换全光网无线光通信 随着用户对接入带宽要求的日益增加以及三网融合后对数字高清信号的传送,对运营商接入侧及骨干核心传输有了更高的要求,而光通信在其中起了举足轻重的作用,光通信技术的发展决定了电信业的未来方向,近几年,不论在接入层以及核心层,光通信技术都有了长足的发展。 1.在接入层: 1.1无源光网络(PON) 无源光网络主要用于解决宽带最终用户接入终端局的问题,由于这种接入技术使得接入网的局端(OLT)与用户(ONU)之间只需光纤、光分路器等光无源器件,不需租用机房和配备电源,因此被称为无源光网络。无源光网络以其容量大、传输距离长、较低成本、全业务支持等优势成为热门技术。目前已经逐步商用化的无源光网络主要有TDM-PON(APON、EPON、GPON)和WDM-PON。 无论是核心网、传输网还是接入网,其发展的首要因素就是业务,是终端用户的需求。从业务发展现状来看,高带宽的消耗业务逐步涌现,带宽提速成为迫切需求,而PON以其容量大、传输距离长、较低成本、全业务支持等优势成为宽带接入的热点,它在提供业务组合的同时,实现了高可靠性和高性能,已经成为了下一代光接入网的发展方向。 1.2无线光通信技术 从光纤骨干网到用户之间的”最后一英里”,如果铺设光缆,不仅花费大而且耗时;许多无线通信技术可以解决”最后一英里”的问题,但是这些技术需要向无线电管理委员会申请频率执照,不仅要使用户支付大量的频率占用费,而且申请也要花费数月的时间。无线光通信因为无需频率申请,机型小方便架设,能够简单的解决最后一英里的问题,为宽带接入的快速部署提供一种灵活的解决方案。 无线光通信系统是以大气作为传输媒质来进行光信号的传送的。只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,就可以进行通信。一个无线光通信系统包括三个基本部分:发射机、信道和接收机。在点对点传输的

无线光通信的原理和核心部件的一些思考

无线光通信的原理和核心部件的一些思考 摘要:现阶段,随着科技水平的不断提升,在很大程度上促进着我国通信行业 的发展。通信技术作为通信行业的重要支撑力量,在很大程度上决定着传输效率。以往传统的无线电以及光纤通信技术,虽然不会受到地形方面的影响,信道容量 非常大,但是传输效率却非常慢。在这种情况下,我们积极的应用无线光通信技术,不仅不会受到地形因素的影响,而且还有着较强的保密性以及较快的传输效率。基于此,本文深入浅出地阐述了无线光通信原理;其次分析了无线光通信核 心部件;最后探讨了无线光通信优缺点。 关键词:无线光通信;优缺点;研究分析 一、无线光通信原理概述 无线光通信技术的的工作原理,主要包含着以下三个方面的内容:首先,需 要发射出数据信号,然后借助光信号进行传输,最终接收完成信息传输任务。无 线光通信系统应用的是光电转换技术,在调制完成电信号对光发射机的光源之后,借助具备天线功能的光学望远镜来传输光信号,在望远镜接受到信号后,将信号 全部集中在光电检测器,其次信号到达接收机后,完成光信号转换成电信号,然 后经过调制调解器,完成信息读取工作,最终接入无线光信号。但是,在这一过 程当中需要我们指出的是,光波信号的不同,其透过率也是存在着一定的差异的。在这种情况下,我们要想更加有效的提升透过率以及系统功率,我们就必须要选 择更高性能的波段窗口,来确保光信号的稳定传输。 二、无线光通信核心部件分析 (一)无线光通信发射机 无线光信号主要是借助发射机所产生的,通过将不同类型的电信号,在经过 调制解调器的转换之后,成为光信号。无线光通信并不是借助光缆进行传输的, 因此光信号主要是椭圆光斑,是由激光管芯激发进而产生的。在这一过程当中, 光学行为耦合替代了以往的同轴耦合,传输距离越远的话,那么耦合准值也就越高。我们在设定耦合准值的过程当中,需要充分结合光学耦合效率来进行,避免 影响到信号的接收。此外,我们在借助发射机发射光信号的过程当中,应积极的 做好人眼防护措施,避免造成危害。 (二)无线光通信光学天线 无线光信号并不会受到光纤输送路径方面的影响,因而在实际的发射过程当中,往往会存在一定的发散角,导致信号出现泄露的现象。在这种情况下,我们 要想最大限度的确保最终的接受准确度,我们就应在接收端设置一套光学天线系统,充分借助其凸、凹透镜的聚焦原理,更好的聚集光信号,降低信号的泄露。 光学天线的增益效果和天线的孔径存在密切的关联,如果孔径过大或者过小的话,都会在一定程度上影响着最终的接收效益。在这种情况下,我们在选取天线孔径 的时候,就需要充分的结合我们的实际工作状况来进行。除此之外,我们还要严 格的设定聚光斑点尺寸的精确度,切实提高光信号的接收效率。 (三)无线光通信接收机 光信号在传播的整个过程当中,所存在的反射以及折射的现象,会产生码间 串扰现象。不仅如此,光信号如果受到空气散射的话,也会消耗信号。在这种情 况下,我们在选择接收机的时候,就必须要选择一些有着信号接收灵敏度较强、

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供部大容量宽带网 无线光通信系统能在企业、机关围为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。

什么是光通信技术

什么是光通信技术 光通信是一种以光波为传输媒质的通信方式。光波和无线电波同属电磁波,但光波的频率比无线电波的频率高,波长比无线电波的波长短。因此,它具有传输频带宽、通信容量大和抗电磁干扰能力强等优点。 光波按其波长长短,依次可分为红外线光、可见光和紫外线光。红外线光和紫外线光属不可见光,它们同可见光一样都可用来传输信息。光通信按光源特性可分为激光通信和非激光通信;按传输媒介的不同,可分为有线光通信和无线光通信(也叫大气光通信)。常用的光通信有: 大气激光通信。信息以激光束为载波,沿大气传播。它不需要敷设线路,设备较轻,便于机动,保密性好,传输信息量大,可传输声音、数据、图像等信息。大气激光通信易受气候和外界环境的影响,一般用作河湖山谷、沙漠地区及海岛间的视距通信。 光纤通信。是一种有线通信,光波沿光导纤维传输。光源可以是激光器(又称半导体激光二极管),也可以是发光二极管。光纤通信传输衰减小、容量大、不受外界干扰、保密性好,可用于大容量国防干线通信和野战通信等。 蓝绿光通信。是一种使用波长介于蓝光与绿光之间的激光,在海水中传输信息的通信方式,是目前较好的一种水下通信手段。 红外线通信。是利用红外线(波长300 ~0.76 微米)传输信息的通信方式。可传输语言、文字、数据、图像等信息,适用于沿海岛屿间、近距离遥控、飞行器内部通信等。其通信容量大、保密性强、抗电磁干扰性能好,设备结构简单,体积小、重量轻、价格低。但在大气信道中传输时易受气候影响。 紫外线通信。是利用紫外线(波长0.39 ~60 × 10 微米)传输信息的通信方式。其基本原理与红外线通信相似,与红外线通信同属非激光通信。 因为激光是一种方向性极强的相干光,沿光纤传输是目前最理想的恒参信道。从发展的观点看,激光通信特别是光纤通信将被广泛采用。mvt_lotte发表于2009-4-29 09:55:00

光纤通信技术的现状及前景

光纤通信技术的现状及前景 摘要:近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 关键词:光纤通信传输发展 引言 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 自光纤通信问世以来,整个通信领域发生了革命性变化,它使高速率、大容量的通信成为可能。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点而备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980~2000年2O年间增加了近10000倍,传输速度在过去的1O年中提高了约100倍。目前我国长途传输网的光纤化比例已超过80%,预计到2010年,全国光缆建设总长度将再增加约105km,并且将有11个大城市铺设10G以上的大容量光纤通信网络。 1.光纤通信技术的现状 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1.1波分复用技术 波分复用(WDM,Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源,根据每一信道光波的频率或波长不同将光纤的低损耗窗口划分成若干个信道。把光波作为信号的载波,在发送端采用波分复用器(合波器)将不同规定波长的信号光载波合并起来送人l根光纤进行传输。在接收端,再用1个波分复用器(分波器)将这些不同波长承载不同信号的光载波分开的复用方式。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在1根光纤中可实现多路光信号的复用传输。 DWDM系统除了波长数和传输容量不断增加外,光传输距离也从约600km大幅扩展至2000km 以上。 1.2 宽带放大器技术 进一步提高传输容量、增大光放大器带宽的方法有掺饵氟化物光纤放大器、碲化物光纤放大器、控制掺饵光纤放大器与普通的EDFA组合、拉曼光纤放大器。 1.3 色散补偿技术 对高速信道来说,在1 5 5 0 n m 波段约18p s ( mmok m) 的色散将导致冲展宽而引起误码, 限制高速信号长距离传输。对采用常规光纤的10Gb i t / s 系统来说,色散限制仅仅为5 0 k m。因此,长距离传输中必须采用色散补偿技术。 1.4 孤子WDM传输技术 超大容量传输系统中,色散是限制传输距离和容量的一个主要因素。在高速光纤通信系统中,使用孤子传输技术的好处是可以利用光纤本身的非线性来平衡光纤的色散,因而可以显著增加无中继传输距离。 1.5光纤接入技术 光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,

光通信的历史及其发展现状

光通信的历史、现状、发展趋势 06007235 方云龙光通信的历史: 原始形式的光通信是通过中国古代的“烽火台”报警,欧洲人用旗语传送信息。1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏型。 1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器,给光通信带来了新的希望。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。 1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。通过“原材料的提纯制造出适合于长距离通信使用的低损耗光纤”这一发展方向。 1970年,美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。把光纤通信的研究开发推向一个新阶段。 1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2μm)。在以后的10 年中,波长为1.55 μm的光纤损耗:1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km,接近了光纤最低损耗的理论极限。 1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但它为半导体激光器的发展奠定了基础。1977 年,贝尔实验室研制的半导体激光器寿命达到10万小时。1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55 μm的连续振荡半导体激光器。 1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。1980 年,美国标准化FT - 3光纤通信系统投入商业应用。 1976 年和1978 年,日本先后进行了速率为34 Mb/s的突变型多模光纤通信系统,以及速率为100 Mb/s的渐变型多模光纤通信系统的试验。1983年敷设了纵贯日本南北的光缆长途干线。 随后,由美、日、英、法发起的第一条横跨大西洋TAT-8海底光缆通信系统于1988年建成。第一条横跨太平洋TPC-3/HAW-4 海底光缆通信系统于1989年建成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。 现状: 目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH(光纤到户)用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM(Wavelength Division Multiplexing:波分复用)和PON(Passive Optical Network:无源光纤网络),这两个已经相对比较成熟。 今天,40Gbps的光通信系统得到广泛商用。作为新一代光网络的领军技术,40G商用大门的开启,满足日益增长的带宽需求同时,还为ROADM、先进光调制技术、超强EFC等新技术的应用赢得了市场发展空间,并为全光网的演进、升级创造了条件。不过,这只是40Gbps的一个开始,要承担起未来传输主力的重任,40G还需要很多路要走。现在对40Gbps,乃至更高速率的100Gbps而言,光学硬件的发展是关键,同时还必须与其他光通讯技术协同发展,包括复杂的调制技术、信号处理技术、并行接口、主动追踪和补偿技术,这些条件

XXXX年光通信技术发展趋势和预测

我们对2011年光通信技术发展趋势和预测如下: ·光通讯行业更加精简,但是仍然期待着更完善的供应链 那些在经济低迷前期和中期合并的网络设备制造商将在2011年发挥明显的优势,因为届时越来越少的大型企业能够独自赢得网络业务的大单。预计2011年,阿尔卡特-朗讯和华为将角逐第一的位置,而Ciena凭借对北电网络光纤业务的收购将加速缩小与前者之间的差距,紧随其后。 预计2011年,网络设备制造商将控制其外包光元件供应商的数量,采取精简供应链的战略。因此,除非那些规模较小的元件供应商能提供独一无二且切合需求的产品,否则2011年对他们来说,将是比较困难的一年。 此外,光产品供应商在2011年将继续面对供应链中需求波动的挑战。所有供应商都将逐步认识到缩短回收时间、提高预测的精确度和落实库存保有战略需求的重要性。因此,即使面对持续大幅度的增长需求,供应链的改善将使大部分主要产品的交付时间缩短至一到两周的时间。 ·感知型网络即将登场 2011年将研发出能促进网络传输层向前演进的组件和系统。研发这些新型光产品的最终目的是为了创建感知型的网络,它们拥有

灵活的光子层,能够有意识、完全无缝地应对不断变化的流量情况、新型应用或者突发的带宽波动。 目前行业里最热门的三大关键词——任何波长(colorless)、任何方向(directionless)和任何竞争(contentionless)——都是感知型网络的重要组成部分,它们所具备的特征赋予了任意类型的网络波长在任何方向都能达到任意目的地的能力。 目前,业界正在研发复杂的光学转换器件,来构建网络和节点架构,进而实现自动端到端波长、转发器和路由的灵活转换。这些新组件和体系架构将建立在波长选择开关(WSS)的基础上并完善WSS,成为灵活光网络的核心结构单元。 此外,我们认为,功能集成式光电路板的受关注度将越来越高,因为它可以将更多的光功能和硬件集成到体积更小的产品中,而这一优势亦将促使网络设备生产商加速将其应用于各自的开发流程中。这种线路卡已被证明能通过子模块层面的集成提供显著的成本和密度优势。 我们预计,有望在2013—2014年间,实现现有网络向包含以上光元件的感知型网络演进。 ·传输更快速、更灵活

光通信与无线通信融合新技术

光通信与无线通信融合新技术 学校:北京邮电大学 作者:宋国伟

微波通信技术 一、微波通信概述 微波通信是指用微波频率作载波携带信息,通过无线电波空间进行中继(接力)通信的方式。数字微波通信是指利用微波(射频)携带数字信息,通过在大气中传输的一种通信方式。 微波通信的工作频段。微波频率指300MHz~300GHz,波长为1m-1mm范围的电磁波。人们习惯上将微波划分为分米波、厘米波、毫米波和亚毫米波等波段。通常用不同的字母代表不同的微波波段,如:S代表10 cm波段,C代表5 cm 波段,X代表3 cm波段,Ka代表8 mm波段,U代表6 mm波段,F代表3 mm波段等。 二、微波通信的发展历史 微波的发展是与无线通信发展是分不开的。1901年马克尼使用800KHz中波信号进行了从英国到北美纽芬兰的世界上第一次横跨大西洋的无线电波的通信试验;无线通信初期,人们使用长波及中波来通信;20世纪20年代初,人们发现了短波通信,直到20世纪60年代卫星通信的兴起,它一直是国际远距离通信的主要手段,并且对目前的应急和军事通信仍然很重要。 由于电磁波各波段的传播特性各异,因此,可以用于不同的通信系统。中波主要沿地面传播,绕射能力强,适用于广播和海上通信。而短波具有较强的电离层反射能力,适用于环球通信。超短波和微波的绕射能力较差,可作为视距或超视距中继通信。 微波通信由于其通信的容量大而投资费用省(约占电缆投资的五分之一),建设速度快,抗灾能力强等优点而取得迅速的发展。20世纪40-50年代产生了传输频带较宽,性能较稳定的微波通信,成为长距离大容量地面干线无线传输的主要手段。模拟调频传输容量高达2700路,也可同时传输高质量的彩色电视,而

无线通信技术论文

目录 摘要 (1) Abstract(英文摘要) (2) 第一章引言 (3) 1.1研究的目的和意义 (3) 1.2当前现状 (4) 1.3系统方案论证和预期目标 (4) 1.4论文设计概述 (5) 第二章系统的硬件构成与分析 (7) 2.1系统描述 (7) 2.2 MSP430微控制器简介 (7) 2.3 无线数据传输模块 (7) 2.4 系统模块介绍 (8) 2.4.1电源电路 (12) 2.4.2复位电路 (13) 2.4.3数据采集电路 (13) 2.4.4无线串口通信电路 (14) 2.4.5显示电路 (15) 2.4.6单片机电路 (16) 第三章系统软件设计 (18) 3.1上位机处理程序 (18) 3.1.1VB串口通信 (19) 3.1.2无线传输接口和协议 (20) 3.1.3通信模块设计 (21) 3.1.4数据处理 (22) 3.1.5数据保存 (22) 3.2下位机处理程序 (22) I

3.2.1系统初始化 (23) 3.2.2数据采集处理模块 (24) 3.2.3显示模块 (25) 3.2.4无线串口通信模块 (26) 3.2.5中断子程序 (27) 3.2.6主处理模块 (27) 第四章系统调试及结果分析 (28) 4.1系统硬件调试 (28) 4.2系统软件的调试、分析 (29) 4.2.1上位机软件调试 (29) 4.2.2下位机软件调试 (29) 4.2.3联机调试 (30) 第五章总结 (31) 参考文献 (32) 致谢 (33) II

摘要 无线数据传输技术在测控领域得到越来越广泛的应用,该技术最大的特点是通信双方省去布线,易于维护。无线数据传输技术为现代测控仪器的连接提供了灵活的结构设计方案,特别是在一些难于采用导线连接的环境中。本文的双级测控系统由单片机构成的下位机完成现场信号的采集工作,并借助无线通信模块将数据传送到上位机(PC机)进行进一步处理。文中主要包括三部分内容:一是系统硬件的选用及电路设计。其中,微处理器MCU选用的是美国TI 公司出品的新型16位RISC结构的MSP430微处理器;无线数字传输器件采用SRWF-108型微功率无线数传模块。二是下位机系统软件部分的开发。程序采用MSP430微处理器的汇编语言编写。该语言是一种典型的精简指令集系统。结合16位的总线结构,大大增加了程序运行总体速度。三是上位机数据通信与管理程序的设计。采用易学、易用的VB6.0开发。 关键词:MSP430单片机,SWRF—108无线模块,串口通信,MSComm控件 - 1 -

光纤通信技术的特点和发展前景综述

光纤通信技术的特点和发展前景综述一,光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 二,光纤通信的特点 (1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传

输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0,20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。 (4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。 除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。 三,光纤通信技术发展的以及前景 1,光纤通信的发展

光通信技术现状及其发展趋势探讨

光通信技术现状及其发展趋势探讨 前言:光通信是以光导纤维(即光纤)为传输媒质,以光波作为载波的一种通信方式。光通信涉及的技术领域包括光器件、光传输、光信号处理、光交换技术、光网络技术以及光网络的融合技术等等。光通信正朝着高速率、大容量。长距离、网络化、智能化的方向发展。本文主要对光通信技术现今的发展状况,以及在今后的发展趋势进行了简要的阐述。 一、目前光通信技术的发展现状 1.1密集播分复用技术 密集波分复用技术简称DWDM,是光纤数据的一种传输技术,该种技术是利用激光的波长,按照比特位并行传输或字符串行传输方式在光纤内传送数据。DWDM是光网络的重要组成部分,它可以让IP协议、ATM和同步光纤网络、同步数字序列协议下承载的电子邮件、视频、多媒体、数据和语音等数据都通过统一的光纤层传输。在被开发后,基于其能在很大的程度上提高了光纤系统对于信息数据的传输量,而被广泛关注与应用。 1.2光纤接入网技术

光纤接入网,指的是在接入网过程中,利用光纤为核心的传输媒质,以此来实现用户数据信息传递的形式。光纤接入网并不是传统意义方面光纤传输系统,实际上是针对接入网环境中,所设计的较为特殊的光纤传输网络。光纤接入网主要有以下几方面的特点,其一是网络覆盖范围一般较小,在实际应用过程中不需要中继器,基于众多用户的信息数据共享光纤,导致光功率及波长的配比,存在需要利用光纤放大器来进行功率补偿的状况。其二是满足各种宽带业务的传输,并且传输质量好、数据信息传递的可靠性较高。其三是光纤接入网所应用的范围较为广阔。其四是,该项技术投放使用的过程中投资成本大,在网络管理方面较为复杂,在远端供电方面较难。 1.3 EDFA技术 EDFA是掺铒光纤放大器的缩写,是对数据信号光放大的有源光器件。基于EDFA工作时的波长为1550nm,与光纤的较低损耗波段较为一致,并且该种技术研发至今比较成熟,在实际中得到广泛的应用。掺铒光纤就是EDFA的核心元件,掺铒光纤主要将石英光纤当做基质材料,在其纤芯当中融入了相应比例稀土原素铒离子。在一定的泵浦光注入到掺铒光纤中时,铒离子从低能级直接被激发到高能级,基于铒离子在高能级时寿命较短,这就使得较快以非辐射跃迁的状态,直接到较高能级上,与此同时在该能级以及低能级间迅速形成粒

光通信技术论文

光通信技术论文 无线光通信技术 摘要:随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速 率数据传输的用户数量每年都在递增,光纤通信因为能传输高速率 的数据,成为广域通信网的骨干网络,如今在广域通信网中80%以 上的信息是通过光纤传输的。但是从光纤骨干网到用户之间的"最后 一英里",如果铺设光缆,不仅花费大而且耗时;许多无线通信技术 可以解决"最后一英里"的问题,但是这些技术需要向无线电管理委 员会申请频率执照,不仅要使用户支付大量的频率占用费,而且申 请也要花费数月的时间。 关键词:高速率数据传输系统构成 随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速率数据 传输的用户数量每年都在递增,光纤通信因为能传输高速率的数据,成为广域通信网的骨干网络,如今在广域通信网中80%以上的信息 是通过光纤传输的。但是从光纤骨干网到用户之间的"最后一英里",如果铺设光缆,不仅花费大而且耗时;许多无线通信技术可以解决" 最后一英里"的问题,但是这些技术需要向无线电管理委员会申请频 率执照,不仅要使用户支付大量的频率占用费,而且申请也要花费 数月的时间。 无线光通信因为无需频率申请,机型小方便架设,能够简单的解决最后一英里的问题,为宽带接入的快速部署提供一种灵活的解决 方案。 无线光通信可在以下一些范围发挥重要作用: ·可以作为预防服务中断的光纤通信和微波通信的备份;

·可以应用于移动通信基站间的互连,无线基站数据回传; ·应用于近距离高速网的建设以及最后一英里接入; ·不宜布线或是布线成本高、施工难度大、经市政部门审批困难的地方; ·用于企业内部网互连和数据传输。 1无线光通信系统的构成 无线光通信系统是以大气作为传输媒质来进行光信号的传送的。只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,就可以进行通信。 2无线光通信系统的特点和优势 2.1频带宽,速率高 从理论上讲,FSO的传输带宽与光纤通信的传输带宽相同,只是 光纤通信中的光信号在光纤介质中传输,而FSO的光信号在空气介 质中传输。FSO产品目前最高速率可达2.5Gbit/s,最远可传送4km。 2.2频谱资源丰富 与微波技术相比,FSO设备多采用红外光传输,有相当丰富的频 谱资源,不需要申请频率执照,也不需要交纳频率占用费,这是一 般微波通信和无线通信无法比拟的。 2.3适用任何通信协议 适用于任何环境,不依赖某种协议。现在通信网络常用的SDH、ATM、以太网、快速以太网等都能通过,并可支持2.5Gbit/s的传输 速率,用于传输数据、声音和影像等各种信息。 2.4架设灵活便捷 FSO可以直接架设在屋顶,以及在江河湖海上进行通信,可以完 成地对空、空对空等多种光纤通信无法完成的通信任务,而且无需

2011年光通信技术发展趋势和预测

我们对2011年光通信技术发展趋势和预测如下: ·光通讯行业更加精简,但是仍然期待着更完善的供应链 那些在经济低迷前期和中期合并的网络设备制造商将在2011年发挥明显的优势,因为届时越来越少的大型企业能够独自赢得网络业务的大单。预计2011年,阿尔卡特-朗讯和华为将角逐第一的位置,而Ciena凭借对北电网络光纤业务的收购将加速缩小与前者之间的差距,紧随其后。 预计2011年,网络设备制造商将控制其外包光元件供应商的数量,采取精简供应链的战略。因此,除非那些规模较小的元件供应商能提供独一无二且切合需求的产品,否则2011年对他们来说,将是比较困难的一年。 此外,光产品供应商在2011年将继续面对供应链中需求波动的挑战。所有供应商都将逐步认识到缩短回收时间、提高预测的精确度和落实库存保有战略需求的重要性。因此,即使面对持续大幅度的增长需求,供应链的改善将使大部分主要产品的交付时间缩短至一到两周的时间。 ·感知型网络即将登场 2011年将研发出能促进网络传输层向前演进的组件和系统。研发这些新型光产品的最终目的是为了创建感知型的网络,它们拥有灵

活的光子层,能够有意识、完全无缝地应对不断变化的流量情况、新型应用或者突发的带宽波动。 目前行业里最热门的三大关键词——任何波长(colorless)、任何方向(directionless)和任何竞争(contentionless)——都是感知型网络的重要组成部分,它们所具备的特征赋予了任意类型的网络波长在任何方向都能达到任意目的地的能力。 目前,业界正在研发复杂的光学转换器件,来构建网络和节点架构,进而实现自动端到端波长、转发器和路由的灵活转换。这些新组件和体系架构将建立在波长选择开关(WSS)的基础上并完善WSS,成为灵活光网络的核心结构单元。 此外,我们认为,功能集成式光电路板的受关注度将越来越高,因为它可以将更多的光功能和硬件集成到体积更小的产品中,而这一优势亦将促使网络设备生产商加速将其应用于各自的开发流程中。这种线路卡已被证明能通过子模块层面的集成提供显著的成本和密度 优势。 我们预计,有望在2013—2014年间,实现现有网络向包含以上光元件的感知型网络演进。 ·传输更快速、更灵活

无线光通信FSO技术简介

无线光通信FSO技术简介 FSO是光通信和无线通信结合的产物,是用小功率红外激光束在大气中传送光信号的通信系统,也可以理解为是以大气为介质的激光通信系统。 FSO有两种工作波长:850纳米和1550纳米。850纳米的设备相对便宜,一般应用于传输距离不太远的场合。1550纳米波长的设备价格要高一些,但在功率、传输距离和视觉安全方面有更好的表现。1550纳米的红外光波大部分都被角膜吸收,照射不到视网膜,因此,相关安全规定允许1550纳米波长设备的功率可以比850纳米的设备高两个等级。功率的增大,有利于增大传输距离和在一定程度上抵消恶劣气候给传输带来的影响。FSO和光纤通信一样,具有频带宽的优势,能支持155Mbps~10Gbps的传输速率,传输距离可达2~4公里,但通常在1公里有稳定的传输效果。 在基础网的建设方面,使用光纤技术的高速网络正在不断完善。与此同时,光空间通信方式作为高速网络最后一公里的宽带通信方式,近来正受到各方面的关注。特别是,在城市宽带网络建设中,由于市政建设基本定形,新设光纤的施工需要繁琐的市政批准。有些地方如跨铁路、公路的施工非常困难,该通信方式的实用化对城市高速宽带通信网络的建设不失为一种极其有效的方法。 光通信方式分为利用光纤技术的有线通信方式和利用光空间通信技术(Free - Space Optics:FSO)的无线通信方式两种。光空间通信方式是将自由空间作为传送媒体,主要用半导体振荡器做光源,以激光束的形式在空间传送信息。对该领域的开发研究曾经风行一时。 FSO技术的历史可追溯到20世纪60年代。1960年,梅曼发明了自然界不存在的红宝石振荡器,作为相干性光源使用。第二年,HE-Ne 振荡器在贝尔实验室开发成功。以后,1962年,又成功的开发了GaAIAs 半导体振荡器。1970年,GaAIAs振荡器在日本、美国以及前苏联实现了连续振荡。小型、高速且可调制半导体振荡器的出现成为光传送研究得以大幅度发展的契机。 自从发明振荡器后,很快就有人尝试将其用于室外光通信。在日本,从1965年开始,用1年多的时间,利用He-Ne振荡器,进行了6.3公里的折返传送实验,以比较光空间通信与微波通信的区别。另外,NTT公司从1970年到1973年,利用3年时间在东京都中心地区设置了4个路径,进行了距离在520m~2.5Km的传送实验。此次实验使用的是He-Ne振荡器(波长0.63μm)和半导体的LED(波长0.8μm)。实验报告表明,光源性质的不同造成的传播特性上的差异并非很大。同时,实验还表明,空中传播造成的偏振面的变动较少,且传播损耗的大小在很大程度上取决于视程。此后,由于低损耗的光纤的出现,使得光空间通信方面的研究纷纷转向光纤技术领域,光空间通信的研究受到了冷落。 最近几年,由于光空间通信所需要的各种设备的价格下降导致光空间通信装置本身的价格降低,同时,光空间通信所持有的简便性、宽带性、无电磁干扰性、无需申请市政批准等特性,使得这种通信方式重新受到广泛的关注。 任何一种技术都有其局限性,光空间通信方式是在空中以激光束方式传播信号,需在可视距离内进行通信,并易受气象条件等因素的影响。

相关文档
相关文档 最新文档