文档库 最新最全的文档下载
当前位置:文档库 › 中国石油大学(华东)油层物理实验报告 液体粘度及流变性测定实验

中国石油大学(华东)油层物理实验报告 液体粘度及流变性测定实验

中国石油大学(华东)油层物理实验报告 液体粘度及流变性测定实验
中国石油大学(华东)油层物理实验报告 液体粘度及流变性测定实验

液体粘度及流变性测定实验

一、实验目的

1.学会旋转粘度计使用方法,测定脱气原油在不同温度和剪切速度下的粘度;

2.学会使用毛细管粘度计测定脱气原油在不同温度和剪切速度下的粘度;

3.掌握粘度随温度变化的规律。

二、实验原理

(1)旋转粘度计由电机经变速带动转子作恒速转动。当转子在某种液体中旋转时,液体会产生作用在转子上的粘性力矩。液体的粘度越大,该粘性力矩越大;反之,液体的粘度越小,该粘性力矩也越小。该作用在转子上的粘性力矩由传感器检测出来,经仪器所带的微电脑处理后,可得出被测液体的粘度。

(2)在一定温度下,当液体在直立的毛细管中,以完全湿润管壁的状态流动时,其运动粘度与流动时间成正比。测定时,通过实验测得的数据代入公式,则可计算出试样的粘度。

三、实验流程

(一)毛细管粘度计法的实验流程

图1 毛细管粘度计

1,6—管身;2,3,7—扩张部分;4—毛细管;5—支管

(二)旋转粘度计的实验流程

图2 旋转粘度计结构图

1—粘度计机头水准泡;2—液晶显示屏;3—外罩;—转子保护架;5—水浴槽;6—主机底座;7—主机底座水平调节旋钮(使水准泡居中);8—粘度计机头;9—

操作键盘;10—转子连接头;11—转子

(三)微操作界面简介

图3 微电脑操作界面

四、实验操作步骤

(一)旋转粘度计法

(1)将脱气原油置于直径不小于70mm,高度不低于125mm的双层杯中。

(2)通过水浴准确控制原油的温度。

(3)调整仪器水平:将仪器的水准器气泡调至居中。

(4)估计原油的粘度范围,选择适宜的转子和转速。若估计不出原油的大致粘度时,应视为较高粘度。选用由小到大的转子(转子号由高到低)和由慢到快的转速。原则上高粘度的液体选用小转子(转子号高);低粘度的液体选用大转子(转子号低),快转速。为保证测量精度,测量时量程百分比读数应在10%~100%之间。如测量显示值闪烁,表示溢出或不足,应更换量程。

(5)缓慢调节升降旋钮,调整转子在原油中的高度,直至转子的液面标志(凹槽中部)和液面相平为至。

(6)选择好转子和转速档位后,按“确定”键,转子开始旋转,仪器开始进行测量。

(二)毛细管粘度计法

(1)在内径符合要求的清洁干燥的毛细管粘度计的支管6上套上橡皮管,并用手指堵住管身7的管口,同时倒置粘度计将管身4插入待测石油产品中,然后利用吸耳球、水流泵或其它真空装置将液体吸到标线b,注意不要使管身4、扩张部分2和3中的液体产生气泡或裂隙。当液面到达标线b时,将粘度计提起,使其迅速恢复正常状态。将管身4的管端外壁粘附的油擦去,并从支管6上取下橡皮管套在管身4上口。

(2)利用铅垂线从两个相互垂直的方向检测毛管是否垂直,将粘度计调整成垂直状态;

(3)利用管身4所在的橡皮管将待测石油产品吸入扩张部分2,使液面稍高于标线a,并且不要让毛细管和扩张部分2中的液体产生气泡或裂隙。

(4)记录液面由标线α流到标线b所需要的时间。至少重复测定4次,每次的流动时间与其算术平均值的差数不应超过算术平均值的0.5%,然后取不少于3次的流动时间所得的算术平均值作为平均流动时间t。

(5)按下式计算液体的运动粘度,即:

μρ

=Ct

式中

μ——液体的动力粘度,mPa s;

C——粘度计常数;

ρ——液体在测试温度下的密度,3

/g cm;

t ——毛细管中液面由标线a 流到标线b 的时间,s 。

五、实验数据处理

(一)绘制粘度—温度曲线

根据实验所得数据,如表1,绘制出粘度—温度曲线(图4):

表1 液体粘度及流变性测定数据

s

百分比,

由上表中温度与粘度的数值利用origin 绘制粘度—温度曲线如下:

/t c

?/μ

图4 粘度—温度曲线

通过粘度—温度曲线我们可以看出,随着温度的上升,原油的粘度逐渐减小。这是因为随着温度的上升,原油分子的动能增加,体积膨胀,分子间距离增大,导致原油分子间的吸引力减小,所以粘度降低。

(二)利用毛细管粘度计法计算原有的动力粘度 已知实验仪器相关参数:

编号:19 φ:0.8mm C :0.03243 ρ:0.836513/g cm 将实验所得的数据放于表2:

表2 毛细管粘度计法相关数据

流动时间的算数平均值为:

(142.413142.512142.211142.181)/4142.32925(s)t =+++=

计算各个时间与平均时间的相对误差:

1142.413142.32925

1=

=0.059%142.32925t t t --=

2142.512142.32925

2==0.128%142.32925t t t --=

3142.211142.32925

3==0.083%142.32925t t t --=

4142.181142.32925

4==0.104%142.32925

t t t --=

通过以上数据可知所得误差均小于允许误差0.5%,因此其平均时间:

142.32925(s)t =

结合仪器参数,可计算该原油的动力粘度为:

==0.836510.03243142.32925=3.861(mPa s)Ct μρ??

油层物理实验报告

油层物理实验报告

目录 实验一岩石孔隙度的测定错误!未定义书签。 实验二岩石比面的测定错误!未定义书签。 实验三岩心流体饱和度的测定错误!未定义书签。 实验四岩石碳酸盐含量的测定错误!未定义书签。 实验五岩石气体渗透率的测定错误!未定义书签。 实验六压汞毛管力曲线测定错误!未定义书签。 中国石油大学(油层物理)实验报告 实验日期:2010/10/20 成绩: 班级:石工08-X班学号:0802XXX 姓名:XX 教师:XXX 同组者: 实验一岩石孔隙度的测定

一.实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握测量岩石孔隙度的流程和操作步骤。 二.实验原理 根据玻义尔-马略特定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 式中,Φ-孔隙度,%;Vs-岩样固相体积,cm3;Vf-岩样外表体积,cm3。 三.实验流程与设备 (a)流程图

(b)控制面板 图1 QKY-Ⅱ型气体孔隙度仪 仪器由下列不见组成: ①气源阀:供给孔隙度仪调节低于10kpa的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 ②调节阀:将10kpa的气体压力准确的调节到指定压力(小于10kpa)。 ③供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 ④压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 ⑤样品阀:能使标准室内的气体连接到岩心室。 ⑥放空阀:使岩心室中的初始压力为大气压,也可使平衡后岩心室与标准室的气体放入大气。四.实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘; 6.用同样方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五.数据处理与计算 1.计算各个钢圆盘体积和岩样外表体积; 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制标准曲线,如图所示(用坐标纸绘制); 3.据待测岩样测得的平衡压力,在标准曲线上反查出岩样固相体积; 4.计算岩样外表体积 L d V f2 4 1 π = ,求岩样的孔隙度; 5.符号说明:P—平衡压力,KPa; V s —岩样固相体积,cm3; V f—岩样外表体积,cm3;d—岩样直径,cm; L—岩样长度,cm;Φ—孔隙度,%。表一原始数据记录表

液体黏度的测定-实验报告

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

粘度法测分子量实验报告(精)

高聚物相对分子量的测定 一、实验目的 1、了解黏度法测定高聚物分子量的基本原理和分子。 2、测定聚乙二醇的黏均分子量。 3、掌握用乌贝路德黏度的方法。 4、用Origin或Excel处理实验数据 二、实验原理 分子量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不一,一般在10~10之间,所以通常所测高聚物的分子量是平均分子量。测定高聚分子量的方法很多,对线型高聚物,各方法适合用范围如下; 10 端基分析〈3*4 10 沸点升高,凝固点降低,等温蒸馏〈3*4 10~10 渗透压46 10~10 光散射47 10~10 起离心沉降及扩散47 10~10 黏度法47 其中黏度发设备简单,操作方便,有相当好的实验精度,但黏度发不是测分子量的绝对方法,因为此法中所有的特征黏度与分子量的经验方程是要用其他方法来确定的,高聚物不同,溶剂不同,分子量范围不同,就要用不同的经验方程式。 高聚物在稀溶液中的黏度,主要反映了液体在流动是存在着内摩檫。在测高聚物溶液黏度求分子量时,常用到下面一些名词。 如果高聚物分子的分子量越大,则它与溶剂间的接触表面之间的经验关系为; 式中,M为粘均分子量;K为比例常数;a是与分子形状有关的经验参数。K与a植a与温度、高聚物]溶剂性质及分子量大小有关。K植受温度的影响较明显,而a值主要取决与高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与a的值可以通过其它的实验方法确定,例如渗透压法、光散射大等,从黏度法只能测定得[ɡ] 根据实验,在足够稀的溶液中有: 这样以及对C作图得两条直线,外推到这两条直线在纵坐标轴上想叫与一点,可求出数值。为了绘图方便,引进相对浓度,即。其中,C表示溶液的真实浓度,表示溶液的其始浓度,由图可知,其中A为截距 黏度测定中异常现象的近似处理。在特定性黏度测量过程中,有时并非操作不慎,而出现对图与对图外推到时,在纵坐标轴上并不相交于一点的异常现象。在式中和

油层物理实验报告岩石孔隙度测定

中国石油大学《油层物理》实验报告 实验日期: 成绩: 班级:石工11-1班 学号: 姓名:李悦静 教师: 同组者: 徐睿智 实验一 岩石孔隙度测定 一、实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 100%f s f V V V ?-= ? 测定岩石骨架体积可以用①气体膨胀法 11221()()Po Vo Vs PV P Vo V V -+=-+ ②气体孔隙度仪 三.实验流程

图1 实验流程图 图2 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1. 将钢圆盘从小到大编号为1、2、3、4; 2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中; 3. 打开样品阀及放空阀,确保岩心室气体为大气压; 4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。 5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。 8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入

2015中国石油大学 采油工程(含课程设计)在线作业3.2.1答案 100分.

第三阶段在线作业答案 多选题(共20道题) 收起 1.( 2.5分)影响酸岩反应速度的有 ?A、面容比 ?B、酸液流速 ?C、温度 ?D、压力 ?E、酸液类型 我的答案:ABCDE 此题得分:2.5分2.(2.5分)常用的酸化液的类型主要有 ?A、盐酸 ?B、土酸 ?C、乳化酸 ?D、泡沫酸 ?E、缓速酸 我的答案:ABCDE 此题得分:2.5分3.(2.5分)压裂液支撑剂的主要类型有 ?A、粘土颗粒 ?B、天然石英砂 ?C、陶粒 ?D、树脂包层砂粒 ?E、树脂包层粘土 我的答案:BCD 此题得分:2.5分

4.(2.5分)酸化时常用的助排剂是 ?A、氧气 ?B、氮气 ?C、氢气 ?D、氦气 ?E、氯气 我的答案:B 此题得分:2.5分 5.(2.5分)压裂液的类型主要有 ?A、水基压裂液 ?B、油基压裂液 ?C、泡沫压裂液 ?D、乳化压裂液 ?E、气体压裂液 我的答案:ABCD 此题得分:2.5分6.(2.5分)水基压裂液中的添加剂有哪些 ?A、降粘剂 ?B、交联剂 ?C、稠化剂 ?D、破胶剂 ?E、起泡剂 我的答案:BCD 此题得分:2.5分 7.(2.5分)注入水水质指标有 ?A、含油量 ?B、含铁量

?C、固体含量 ?D、硫化物 ?E、含气量 我的答案:ABCD 此题得分:2.5分 8.(2.5分)视吸水指数是日注水量与哪个的比值 ?A、井底压力 ?B、井底压差 ?C、井口压力 ?D、油藏压力 ?E、井筒平均压力 我的答案:C 此题得分:2.5分 9.(2.5分)酸液添加剂主要有 ?A、缓蚀剂 ?B、表面活性剂 ?C、稳定剂 ?D、增粘剂 ?E、起泡剂 我的答案:ABCD 此题得分:2.5分 10.(2.5分)注水水源的类型有哪些 ?A、地面水 ?B、地下水 ?C、海水 ?D、油层产出水 ?E、地表污水

油层物理岩石比面测定

中国石油大学 油层物理 实验报告 实验日期: 2011.10.13 成绩: 班级: 学号: 姓名: 教师: 张丽丽 同组者: 无 岩石比面测定 一. 实验目的: 1.巩固岩石比面的概念。 2.了解岩石比面的测定原理和方法。 二.实验原理: 比面是指单位体积岩石体积内颗粒的总表面积,或单位岩石体积内总空隙度 得表面积.比面通常可以分为以岩石外表体积估计体积和空隙体积为基数的比面,根据毛管模型,以岩石表面体积为基数的比面计算公式为: μ φφ 1 )1(14 2 3 Q H L A S v -= 式中 v S —以岩石骨架为基础的比面,32/cm cm ; φ-孔隙度,小数; A-截面积,小数; L-长度,cm ; H-岩石两端的压差,cm ; Q-通过岩心的空气流量,s cm 3 ;μ空气的粘度,mP a ·S 。 当孔隙度已知,A 和L 可以用游标卡尺直接测出,μ由查表得到后,只要通过 压力计测得空气通过岩样的压差H 和相应的流量 Q ,便可求出岩样的比面。 三、实验流程图

四、实验操作步骤 1.打开水罐进液阀放空阀,向水罐中注水,大约灌2/3体积时停止,关闭水罐进液阀及放空阀; 2.用游标卡尺测出岩样的长度和直径,计算岩样的截面积; 3.将岩样放入岩石夹持器,关闭环压放空阀,打开换压阀加压,确保岩样与夹持器之间无气体窜流; 4.准备好秒表,打开流量控制阀,并控制流出的水量,待压力计的压力稳定在某一H 值后,测量一定时间内流出得水量,用同样地方法至少测定三个水流量和与之相应的H 值。(如果岩石渗透率较低,关闭水柱阀,用汞柱差计读取岩石心上游压力,并将汞柱压力转换成水柱高度。); 5.关闭流量控制阀,关闭环压阀,缓慢打开环压放空阀,结束实验。 五、实验数据处理 空气粘度u(mP.s)=0.01819mP.s 孔隙度φ(%)=27.8% 表1、岩石比面测定原始记录 分别计算三组数据的v S 值,取平均值如下: 3 2 2 3 2 3 1/3.9400001819 .010919 .08.1706 .4784.4) 278.01(278 .0141 )1(14 cm cm Q H L A S v =? ? ? -? =-=μ φφ

测量液体黏度实验报告

液体黏度的测量 物理学系 一、 引言 黏滞性是指液体、气体和等离子体内部阻碍其相对流动的一种特性。如果在流动的流体中平行于流动方向将流体分成流速不同的各层,则在任何相邻两层的接触面上就有与面平行而与相对流动方向相反的阻力或曳力存在。液体的黏度在医学、生产、生活实践中都有非常重要的意义。例如,许多心血管疾病都与血液的黏度有关;石油在封闭的管道中输送时,其输运特性与黏滞性密切相关。本实验旨在学会使用毛细管和落球法测定液体黏度的原理并了解分别适用范围,掌握温度计、密度计、电子秒表、螺旋测微器、游标卡尺的使用,并学会进行两种测量方法的误差分析。 二、 实验原理 (一) 落球法 当金属小圆球在黏性液体中下落时,它受到3个力,重力mg 、浮力和粘滞阻力。如果液体无限深广,在下落速度v 较小下,粘滞阻力F 有斯托克斯公式 F =6 (1) r 是小球的半径;称为液体的黏度,其单位是Pa ·s.小球刚进入时重力大于浮力和粘滞阻力之和,运动一段时间后,速度增大,达到三个力平衡,即 mg= +6 (2) 于是小球作匀速直线运动,由(2)式,并用3,,62 l d m d v r t πρ'===代入上式,并因为待测液体不能满足无限深广的条件,为满足实际条件而进行修正得 -g d 118(1 2.4)(1 1.6)t d d l D H ρρη'=++2() (3) 其中ρ'为小球材料的密度,d 为小球直径,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间,D 为容器内径,H 为液柱高度。 (二) 毛细管法 若细圆管半径为r ,长度为L ,细管两端的压强差为P ?,液体黏度为η,则其

计算机网络课程设计--中国石油大学校园网设计(finish)-(23794)

中国石油大学远程教育学院 20**-20**-*学期 《计算机网络课程设计》大作业 题目:中国石油大学校园网系统设计 专业: 班级: 学生姓名: 学号: 年月

目录 第一章综述 (3) 1.1网络设计背景分析 (3) 1.2网络设计采用的方法和原则 (3) 第二章用户需求分析 (5) 2.1网络功能性需求分析 (5) 2.2网络非功能性需求分析 (5) 2.2.1网络拓扑结构需求分析 (5) 2.2.2网络性能需求分析 (5) 2.2.3网络可靠性需求分析 (6) 2.2.4网络安全需求分析 (6) 第三章网络拓扑结构设计 (6) 3.1网络拓扑结构 (6) 3.2网络硬件结构 (8) 3.3网络地址规划 (9) 第四章网络性能设计 (10) 第五章网络可靠性设计 (11) 第六章网络安全设计 (12) 第七章网络物理设计 (14) 7.1网络传输介质的选择 (14) 7.2网络综合布线设计 (15) 第八章课程设计总结与体会参考文献 (16) 参考文献 (17)

第一章综述 1.1 网络设计背景分析 随着科技的发展,对于公司、企业、政府机构、银行等系统而言,信息日益成为关键 性的资源,必须精确、高速地传输于各类通讯设备、数据处理设备之间。用户普遍希望尽 可能地改进通讯系统,根据需要配置完整、灵活的结构。然而传统建筑采用的布线技术致 使各子系统互不兼容,无法适应技术的高速发展;管路拥挤,配线投资巨大而且重复;这 个问题随着公司、企业、政府部门的成长、设备的更新、人员和办公环境的变 动而日益严重:局部的变动引发全局的变动,降低个人效率,对整体工作产生不良影响。 尤其随着 ISDN ( 综合业务数字网 ) 和 Internet ( 国际互联网络 ) 的应用和推广,传统布线根本无法满足要求。因此,寻求合理、优化、弹性、稳定和易扩展的布线技术,成为建设者 的当务之急。它必须满足当前的需求,并有能力迎接未来的挑战。 本课程设计以中国石油大学为背景,结合学校的未来发展,重新设计校园网网络架 构,利用网络的优势,来加强各级学院的管理和整个校区资源的共享。 1.2 网络设计采用的方法和原则 本课程设计以网络的实用性、拓展性、可靠性、安全性为基本原则,合理利用现有 的资源和环境,在保障各学院正常工作的前提下,对现有网络架构的基础上进行改进和 拓展,极大的降低了设计失败而产生的风险和损失。 由于计算机网络的特殊性,网络建设需要考虑以下因素:系统的先进性、系统的稳 定性、系统的可扩展性、系统的可维护性、应用系统和网络系统的配合度、与外界网络 的连通性以及建设的成本等问题。 1、选择高带宽网络设计 校园网应用具体要求决定了网络必须采取高带宽网络。多媒体课件包含了大量的声音、图像和动画信息,需要高带宽网络通信能力的支持。在构建校园网时,不能由于网络 传输速率不足,而影响整个网络的整体性能。所以要尽可能的采用最新的高带宽网络技术。 2、选择可扩充的网络架构

油层物理流体饱和度的测定实验报告

中国石油大学油层物理实验报告 实验日期: 2014.9.22 成绩: 班级: 石工1209 学号: 12021409 姓名: 陈相君 教师: 同组者: 魏晓彤,王光彬等 岩心流体饱和度的测定 一.实验目的 1.巩固和加深油、水饱和度的概念; 2.掌握干馏仪测定岩心中油、水饱和度的原理及方法。 二.实验原理 把含有油、水的岩样放入钢制的岩心筒内加热,通过电炉的高温将岩心中的油,水变为油、水蒸汽蒸出,通过冷凝后变为液体收集于量筒中,读出油、水体积,查原油体积校正曲线,得到校正后的油体积,求出岩样孔隙体积,计算油、水饱和度: %100?= p o o V V S %100?= p w w V V S 式中:S o —含油饱和度,%; S w —含水饱和度,%; V o —校正后的油量,m l ; Vp —岩心外表体积。 三.实验流程

图1流程图 (a)控制面板(b)筒式电炉 1—温度传感器插孔; 2—岩心筒盖; 3—测温管;4—岩心筒; 5—岩心筒加 热炉; 6—管式加热炉托架; 7—冷凝水出水孔;8—冷凝水进水孔;9- 冷凝器

图 2 BD-Ⅰ型饱和度干馏仪 四、实验操作步骤 1.精确称量饱和油水岩样的质量(100-175克),将其放入干净的岩心筒内,上紧上盖; 2.将岩心筒放入管状立式电炉中,使冷水循环,将温度传感器插杆装入温度传感器插孔中,把干净的量筒放在仪器出液口的下面 3.然后打开电源开关,设定初始温度为120℃,; 4.当量筒中水的体积不再增加时(约20分钟),记录下水的体积;把温度设定为300℃,继续加热20~30分钟,直至量筒中油的体积不再增加,关上电源开关,5分钟后关掉循环水,记录量筒中油的体积读值。 5.从电炉中取出温度传感器及岩心筒,用水冲洗降温后打开上盖,倒出其中的干岩样称重并记录。 为了补偿在干馏中因蒸发、结焦或裂解所导致的原油体积读值的减少,应通过原油体积校正曲线对蒸发的原油体积进行校正。根据蒸出的水量—时间关系,对水的体积进行校正(曲线初始平缓段对应水量)。 五.数据处理与计算

实验三 液体粘度的测定

实验三 液体粘度的测定 一.实验目的 1. 掌握用Ostwald 粘度计测定液体粘度的原理和方法。 2. 进一步掌握调节恒温槽的技术。 3. 了解温度对液体粘度的影响。 二.实验原理 液体的粘度η,亦称粘度系数,是指单位面积的液层以单位速度流过相隔单位距离的固定液层时所受的力。粘度的大小与分子间力有关,即与液体的性质有关。温度对液体的粘度的影响较大,一般温度升高,液体粘度变小。 若液体在毛细管中流动,则根据波华须尔公式可得: 48r Pt VL πη= 式中,r :毛细管半径;L :毛细管长度;V :液体的体积;t :液体流经长为L 的毛细管所经历的时间;P :管两端的压力。 按上式由实验来测定液体的绝对粘度是困难的,但测定液体对标准液体的比粘度是适用的,若已知标准液体的绝对粘度,则可求出另一种液体的粘度。 奥氏粘度计是毛细管粘度计的一种,适宜于测定低粘度液体,方法是用同一粘度计,分别测定两种液体在重力作用下流经同一毛细管,且流出体积相等时各所需时间,这样有: 411 18r Pt VL πη= , 422 28r P t VL πη= 从而, 111222 Pt P t ηη=。 式中,P = hgd 。h ,推动液体流动的液位差;d ,液体密度;g ,重力加速度。 如每次取样的体积一定,则可保持h 始终一致,则有: 111 222 d t d t ηη= 假如液体2的粘度η2为已知,则液体1的粘度η1可由下式求得: 11 12 22 d t d t ηη= 由于温度对液体粘度的影响很大,故测定液体在某一温度时的粘度,必须注意控制温度恒定。 本实验以25℃时的水为标准,测定20℃、25℃温度下无水乙醇及丙酮的粘度。 已知25℃下水的粘度为0.8904×10-3 Pa·s ,水的密度为0.99707 g·cm -3 ,乙醇的密度为 图3-1奥氏粘度计

中国石油大学化工原理课程设计毕胜苯-甲苯-乙苯

化工原理课程设计 说明书 设计题目:分离苯(1)-甲苯(2)-乙苯(3)混合物 班级:化工06-2班 姓名:毕胜 指导教师:马庆兰 设计成绩: 设计任务书 目录 工艺流程简图 第一部分精馏塔的工艺设计 第一节产品组成及产品量的确定 一、清晰分割法 二、质量分率转换成摩尔分率 三、物料平衡表 第二节操作温度与压力的确定 一、回流罐温度

二、回流罐压力 三、塔顶压力 四、塔顶温度 五、塔底压力 六、塔底温度 七、进料压力 八、进料温度 第三节最小回流比的确定 第四节最少理论板数的确定 第五节适宜回流比的确定 一、作N-R/R 图 min 二、作N(R+1)-R/R 图 min 三、选取经验数据 第六节理论塔板数的确定 第七节实际塔板数及实际加料板位置的确定附表:温度压力汇总表

一、精馏段塔径 二、提馏段塔径 第九节热力学衡算 附表:全塔热量衡算总表 第二部分塔板设计 第一节溢流装置设计 第二节浮阀塔板结构参数的确定第三节浮阀水力学计算 第四节负荷性能图 第三部分板式塔结构 第一节塔体的设计 一、筒体设计 二、封头设计 三、人孔选用 四、裙座设计

第四部分辅助设备设计 第一节全凝器设计 第二节再沸器选择 第三节回流泵选择 第五部分计算结果汇总 第六部分负荷性能图 第七部分分析讨论 附录参考资料 第一部分精馏塔的工艺设计 第一节产品组成及产品量的确定 一、清晰分割法(P492) 重关键组分为甲苯,轻关键组分为苯,分离要求较高,而且与相邻组分的相对挥发度都较大,于是可以认为是清晰分割,假定乙苯在塔顶产品中的含量为零。现将已知数和未知数列入下表中:

岩石孔隙度测定 实验报告

中国石油大学油层物理实验报告 实验日期:2010年11月22日成绩: 班级:资源(中石化)07-1班学号:07131419姓名:武鑫彪教师:张丽丽同组者:无 实验内容:岩石孔隙度测定 一、实验目的 1.悉知岩石孔隙度的概念,掌握其测定原理(膨胀法测定孔隙度)。 2.掌握气测孔隙度的流程与操作步骤。 二、实验原理 根据波义耳定律,在恒定温度下,岩心室体积一定,放入岩心室样品的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: % 100×?=f s f V V V φ三、实验流程与设备 图1.流程图 图2.控制面板

设备:QKY-II型气体孔隙度仪 仪器部件组成: 1气源阀:供给孔隙度仪调节器低于1000KPa的气体。当供气阀开启时,调节器通过常泄,使压力保持稳定。 2调节阀:将1000KPa的气体准确地调节到指定压力(小于1000KPa)。 3供气阀:连接经调节阀后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 5样品阀:能使标准室的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 四、实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆 盘从小到大编号为1、2、3、4),并记录在数据表中。 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形 转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压。 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压 力调至某一值(如560KPa)。待压力稳定后,关闭供气阀,并记录标准 室气体压力。 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。 5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘。 6.用同样的方法将3号、4号及全部(1-4)钢圆盘装入岩心杯中,重复步 骤2~5,记录平衡压力。 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五、数据处理与计算 1.计算各个钢圆盘体积和岩样外表体积。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制 标准曲线。 P——平衡压力,KPa; V ——岩样固相体积,cm3; s V ——岩样外表体积,cm3; f d——岩样直径,cm; L——岩样长度,cm; Ф——孔隙度,%。

中国石油大学操作系统课程设计

中国石油大学(华东)操作系统课程设计 设计报告 中国石油大学(华东)计算机科学与技术学院

要求(本页打印): 1、双面打印,内容篇幅不要过长(每个实验不要超过3页),禁止贴全部程序,只贴关键代码即可。 2、禁止抄袭 3、 4、

实验1:螺旋矩阵实验——Linux下的C编程一、实验情景描述 完成一个程序,要求输入两个数字即可形成相应的字母螺旋矩阵。 例如输入5,6,则程序会生成如下5行6列的矩阵,Z之后循环至A: A B C D E F R S T U V G Q B C D W H P A Z Y X I O N M L K J 二、实验原理 完成程序ju.c,并用Makefile完成编译。 三、关键代码 Makefile如下 CC=gcc OBJS=ju.o EXEC=ju all:$(EXEC) $(EXEC):$(OBJS) $(CC) -o $@ $(OBJS) clean: rm -f $(OBJS) $(EXEC) ju.c部分代码如下 int total = 1; char digit = 65; x = 0, y = 0; a[x][y] = 65; while(total < m*n){ while(y+1=90){ digit = 64;

} a[x][++y] = ++digit; ++total; } while(x+1=90){ digit = 64; } a[++x][y] = ++digit; ++total; } while(y-1>=0&&!a[x][y-1]){ if(digit>=90){ digit = 64; } a[x][--y] = ++digit; ++total; } while(x-1>=0&&!a[x-1][y]){ if(digit>=90) { digit = 64;} a[--x][y] = ++digit; ++total; }} 四、实验结果

高压物性实验报告

中国石油大学(油层物理)实验报告 实验日期: 2011-11-2 成绩: 班级: 中石化0903—26 学号: 09133206 姓名: 冯延苹 教师: 张俨彬 同组者: 金超林 、胡星杰、吕超 实验七 地层油高压物性测定 一、 实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解汽油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二、 实验原理 1.绘制地层油的体积随压力的关系、在泡点压力前后,曲线的斜率不同,拐点处对应的应力即为泡点压力。 2.使PVT 筒内的压力保持在原始压力,保持压力不变将PVT 筒内一定量的地层油放入分离瓶中,记录放出的地下体积,记录分离瓶中分出的油、气的体积,便可计算地层油的溶解气油比、体积系数等数据。 3.在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原油的粘度: t k )(21ρρμ-= 其中 μ—原油动力粘度,mPa ·s ; t —钢球下落时间,s ; 1ρ、2ρ—钢球和原油的密度,3/cm g ; k —粘度计常数,与标准管的倾角、钢球的尺寸及密度有关。 三、实验流程 四、实验步骤 1.泡点压力测定 (1)粗测泡点压力 从地层压力起点以恒定的速度退泵,压力以恒定速度降低,当压力下降速度减慢或不下降甚至回升时,停止退泵。稳定后的压力即为粗测的泡点压力。 (2)细测泡点压力 A .升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,每降低一定压力(如2.0MPa )记录压力稳定后的泵体积读数; B .当压力降至泡点压力以下时,油气混合物体积每次增大一定值(如5cm 3),

恒温槽调节及液体粘度的测定

实验1 恒温槽调节及液体粘度的测定 一、实验目的 1.了解恒温槽的构造、控温原理,掌握恒温槽的调节和使用。 2.掌握一种测量粘度的方法。 二、实验原理 1. 恒温槽 许多化学实验中的待测数据如粘度、蒸气压、电导率、反应速率常数等都与温度密切相关,这就要求实验在恒定温度下进行,常用的恒温槽有玻璃恒温水浴和超级水浴两种,其基本结构相同,主要由槽体、加热器、搅拌器、温度计、感温元件和温度控制器组成,如图1所示。 恒温槽恒温原理是由感温元件将温度转化为电信号输送给温度控制器,再由控制器发出指令,让加热器工作或停止工作。 水银定温计是温度的触感器,是决定恒温程度的关键元件,它与水银温度计的不同之处是毛细管中悬有一根可上下移动的金属丝,从水银球也 引出一根金属丝,两根金属丝温度控制器相联接。调节温度时,先松开固定螺丝,再转动调节帽,使指示铁上端与辅助温度标尺相切的温度示值较欲控温度低1~2℃。当加热到下部的水银柱与铂丝接触时,定温计导线成通路,给出停止加热的信号(可从指示灯辨出),此时观察水浴槽中的精密温度计,根据其与欲控温度的差值大小进一步调节铂丝的位置。如此反复调节,直至指定温度为止。 恒温槽恒温的精确度可用其灵敏度衡量,灵敏度是指水浴温度随时间变化曲线的振幅大小。即 灵敏度 = 2 ()(最低温度)最高温度t t 灵敏度与水银定温计、电子继电器的灵敏度以及加热器的功率、搅拌器的效率、各元件的布局等因素有关。搅拌效率越高,温度越容易达到均匀,恒温效果越好。加热器功率大,则到指定温度停止加热后释放余热也大。一个好的恒温槽应具有以下条件:①定温灵敏度高;②搅拌强烈而均匀;③加热器导热良好且功率适当。各元件的布局原则:加热器、搅拌器和定温计的位置应接近,使被加热的液体能立即搅拌均匀,并流经定温计及时进行温度控制。 图1 恒温槽装置示意图 1— 浴槽;2—加热器;3搅拌器;4—温度计; 5—水银定温计;6—恒温控制器;7—贝克曼温度计

液体黏度的测定实验报告记录

液体黏度的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

中国石油大学远程教育学院《机械设计课程设计》

期末考试 《机械设计课程设计》 学习中心:__江苏岳王镇成人教育中心校奥鹏学习中心[21]_ 姓名:___陈明磊_____ 学号:__936001__ 关于课程考试违规作弊的说明 1、提交文件中涉嫌抄袭内容(包括抄袭网上、书籍、报刊杂志及其他已有论文),带有明显外校标记,不符合学院要求或学生本人情况,或存在查明出处的内容或其他可疑字样者,判为抄袭,成绩为“0”。 2、两人或两人以上答题内容或用语有50%以上相同者判为雷同,成绩为“0”。 3、所提交试卷或材料没有对老师题目进行作答或提交内容与该课程要求完全不相干者,认定为“白卷”或“错卷”,成绩为“0”。 一、题型 课程设计,包含问答题、改错分析题型及设计计算题,问答题共2题,每题10分,共20分;改错题1题,共30分;设计计算题1题,共50分。 二、题目 (1)学号末尾数为1、3、5的课程设计题目 1、对轴瓦材料主要有哪些要求(10分) 答:(1)对轴瓦的材料主要要求包括: 1)良好的减摩性、耐磨性和抗胶合性;2)良好的跑合性、顺应性、嵌藏性和塑性; 3)足够的抗压强度和疲劳强度; 4)良好的导热性和加工工艺性; 5)热膨胀系数低、耐腐蚀; 2、传动齿轮设计时,如何确定齿轮的结构参数。(10分) 答:通过齿轮传动的强度计算,确定出齿轮的主要尺寸(如齿数、模数、齿宽、螺旋角、分度圆直径等),齿圈、轮辐、轮子毂等的结构形式及尺寸大小,通常由结构设计而定,而不进行强度计算。 齿轮的结构设计与齿轮的几何尺寸、毛坯、材料、加工方法、使用要求及经济性等因素有关。进行齿轮的结构设计时,必须综合地考虑上述各方面的因

素。通常是先按齿轮的直径大小,选定合适的结构形式,然后再根据荐用的经验数据,进行结构设计。 对于直径很小的钢制齿轮,若齿根圆到键槽底部的距离较小时,应将齿轮和轴做成一体(称为齿轮轴)。 当齿顶圆直径小于160mm时,一般做成实心结构的齿轮。但航空产品中的齿轮,也有做成腹板式的。 当齿顶圆直径小于500mm时,宜做成腹板式结构,腹板上开孔的数目按结构尺寸大小及需要而定。 当齿顶圆直径大于400mm而小于1000mm时,一般应做成轮辐截面为十字形的轮辐式结构的齿轮。 为了节约贵重金属对于尺寸较大的圆柱齿轮,可做成组装齿圈式的结构。齿圈用钢制,而轮芯则用铸铁或铸钢。 3、改错分析题(30分) 指出下图结构中的错误,并用文字说明。(本题至少有6处错误,每指出一处错误得5分) 解: 1.安装轮毂的第一段轴应制有定位轴肩; 2.键槽过长安装上的键与轴承端盖干涉(相碰); 3.轴承端盖的加工面与非加工面没有区分开; 4.在轴与轴承端盖孔之间缺少密封圈; 5.在轴与轴承端盖孔之间应留有间隙; 6.在轴承端盖与箱体轴承孔端面缺少调整垫片; 4、计算题(50分) 试设计铣床中的一对标准直齿圆柱齿轮传动。已知:传递功率P=,小齿轮

中国石油大学采油工程课程设计

采油工程课程设计 姓名:魏征 编号: 班级:石工班 指导老师:张黎明 日期:年月号

目录 完井工程设计..................................................................................................................................... 油层及油井数据......................................................................................................................... 射孔参数设计优化..................................................................................................................... 计算油井产量............................................................................................................................. 生产管柱尺寸选择..................................................................................................................... 射孔负压设计............................................................................................................................. 射孔投资成本计算..................................................................................................................... 有杆泵抽油系统设计......................................................................................................................... 基础数据..................................................................................................................................... 绘制曲线..................................................................................................................................... 根据配产量确定井底流压......................................................................................................... 井筒压力分布计算..................................................................................................................... 确定动液面的深度..................................................................................................................... 抽油杆柱设计............................................................................................................................. 校核抽油机................................................................................................................................. 计算泵效,产量以及举升效率................................................................................................. 防砂工艺设计..................................................................................................................................... 防砂工艺选择............................................................................................................................. 地层砂粒度分析方法................................................................................................................. 砾石尺寸选择方法................................................................................................................... 支持砾石层的机械筛管规格及缝宽设计。............................................................................. 管外地层充填砾石量估算。..................................................................................................... 管内充填砾石量估算................................................................................................................. 携砂液用量及施工时间估算..................................................................................................... 防砂工艺方案施工参数设计表................................................................................................. 总结 ....................................................................................................................................................

相关文档
相关文档 最新文档