文档库 最新最全的文档下载
当前位置:文档库 › 电网大扰动试验机组OPC保护动作暴露问题考核

电网大扰动试验机组OPC保护动作暴露问题考核

电网大扰动试验机组OPC保护动作暴露问题考核
电网大扰动试验机组OPC保护动作暴露问题考核

电网大扰动试验机组O P C保护动作暴露问题

考核

文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

电网大扰动试验#2机组O P C保护动作暴露问题考核时间:2004年3月25日

一、事故前工况:

#2机组运行正常、负荷453MW,正在进行电网大扰动试验。

二、事件经过及处理

2004年3月25日13:28分,发电部运行五值配合电网做大扰动试验。

13:28:17:513毫秒,#2机组OPC动作。

13:28:17:628-13:28:18:051毫秒,主机调速汽门关闭、三抽、四抽油压逆止门关闭、主机负荷大幅度降低、主汽压力升至

26.9MPa。3秒后OPC保护恢复,负荷瞬时升至450MW,汽机值班员为防止机组受大的冲击造成主机轴瓦推力瓦损坏,立即进入SA05画面检查主机串轴、振动、胀差等重要参数,未发现异常。13:28:56:122毫秒,调出厂用汽画面时,锅炉二流程给水流量低保护动作,机组停机。(事后核对#2机组DCS时间比GPS时间慢12s)。

3月25日18:00分,#2机组并网。

三、事件原因

事后从四方公司的PMU上查证、分析情况如下:

13:28:29:560毫秒时,系统周波为50.03Hz。13:28:29:600毫秒时,系统周波为50.20Hz。可以计算出在40毫秒内汽轮机转速变化了10.2转,满足OPC动作条件[在一个周期(50ms)内汽轮机转速变化10转]。OPC保护动作,使#3、#4抽汽油压逆止门关闭,4段抽汽是汽泵工作汽源,汽泵工作汽源失去,出力降低,使锅炉侧给水流量中断保护动作停炉,联停机组。#3、#4抽汽逆止门在#2机组DCS改造时设计组态为OPC保护动作联关#3、#4抽汽油压逆止门;当OPC动作结束后,无自动开启#3、#4抽汽油压逆止门功能,需要人工开启才能打开。虽然厂用汽压力下降到0.55MPa已经联开RC044到9.03%(定值为10%),但由于RC044动作迟缓(从1.78%开到9.03%用时20s;全行程整定时间为8s),使厂用汽压力仍然下降,导致汽泵出力不足。在OPC动作39秒后,锅炉给水流量中断保护动作停炉,联停机组。

#1、2机组由于DEH机柜采样(一个周期是50ms)的初始时间不一致,#2机组在一个周期内采集到了频率波动的峰值而导致#2机组停运;而#1机组在一个周期内未采集到频率波动的峰值,因此没有停运。

综上分析,电网大扰动试验过程中机组OPC动作条件的满足是本次事件的根本原因;OPC保护动作使厂用汽压力降低、汽泵出力下降、“给水流量中断”保护动作是导致#2机组停机的直接原因。

四、暴露的问题

1、本次电网大扰动试验的预案,未预想到机组瞬间超速而保机组运行的对策,暴露出本次试验各级人员对机炉专业重视不够,事故预想不充分,试验前危险点分析不到位,在大型操作及变工况情况下现场指挥、监护不力。

2、在事件的整个过程中(近40S),发电汽机监盘值班人员没有做出保厂用汽的任何操作反映,充分暴露出运行人员在紧急情况下反应不够迅速,专业技能和事故处理能力较差。

3、发电部、热工专业技术管理存在漏洞,在DCS改造后对保护、联锁培训不够扎实全面,对设计是否合理缺乏研究,因此不能制定出有效防范措施。

4、检修部热工专业在本次试验前和试验过程中危险分析不到位,对机组OPC保护动作联关#3、#4抽汽油压逆止门随即恢复OPC时,无自动开启#3、#4抽汽油压逆止门这一逻辑功能,不能主动向运行人员说明,专业技术交待不明确。暴露出对设备系统的技改、变更等专业技术重大问题没有引起足够重视。

五、防范措施

1、检修部热工专业对主机转速在一个周期内(50ms)转速变化了10转进行修改,现在根据厂部研究决定已经暂修改为15转;#3抽汽油压逆止门逻辑功能为联关手开,#4抽汽油压逆止门逻辑功能为联关联开;取消RH604在厂用汽压力降到0.55Mpa是联关逻辑功能;汽机专业对RC044进行增加出力改造,保证其可靠性。

2、生技科组织检修部热工专业、发电部,对机组联锁进行一次深入核对,研究其原理、动作过程,使之更加趋于合理性,符合实际工况、满足运行需要。(4月10日完成)

3、发电部针对二十五项反措及本厂现存薄弱环节,制定出切实可行的事故预案,近期针对类似事件举办一次反事故演练活动,以提高值班

员事故处理能力。(事故预案完成时间:4月30日;针对性反事故演练完成时间:4月15日)

4、发电部要加强专业技术管理,强化规程制度的贯彻、执行,进一步提高管理水平和业务技术水平,堵塞管理漏洞;部门要从上到下强化安全意识,在大型操作及变工况情况下做好现场指挥和监护,确保今后的安全生产。

5、发电部要加强安全、技术培训、反事故演练工作,使职工的反事故快速应变能力和业务技术素质得到真正的提高。

7、应用RSLinx Classic建立OPC通信

应用RSLinx Classic建立OPC通信 OPC(OLE for Process Control)是由微软提供的基于OLE技术的一种通信标准,被设计成允许客户端的应用软件以兼容的方式访问底层数据。OPC为应用软件从任何数据源访问数据提供了公共通道,有了OPC,不同种类的计算环境的系统集成变得非常简单。 RSLinx Classic是一个OPC适应的服务器。建立OPC对控制器的数据采集步骤如下: 1、在RSLinx Classic的OPC为控制器建立相应的Topic,选择DDE/OPC->Topic Configuration… 2、点击Topic Configuration…进入Topic组态的数据源页面,点击底部 ,新建Topic,命名OPCTEST。每个Topic都有对应的硬件设备,如果希望对同一个控制器有不同的数据采集时间,可以建立多个Topic,右侧的数据采集和通信路径详细地对Topic进行组态。 3、选择在线控制器192.168.1.100,点击Apply->Done。

4、OPC数据可以被第三方软件访问,要想测试OPC是否采集到数据,使用OPC Test Client来检查。在开始菜单中选择该工具,如图。 5、进入该软件界面,点击,选择OPC Server。在列 表中列出了可选的Server,选择,点击OK,进入工作界面。

6、点击,建立新Group,Name为OPCML1400。

7、建立新Item,可以看到新建的名为“OPCTEST”的Topic,

8、点击“Online”,可以读到当前控制器中的标签。在右侧点击添加标签,继续 添加选择,完成后点击。 9、打开OPC Test Client监测变量标签 10、运行RSLogix500程序,打开500软件标签列

发变组继电保护原理与动作过程

发变组继电保护原理及动作过程 一、发变组继电保护配置的基本要求:发变组继电保护继电保护配置过程中必须满足四性(即:可靠性、选择性、速动性及灵敏性)的要求,必须保证在各种发电机异常或故障情况下正确的发信或出口动作。根据GB14285的规定,按照故障或异常运行方式性质不同,机组热力系统和调节系统的条件,我公司发变组保护的出口方式有以下几种: 1.全停:断开发电机-变压器组断路器、灭磁,关闭原动机主汽门,启动快切断开厂分支断路器。 2.降低励磁。 3.减出力。 4.程序跳闸:先关主汽门,待逆功率保护动作后断开主断路器并灭磁。 5.信号:发出声光信号。 二、我公司发变组保护配置情况介绍: 我公司发变组保护每台机共有三面屏柜,分别为发变组保护A柜、B 柜、C柜,A柜及B柜为冗余设计,两面柜的保护配置完全相同,都是发变组的电气量保护;C柜为主变和高厂变的非电量保护。 发变组电气量保护配置有以下几种类型: 1.定子绕组及变压器绕组部故障主保护:发电机差动、主变压器差动、发变组差动、高厂变差动、励磁变差动、发电机匝间保护、定子接地。

2.定子绕组及变压器绕组部故障后备保护:发电机对称过负荷、发电机不对称过负荷、低阻抗、高厂变复压过流、励磁变过流、励磁绕组过负荷。 3.转子接地保护 4.发电机失磁保护 5.发电机失步保护 6.发电机异常运行保护:发电机过励磁保护、发电机频率异常保护、发电机逆功率保护、发电机程跳逆功率保护、启停机保护、断口闪络保护、发电机断水、发电机热工。 7.主变(间隙)零序保护 8.厂用电后备保护:厂变分支过流、分支限时速断、分支零序过流。9.断路器失灵启动 变压器非电量保护: 1.变压器重瓦斯 2.变压器轻瓦斯 3.变压器压力释放 4.变压器油温异常 5.变压器油位异常 6.变压器冷却器全停 三、重要保护简绍 1.差动保护:包括发电机差动、发变组差动、主变差动、厂变差动、励磁变差动。我司保护装置的差动保护采用比率制动式保护,以各侧

电力系统频率的二次调节.doc

电力系统频率的二次调节 一、频率的二次调节基本概念 上一节分析了系统频率特性系数Ks的组成和特点。从分析中可知,系统的频率响应系数愈大,系统就能承受愈大的负荷冲击。换句话说,在同样大的负荷冲击下,Ks愈大,所引起的系统频率变化愈小。为了使系统的频率偏差限制在教小的范围内,总是希望有较大的Ks。 Ks由两部分组成,一部分有负荷本身的频率特性所决定,电力系统的运行人员是无法改变的;另一部分有发电机组的频率响应系数决定的,它是发电机调差系数的倒数。运行人员可以调整机组的调差系数和机组的运行方式来改变其大小。但是从机组的稳定运行角度考虑,机组的调差系数δ%不能取得太小,以免影响机组的稳定运行。 系统的频率响应系数Ks是随着系统负荷的变动和运行方式的变化二变动的。这对用户和系统本身都是不希望的。也就是说,仅靠系统的一次频率调整,没有任何形式的二次调节(包括手动和自动),系统的频率不可能恢复到原有的值。为了使系统的频率恢复到原有的额定频率运行,必须采用频率的二次调节。 频率的二次调节就是改变发电机组的频率特性曲线,从而使系统的频率恢复到原来的正常范围。 如图3-15所示,发电与负荷的起始点为a,系统的频率为f1。当系统的负荷发生变化,负荷增大,负荷特性曲线从PLa变化至PLb时,当系统发电特性曲线为PGa时,发电与负荷的交叉点为a移至b点。此时,系统的频率从f1降至f2。当增加系统发电,即改变发电的频率特性曲线从PGa变到PGb,就能使发电与负荷特性的交叉点移至d点,可使系统的频率保持在原来的f1运行。 反之,当系统的负荷降低,在如图3-15中,发电与负荷的起始点为d,此时,系统的频率为f1。当系统的负荷发生变化,负荷特性从从PLb变化至PLa时,当系统发电特性曲线为PGb时,发电与负荷的交叉点为d和c点。此时,系统的频率从f1上升至f3。为了恢复系统的频率,适当减少系统发电,即改变发电的频率特性曲线从PGb变到PGa,就能使发电与负荷特性的交叉点从c点移至a点,

汽机联锁保护系统讲义

汽机联锁保护系统讲义 第一节ETS系统的功能 一、ETS系统发展过程 我国生产300MW汽轮发电机组三从上个世纪八十年代初开始的,最初是仿制国外机组,比较典型的是邹县发电厂一、二期工程的4台300MW机组(从上海定购),后来通过设备引进的同时引进制造技术。我国第一台引进技术和设备的机组是石横发电厂的#1、#2机组。最初仿制的国产机组,由于部分核心技术未掌握,其调速系统与国产125MW机组是差不多的,配有调速泵、中间滑阀、危急遮断阀、飞锤、启动器、同步器等复杂的机械调节和保护油路。我们称之为“液调”机组。其最初配套的汽轮保护跳闸装置也是简单的继电器回路。其保护逻辑也是“正逻辑”。即汽机跳闸电磁阀带电,汽机跳闸。这种保护形式很容易因回路、电源等环节出现问题造成保护拒动。这几年随着早期国产300MW机组的改造,也改为了“反逻辑”,即跳闸电磁阀失电,汽机跳闸。 随着上世纪改革开放的深入,我国也引进了大量国外先进的大容量机组(300MW 以上),其调速系统与国内的有着本质的区别; 用EHA系统代替了调速泵、中间滑阀、危急遮断阀、启动器、同步器等复杂的机械调节和保护油路,大大提高了控制精度和设备的安全性.在引进主设备的同时,其先进的控制系统和控制理念也得到了引进,比如”反逻辑”。同样一些控制系统的叫法也进行了引进。 在上个世纪八十年代初期,随着国外先进发电机组的引进,国外的一些控制系统叫法也随之引进,象“BMS(锅炉主控系统)、FSSS(锅炉燃烧安全系统)、TSI(汽轮机轴系监测仪表系统)”等等。因其叫法简单简练,因此大家也就习惯把它作为术语了。ETS是英语-“Emergency trip system”的缩写,意思是事故紧急跳闸系统。原先国内的叫法是“汽轮机保护跳闸系统”。 在国际上,上世纪70年代中期以前,安全相关系统均由电磁继电器组成,部分也采用固态集成电路构成。80年代开始采用冗余的标准型可编程序控制器(PLC)。随着对设备安全、人身安全和环境保护的要求越来越严格,各工业企业和仪表自动化行业对过程安全功能,即有关安全系统的的功能安全给予了极大的关注。于是,80年代中期以后,伴随着微电子技术和控制系统可靠性技术的发展,专门用于有关安全系统的控制器系统、安全型PLC和安全解决方案(Safety Solution)得到迅速发展和推广。目前,比较知名的安全控制系统产品有: ·Triconex Tricon TMR safety and critical control system Trident fault-tolerant control system ·ICS Triplex Triple-modular redundant (TMR) control system ·Honeywell FSC 2004D safety system ·ABB August Triguard SC300E TMR product Safeguard 400 ·Siemens Teleperm XP AS620F fail-safe automation system

电力系统频率变化的影响教学提纲

电力系统频率变化的 影响

精品文档 电力系统频率偏低偏高有哪些危害? 电力系统频率的频率变动会对用户、发电厂、电力系统产生不利的影响。1.对用户的影响:频率的变化将引起电动机转速的变化,从而影响产品质量,雷达、电子计算机等会因频率过低而无法运行;2.对发电厂的影响:频率降低时,风机和泵所能提供的风能和水能将迅速减少,影响锅炉的正常运行;频率降低时,将增加汽轮机叶片所受的应力,引起叶片的共振,减短叶片寿命甚至使其断裂。频率降低时,变压器铁耗和励磁电流都将增加,引起升温,为保护变压器而不得不降低其负荷;3.对电力系统的影响:频率降低时,系统中的无功负荷会增加,进而影响系统,使其电压水平下降。 当供电电路的频率偏高时,1、电动机的转速回高( n=60f/p(1-&) ),当电动机转速增大时,其实际功率成倍增加,其结果电动机很容易过载烧毁;2、中国电气设备是按50赫兹设计的,如果大于其允许的频率数,电气原件容易损坏。当供电电路的频率偏低时,电动机转速会过低,会使有的设备不能正常工作,如水泵可能不出水,风机风量、风压过低。频率变化对电力用户及电力系统的影响包括哪些? 对用户: 1、用户使用的电动机的转速与系统频率有关,频率变化将使电动机的转速变化,从而影响产品的质量。例如,纺织工业都会因为频率的变化出现次品。 2、近代工业,国防和科学技术都已经广泛使用的电子设备受到频率影响较大。 系统本身: 1、低频运行,会对发电机的叶片所受到的应力有影响。甚至引起共振,降低叶片寿命。 2、增大励磁电流,提高温升等。 系统频率的变化主要是引起负荷端异步电动机转速的变化。 如果频率降低的过多,将使电动机停止运转,会引起严重的后果。比如,火电厂的给水泵停止运转,将迫使锅炉停炉。另一方面,如楼上所讲,对于汽轮机在低频运行状态下时,会缩短汽轮机叶片的寿命,严重时会使叶片断裂。(这是因为汽轮机转子一般瘦长,转速较快,可达1500r/s,突然频率过低,会使叶片断裂)。 如果频率过高,则会出现失步等问题。 推荐楼主看《电力系统分析(上)》诸俊伟和《电力系统分析(下)》夏道止 电力系统频率变化的原因 收集于网络,如有侵权请联系管理员删除

联锁保护调试方案

新乡华新电力工程有限公司平煤集团飞行化工公司4#机组汽轮机保护联锁系统调试方案平顶山平煤集团飞行化工 15MW机组调试作业指导书 保护联锁系统调试方案 新乡华新电力工程有限公司 2006年7月19日

批准:审定:审核:编写:

目录 1 目的 (04) 2 依据 (04) 3 系统及设备简介 (04) 4 调试内容及验评标准 (05) 5 组织分工 (06) 6 使用仪器设备 (06) 7 调试应具备的条件 (06) 8 调试方法及步骤 (06) 9汽机侧联锁 (09) 108000B系列旋转机械监视保护装置调试 (10) 11安全注意事项 (10) 12附表 (11)

1 目的 主机跳闸保护系统(ETS)接受来自机组安全监控系统(TSI)或汽轮发电机组其它系统的报警或停机信号,一旦危及机组安全的条件出现,及时发出停机指令信号,通过DEH遮断控制回路实现紧急停机。为规范调试程序,明确参与ETS调试各方的职责,提高调试质量,确保机组运行安全,特编写此方案。 2 依据 2.1《火电工程启动调试工作规定(1996版)》。 2.2《火力发电厂基本建设工程启动及竣工验收规程(1996版)》。 2.3《火电工程调整试运质量检验及评定标准(1996版)》。 2.4《电力建设安全工作规程(第一部分:火力发电厂)》(DL5009.1-2002)。 2.5 南京气轮电机有限公司ETS设计、设备资料。 2.6《电厂热工保护定值清单》。 3 系统及设备简介 平顶山平煤集团飞行化工15MW机组汽轮机采用南京气轮电机有限公司生产的CC15-3.43/0.98/0.49 中温中压冲动式双抽凝汽式汽轮机。汽轮机跳闸保护系统由南京气轮电机有限公司成套供应。 汽轮机跳闸保护项目如下: 序号保护项目保护定值动作结果备注 1发变组故障停机停机 2手动停机停机 3轴向位移大停机≥1.3mm或≤-0.7mm 停机 4润滑油压力低(2/3)0.02Mpa 停机 5凝汽器真空低停机(2/3)-0.061MPa 停机 6超速停机(110%)(2/3)3300 r/s 停机 7轴承回油温度高停机75℃停机 8推力瓦温度高停机75℃停机 9径向瓦温度高停机75℃停机

AB PLC通过OPC方式通讯的连接方法

AB PLC通过OPC方式通讯的连接方法 Rockwell Automation 的A-B PLC是一个著名的可编程控制器产品。其产品体系基本上涵盖了工业控制产品的各个领域,由于A-B的PLC的种类繁多,且各种类型的PLC支持的通信协议不尽相同,使得第三方的HMI软件都不能很好的与A-B PLC进行连接。RSLinx软件是A-B PLC通用的通信配置软件(2.2以上的版本支持对以太网的网关配置),目前主要有以下几个版本:RSLinx OEM、RSLinx Professional 、RSLinx Gateway、RSLinx SDK四个版本。且均支持OPC服务(2.3版以上支持OPC2.0版)。 多数上位机软件已内嵌了OPC服务功能,支持OPC客户端和OPC服务器的工作方式。这样就可以很方便的与A-B PLC进行通信。具体的配置方法如下: 与A-B PLC进行OPC的配置是必须要有A-B PLC及相关的通讯附件。 1、安装A-B PLC 、通讯卡、相关的软件,并作物理连接。 2、使用RSLinx连接A-B PLC的通讯网络。 配置通讯卡(参加图1),选择ConFigure Drivers。 图1 弹出入下的配置窗口(参见图2)。

图2 选择对应的通讯卡,并进行端口配置(可参照附带的安装手册),配置成功后将显示所配置的设备的运行状态。 使用RSWho命令查找连接的PLC设备(参见图3)。 参见图3 RSWho命令成功的执行后,将在设备列表中列出与本机连接的所有硬设备(参见图4)。

图4 使用Topic Configoration来进行OPC服务的配置(参见图5)。 图5 在Date Source配置框中配置Topic,选择一个物理设备(PLC),按New按钮即可建立一个Topic,在DATA SOURCE中选中你所要连接的物理设备,选中后,单击Done即可(参见图6)。

电力系统频率调整

电力系统负荷可分为三种。第一种变动幅度很小,周期又很短,这种负荷变动由很大的 偶然性。第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲 击性的负荷。第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变 化引起的负荷变动。 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频 率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次 调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调 整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事 先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可 以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流 计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频 任务的发电厂母线。 一:调整频率的必要性 电力系统频率变动时,对用户的影响: 用户使用的电动机的转速与系统频率有关。 系统频率的不稳定将会影响电子设备的工作。 频率变动地发电厂和系统本身也有影响: 火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少, 影响锅炉的正常运行。 低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片 断裂。 低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使 发电机定子和转子的温升都将增加。为了不超越温升限额,不得不降低发电机所发功率。 低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。也为了不超越 温升限额,不得不降低变压器的负荷。 频率降低时,系统中的无功功率负荷将增大。而无功功率负荷的增大又将促使系统电压水 平的下降。 频率过低时,甚至会使整个系统瓦解,造成大面积停电。 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统, 特别时其中的调速器和调频器(又称同步器)。 二:发电机原动机有功功率静态频率特性 电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。 原动机未配置自动调速时,其机械功率与角速度或频率的关系: 221212m P C C C f C f ωω=-=- 式中各变量都是标幺值;通常122C C =。 解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮 速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩 都适中,它们的乘积最大,功率输出最大。 调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,

机炉电大联锁试验措施

XXXXX公司热能中心节能降耗 技改工程 机炉电大联锁调试方案 编写: 审查: 审批: XXXXX技术服务 2013年9月

目录 1 设备系统概述 (1) 2 编制依据 (1) 3 调试目的及围 (1) 4 调试前具备条件 (3) 5 调试方法及步骤 (4) 6 调试的控制要点及安全注意事项 (6) 7 调试质量验收标准 (7) 8 调试组织与分工 (7) 9 调试仪器 (8) 10附录 (9)

1设备系统概述 机炉电大联锁回路主要设备包括BTG盘台按钮、汽轮机主保护、汽轮机控制系统(505控制器)、发变组保护柜、灭磁开关、发电机出口断路器等。试验时,通过BTG盘台按钮直接触发锅炉或汽机主保护动作,快速切断燃料和关闭汽轮机汽阀,并触发相关设备联动。通过ETS保护柜发出热工保护至发变组保护柜,跳闸灭磁开关和发电机出口断路器。通过模拟发变组保护动作,跳闸汽轮机,通过ETS保护输出至MFT逻辑触发MFT锅炉主保护动作。2编制依据及参考资料 a)《防止电力生产事故的二十五项重点要求》国能安全[2014]161号。 b)《工程建设标准强制性条文》(电力工程部分)2011版。 c)《电业安全工作规程第1部分:热力和机械》GB 26164.1—2010。 d)《电力建设安全工作规程第1部分:火力发电厂》DL 5009.1—2014。 e)《电力建设施工技术规第4部分:热工仪表及控制装置》DL 5190.4—2012 f)《火电工程达标投产验收规程》DL 5277—2012。 g)《电力建设施工质量验收及评价规程第4部分:热工仪表及控制装置》DL/T 5210.4—2009。 h)《火力发电建设工程机组调试技术规》DL/T 5294—2013。 i)《火力发电建设工程机组调试质量验收及评价规程》DL/T 5295—2013。 j)《火力发电建设工程启动试运及验收规程》DL/T 5437—2009。 k)《火力发电厂锅炉炉膛安全监控系统验收测试规程》DL/T 655—2006。 l)《火力发电厂开关量控制系统验收测试规程》DL/T 658—2006。 m)《火力发电厂汽轮机监视和保护系统验收测试规程》DL/T 1012—2006。 n)DCS系统I/O测点清册、的热工系统图及厂家资料。 o)总包单位,设计单位,组态单位提供的有关I/O清册、DCS系统设计说明书、机柜接线图等技术资料。 3调试目的及围 3.1验证机组机炉电大联锁的设计功能,保证机组机炉电大联锁正确、可靠地投用,保证机组安全、稳定地运行。 机、炉、电大联锁之间的关系如表1,试验容包括:

OPC通讯简介

OPC通讯简介 OPC 概念 在OPC之前,需要花费很多时间使用软件应用程序控制不同供应商的硬件。存在多种不同的系统和协议;用户必须为每一家供应商和每一种协议订购特殊的软件,才能存取具体的接口和驱动程序。因此,用户程序取决于供应商、协议或系统。而OPC 具有统一和非专有的软件接口,在自动化工程中具有强大的数据交换功能。 OPC (OLE for Process Control)是嵌入式过程控制标准,规范以OLE/DCOM为技术基础,是用于服务器/客户机连接的统一而开放的接口标准和技术规范。OLE是微软为Windows系统、应用程序间的数据交换而开发的技术,是Object Linking and Embedding的缩写。 OPC从数据来源提供数据并以标准方式将数据传输至任何客户机应用程序的机制。供应商现在能够开发一种可重新使用、高度优化的服务器,与数据来源通信,并保持从数据来源/设备有效地存取数据的机制。为服务器提供OPC接口允许任何客户机存取设备。 OPC将数据来源提供的数据以标准方式传输至任何客户机应用程序。OPC(用于进程控制的OLE)是一种开放式系统接口标准,可允许在自动化/PLC应用、现场设备和基于PC的应用程序(例如HMI或办公室应用程序)之间进行简单的标准化数据交换。定义工业环境中各种不同应用程序的信息交换,它工作于应用程序的下方。您可以在PC机上监控、调用和处理可编程控制器的数据和事件。 服务器与客户机的概念 OPC数据项是OPC服务器与数据来源的连接,所有与OPC数据项的读写存取均通过包含OPC项目的OPC群组目标进行。同一个OPC项目可包含在几个群组中。当某个变量被查询时,对应的数值会从最新进程数据中获取并被返回,这些数值可以是传感器、控制参数、状态信息或网络连接状态的数值。OPC的结构由3类对象组成:服务器、组和数据项。 OPC服务器:提供数据的OPC元件被称为OPC服务器。OPC服务器向下对设备数据进行采集,向上与OPC客户应用程序通信完成数据交换。 OPC客户端:使用OPC服务器作为数据源的OPC元件称为OPC客户端。 OPC 数据访问 OPC服务器支持两种类型的数据读取:同步读写(Synchronous read/write)和异步读写(Asynchronous read/write)。 同步读写:OPC的客户端向服务器发出一个读/写请求,然后不再继续执行,一直等待直到收到服务器发给客户机的返回值,OPC 客户端才会继续执行下去。 异步读写:OPC的客户端向服务器发出一个读/写请求,在等待返回值的过程中,可以继续执行下面的程序,直到服务器数据准备好后,向客户机发出一个返回值,在回调函数中客户端处理返回数值,然后结束此次读/写过程。 同步读/写数据存取速度快,编程简单,无需回调,但需要等待返回结果。异步读写不需等待返回值,可以同时处理多个请求。

电力频率调整及控制

频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

等值发电机组(电网中所有发电机组的等效机组)的功率频率静态特性如下图所示,它跟发电机组的功率频率静态特性相似。 12.1.2.3电力系统频率特性 电力系统的频率静态特性取决于发电机组的功率频率特性和负荷的功率频率特性,由发电机组的功率频率特性和负荷的功率频率特性可以经推导得出: 式中――电力系统有功功率变化量的百分值: ――系统频率变化量百分值; ――为备用容量占系统总有功负荷的百分值。 12.1.2.4一次调频 一次调频:由发电机特性和负荷调节效应共同承担系统负荷变化,使系统运行在另一频率的频率调整称为频率的一次调整。

OPC通讯协议简介

OPC通讯协议简介 OPC(OLE for Process Control, 用于过程控制的OLE)是一个工业标准,管理这个标准国际组织是OPC基金会,OPC基金会现有会员已超过220家。遍布全球,包括世界上所有主要的自动化控制系统、仪器仪表及过程控制系统的公司。 基于微软的OLE(现在的Active X)、COM (部件对象模型)和DCOM (分布式部件对象模型)技术。OPC包括一整套接口、属性和方法的标准集,用于过程控制和制造业自动化系统。 OPC全称是OLE for Process Control,它的出现为基于Windows的应用程序和现场过程控制应用建立了桥梁。在过去,为了存取现场设备的数据信息,每一个应用软件开发商都需要编写专用的接口函数。由于现场设备的种类繁多,且产品的不断升级,往往给用户和软件开发商带来了巨大的工作负担。通常这样也不能满足工作的实际需要,系统集成商和开发商急切需要一种具有高效性、可靠性、开放性、可互操作性的即插即用的设备驱动程序。在这种情况下,OPC标准应运而生。OPC标准以微软公司的OLE技术为基础,它的制定是通过提供一套标准的OLE/COM接口完成的,在OPC技术中使用的是OLE 2技术,OLE标准允许多台微机之间交换文档、图形等对象。 COM是Component Object Model的缩写,是所有OLE机制的基础。COM 是一种为了实现与编程语言无关的对象而制定的标准,该标准将Windows下的对象定义为独立单元,可不受程序限制地访问这些单元。这种标准可以使两个应用程序通过对象化接口通讯,而不需要知道对方是如何创建的。例如,用户可以使用C++语言创建一个Windows对象,它支持一个接口,通过该接口,用户可以访问该对象提供的各种功能,用户可以使用Visual Basic,C,Pascal,Smalltalk 或其它语言编写对象访问程序。在Windows NT4.0操作系统下,COM规范扩展到可访问本机以外的其它对象,一个应用程序所使用的对象可分布在网络上,COM 的这个扩展被称为DCOM(Distributed COM)。 通过DCOM技术和OPC标准,完全可以创建一个开放的、可互操作的控制系统软件。OPC采用客户/服务器模式,把开发访问接口的任务放在硬件生产

汽轮机保护动作过程

汽轮机AST遮断详解 4只AST电磁阀分为两个通道。通道1包括20-1/AST与20-3/AST,而通道2则20-2/AST 与20-4/AST。每一通道由在危急遮断系统控制柜中各自的继电器保持供电。危急遮断系统的作用为,在传感器指明汽轮机的任一变量处于遮断水平时,打开所有的AST电磁阀,以遮断机组。系统设计成在任一电磁阀故障拒动时,不会影响系统功能。这就是如前所述,设计成两相同独立通道的原因。每一通道有其本身的继电器、电源和监测所有汽机遮断变量的能力。遮断汽轮机需要两个通道同时动作。如果发生一偶然性遮断事故,至少在每一通道中有一AST电磁阀应动作,才能遮断汽轮机。每一通道可以分开地在汽轮机运行时作试验而不会产生遮断或实际需要遮断时拒动。在试验时,通道的电源是隔离的,所以一次只能试验一个通道 图中黄线表示高压油,红线表示AST油,绿线表示无压回油。四个AST电磁阀分别是 1、2、3、4。1、3一组,2、4一组。我们先以图中AST1阀为例,介绍一下(注意,只看图中SAT1部分)。SAT是个二级阀,电磁阀带点后,图中左侧Y型的小阀关闭,

高压油进入后形成压力腔室,顶住图右侧阀座,封住AST油通道。反之,电磁阀失电,左侧小阀打开,高压油卸掉,右侧阀座在弹簧作用下打开,AST油卸掉。但AST1中的AST油只能卸到AST2、4中,如果2、4中没有一个动作,AST油是卸不掉的。所以,一组中至少有一个阀动作,才能卸掉。就是说,4个阀中任何一个误动,AST油压是卸不掉的。如果动作时,任何一个拒动,都不会造成油压无法卸掉。 第一部分:图1中的红线就是EH油泵出来的油经过每个油动机内部的一个节流孔和一个逆止阀后出油动机来到AST母管的AST油(其实OPC油也是这样来的,只不过OPC油是经过调门油动机出来到OPC母管,而AST油是经过主汽门油动机出来来到AST母管,而且OPC母管到AST母管是有个单向阀的,也就是说OPC这路能到AST,但是AST这路不能到OPC,所以当OPC电磁阀动作,OPC油卸压后是调门关闭而主汽门不动作,但是如果AST电磁阀动作,AST油卸压后,由于OPC的压力比AST高,所以OPC也通过单向阀流到AST 管路而同时卸压,这时调门和主汽门同时关闭)。粉色的是串联中间点的压力油,青色是无压回油,绿色是安全油。PS1~3是AST压力开关,PS4~PS5是中间点压力开关,这几个压力开关都是监测报警或给DCS信号的,我们暂时不管它。其中卸荷阀1和3并联后经过节流孔A再与并联的卸荷阀2和4串联,串联后再经过节流孔B进入无压回油。原本我们不需要这么复杂,只是因为我们这个使用场合的高可靠性要求,要不是可靠性要求,一个卸荷阀和一个节流孔就可以实现。 第二部分:要解释整个问题,首先请允许我简单介绍一下EH油泵的工作特点,EH油泵是轴向柱塞式衡压变量泵,在这里我们只要知道它叫衡压变量泵好了,顾名思义,你调定好了压力后它的压力是不变的,在这个压力下它能根据你系统

汽机、发电机联锁试验

汽机、发电机联锁试验 实验一 实验项目:发电机跳闸,联跳汽轮机试验 实验步骤: 1、启动#1机#1EH油泵,运行正常; 2、启动#1机高压油泵、排烟风机,运行正常; 3、汽机挂闸,已挂闸指示灯亮,汽轮机高低调门阀位指示与就地状态一致; 4、确认汽机低真空跳闸保护解除; 5、电气确认发电机出口刀闸开关均在分闸状态且在试验位置; 6、短接跳闸出口12D-7 101 12D-12 133; 实验现象: 1、励磁机未跳。 2、主汽门未关闭。 3、低调门全关。 实验二 实验项目:发电机跳闸,联跳汽轮机试验 实验步骤: 1、确认#1机#1EH油泵启动,运行正常; 2、确认#1机高压油泵、排烟风机启动,运行正常; 3、汽机挂闸,已挂闸指示灯亮,汽轮机高低调门阀位指示与就地状态一致;

4、确认汽机发变组故障保护和ETS总保护投入,其他保护解除; 5、电气确认发电机出口刀闸开关均在分闸状态且在试验位置; 6、短接#1F保护屏935、936至汽机后备; 实验现象: 1、关闭自动主汽门1(ETS动作1); 2、关闭自动主汽门2(ETS动作2); 3、关闭自动主汽门3(ETS动作3); 4、发变组故障停机; 5、启动油压已打开主汽门; 6、ETS动作。 上述现象均同时发生。 实验三 实验项目:汽轮机跳闸,联跳发电机试验 实验步骤: 1、确认#1机#1EH油泵启动,运行正常; 2、确认#1机高压油泵、排烟风机启动,运行正常; 3、汽机挂闸,已挂闸指示灯亮,汽轮机高低调门阀位指示与就地状态一致; 4、确认汽机发变组故障保护和ETS总保护投入,其他保护解除; 5、电气确认发电机出口刀闸开关均在分闸状态且在试验位置; 6、投入汽机低真空跳闸保护; 实验现象:

汽轮机各种试验要求和方法和过程和标准

第一节喷油试验 一、试验条件: 1、试验应在专业人员现场监护指导下进行。 2、机组定速后(2985?3015r/min )。 3、高压 胀差满足要求。4、机组控制在“自动”方式。5、DEH电超速试验未进行。6、机械超速试验未进行。7、 喷油试验按钮在允许位。二、试验方法: 1、检查汽轮机发电机组运行稳定; 2、润滑油冷油器出油温度保持在35?45C; 3、在OIS上进入“超速试验”画面,按“试验允许”键,使其处于试验位; 4、在“超速试验”画面上选择“喷油试验”,试验完毕,在OIS该画面上显示“成功”或“失败”信号。 5、做好试验相关记录。记录动作油压合格标准: 充油实验大部分是在汽轮机转速不超过额定转速的条件下,检验危急保安器的活动情况,因 此要求充油实验时危急保安器的动作转速为2900-2950r /min相当于超速实验时 3300-3360r / min。目的是活动飞锤。 第二节超速试验 103%超速:通过感知转速快关高中压各调门,转速下降至额定值复位该保护? AST110%电超速:包含TSI和DEH两个保护,原理一样,都是感知转速,达到110%时动作跳机? DEH的110%超速通过 哈哈,如下图: 机械超速:通过机头的飞环(锤)在离心力作用下克服弹簧的拉力并飞出使机头安全油机械滑阀泄油 口打开泄掉安全油,从而作用于跳机?做机超试验时应先作好各方面的安全 措施后解除所有电超速保护,设定目标转速3360RPM,开始升速,动作转速应在110-111% 之间,连续 作两次,且动作转速之差不大于千分之六?

一、(机械)超速试验: 超速试验应在有关人员指导及监护下,有关专业技术人员配合下进行。 (一)在下列情况下应做提升转速试验: 1、汽轮机安装完毕,首次启动时。 2、汽轮机大修后,首次启动时。 3、做过任何有可能影响超速保护动作的检修后。 4、停机一个月以上,再次启动时。 5、甩负荷试验之前。 6、危急保安器解体或调整后。 (二)下列情况禁止做提升转速试验: 1、汽轮机经过长期运行后停机,其健康状况不明时。 2、停机时。 3、机组大修前。 4、严禁在额定蒸汽参数或接近额定参数下做提升转速试验。 5、控制系统或者主汽门、调门、抽汽逆止门有卡涩现象或存在问题时。 6、各主汽门、调门或抽汽逆止门严密性不合格时。 7、任意轴承振动异常或任一轴承温度不正常时。 &就地或远方停机功能不正常。 9、调速系统不稳定、有卡涩、转速波动大。 (三)超速保护试验前的条件: 1、值长负责下达操作命令。 2、机组3000r/min后,并网前应先做高压遮断电磁阀试验、注油试验、主气门及调速汽门 低负荷暖机,严密性试验合格。 渡过转子脆性3、机组带20%额定负荷连续运行4 h后,全面检查汽轮机及控制系统各项要求合格,逐渐 转变温度。约减负荷到15MW,切换厂用电,机头手动打闸停机,高中压主汽门、调速汽门、抽汽逆止门、 121 °高排逆止门应关闭无卡涩,BDV阀动作正常,确认有功到零与电网解列,机组转速下降;待 转速下降低于3000r/min后,重新挂闸,恢复机组转速3000r/min,维持主汽压力5.88? 6.86MPa,主汽温度450 ?500 C。 (四)试验前的准备: 1、校对集控室与机头转速表,以制造厂提供的危急遮断器转速表为准,其它为参考。 2、夹层加热装置停止运行,高中压胀差值在允许范围以内。 3、采用单阀运行。 4、将辅汽汽源倒为备用汽源,维持汽压0.6?0.78MPa之间;除氧器汽源由辅汽供,四抽至除氧器 电动门关闭。 5、关闭高压封漏汽至除氧器手动门,门杆漏汽至三抽手动门。 6、停止#1、2、3高加及#5、6低加汽侧运行,关闭一、二、三、五、六抽汽电动门。 7、做DEH电超速及机械超速试验时,由热工将TSI超速保护切除。 8、启动电动给水泵向锅炉供水。 9、全面检查机组主、辅设备及系统运行正常,各参数在正常范围内并记录相关参数。确认交、直流油泵在正 常备用状态。 、DEH电超速试验: (一)检查机组满足以下条件:

机组汽机、锅炉、发电机大联锁试验措施

300MW机组培训资料 机组汽机、锅炉、发电机大联锁试验 一、目的: 为确保机组A、B检修后,机组大联锁保护能够正确、可靠动作,需对机组进行机、炉、电大联锁进行试验。为保证试验工作安全、顺利、有效地进行,特编制本试验措施。 二、试验组织措施 1.成立试验小组: 组长: 副组长:成员:运行部:机、炉、电专工,当值运行值班人员; 技术部:机、炉、电、热专业专工; 热工:专工、工程师站、机控班有关人员; 汽机:专工、调速班技术员; 锅炉:专工、本体班技术员; 电气:专工、继电保护技术员; 2. 试验前,各成员按此措施的要求,做好各自负责的试验条件和准备工作。

3. 试验时,由试验负责人按措施要求,逐条件进行试验,并做好记录。所有参加试验的人员,必须按照试验负责人的要求,及时完成所负责的工作,严禁自行其事。 三、试验技术措施: 1、试验应具备的条件及准备工作: 1.1DEH、ETS、DCS控制系统具备投用条件; 1.2汽机润滑油系统已经启动且运行正常; 1.3EH油系统已经启动且运行正常; 1.4确认发变组出口刀闸开关均在分闸状态; 1.5为实现锅炉复归MFT,仿真下列吹扫条件,将吹扫时间改为20S , 1.5.1 仿真风量>30%; 1.5.2 仿真汽包水位合适; 1.5.3 仿真油泄漏试验完成;(根据现场实际情况)。 1.5.4 仿真火检冷却风炉膛差压合适; 1.5.5 仿真任意一台送、引风机运行; 1.5.6 仿真两台空预器运行; 1.5.7 仿真炉水循环正常。 1.6 锅炉MFT复归后汽机具备挂闸条件: 1.6.1解除汽机低真空跳闸保护。 1.7下述设备送电至试验位置: 1.7.1 A/B/C三台磨煤机; 1.7.2 A/B两台一次风机; 1.8 A1、A2、B1、B2、C1、C2六台给煤机送电; 2.试验项目及步骤: 2.1发电机跳闸,联跳汽轮机、锅炉试验 (1)炉膛吹扫复归MFT; (2)汽机挂闸,检查汽机TV、GV、RV、IV动作正确, DEH各阀位指示与就地状态一致; (3)合上发变组出口开关;(两侧刀闸一定断开) (4)热工仿真一层油、一层制粉系统运行; (5)电气仿真发-变组差动保护动作:在发变组B柜差动保护A相加电流,发变组出口开关跳闸。 检查机组大联锁保护动作如下:锅炉MFT自动动作,MFT首出原因为“发变组开关跳闸”;汽机自动跳闸,TV、GV、RV、IV关闭,且大机ETS首出原因为“发电机故障”。 (6)解除油层及制粉系统运行的仿真信号,解除电气仿真的保护。 2.2汽机跳闸,发电机解列、锅炉MFT试验 (1)锅炉吹扫复归MFT; (2)汽机挂闸,检查汽机TV、GV、RV、IV动作正确, DEH各阀位指示与就地状态一致; (3)合上发变组开关; (4)热工仿真一层油、一层制粉系统运行; (5)热工投入低真空汽机跳闸保护,汽机自动跳闸,TV、GV、RV、IV关闭,且大机ETS首出原因为“真空低”。 检查机组大联锁保护动作如下:发变组开关自动跳闸;锅炉MFT自动动作,MFT首出原因为“汽机跳闸”。 (6)热控解除油层及制粉系统运行的仿真信号,解除低真空汽机跳闸保护。

完整启动汽轮机过程

启动汽轮机必须经过的程序 其顺序为 1、启动前的检查项。 2、辅助油泵及调节系统试,保护投入。 3、暖管。 4、辅助设备的启动与投入。 5、启动与升速。 6、并网与带负荷。 熟记汽轮机有哪些保护,所有这些保护是什么时候投入。 汽轮机具有下列保护装置 1、超速保护 DEH中设计了103%超速(OPC)、110%电气超速跳闸(AST)和112%机械超速跳闸。 103%超速保护:汽机任何情况下转速超过3090RPM时OPC电磁阀动作,所有调门立刻关闭,保持数秒或转速降低到3000RPM后重新打开。103%超速保护动作只关调门。 110%AST超速跳闸保护:汽轮机转速超过3300RPM时,AST电磁阀动作,主汽门、调门关闭,汽机跳闸。 112%机械超速跳闸保护:转速超过3360RPM时,机械撞击子在离心力的作用下飞出,使保安系统动作,关闭主汽门、调门,汽机跳闸。 2、低油压保护 ①调速油压低于1.76MPa时联调速油泵;润滑油压低于0.07MPa时联交流润滑油泵。 ②润滑油压低于0.06MPa时联直流润滑油泵;润滑油压低于0.04MPa时跳机。 ③润滑油压低于0.03MPa时联跳盘车。 ④顶轴油泵进口油压≤0.049MPa时联备用泵。 ⑤顶轴油泵进口油压≤0.0196MPa时联跳顶轴油泵。 ⑥DEH控制油压低于0.7MPa时跳机。 3、轴向位移大保护 当轴向位移达-1.0mm或0.8mm时,发出报警信号;当轴向位移达-1.2mm 或1.0mm时,保护动作。 4、轴承温度高保护 轴承回油温度达65℃时,发出报警信号;轴承回油温度达75℃时,保护动作。 5、相对差胀保护 当相对差胀达-1.6mm或2.5mm时,发出报警信号;当相对差胀达-1.8mm 或3.2mm时,保护动作。 6、低真空保护 当排汽真空低于-0.087MPa时,发出报警信号;当排汽真空低于-0.067MPa 时,跳机。 7、危急遮断器手柄

电网调度管理的频率调整详细版

文件编号:GD/FS-3036 (解决方案范本系列) 电网调度管理的频率调整 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

电网调度管理的频率调整详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 由于电力系统的负荷随时都在变化,因此系统的频率也会随时变化,欲使频率的变化不超过允许范围,就必须对频率进行调整,这是电力系统调度部门的主要工作之一。 为满足电力系统最大负荷的需要,电力系统必须留有足够的备用容量,例如检修备用、事故备用、调频备用等。根据备用转入预先的条件,备用可分为以下四级: 第一级属“秒”级备用,也就是热备用或旋转备用,此类备用容量可在几秒内发挥作用,包括未带负

荷的发电机组,特别是运行的水轮机组,除调速器随频率起作用外,还能迅速增减负荷,在最高负荷时,此类备用要留高峰负荷2%~3%,在负荷上升时,要根据负荷上升速度,留有更多备用。 第二级属“分”级备用,可以称为温备用,完全在启动备用状态,在1~5min内即可并网发电,例如备用中的燃气轮机、水力发电机组、蓄能方式运行的抽水蓄能机组。这类备用机组的启动,可采用低频自起动方式,第二类的备用容量一般为高峰负荷的1%~1.5%。 第三组属“时”级备用,一般需1~2h才能投入运行,可称作“低温”备用,例如保持热状态下的火电机组。凡深夜停机备用,次日高峰前并网的机组

相关文档