文档库 最新最全的文档下载
当前位置:文档库 › 椭圆的算法原理

椭圆的算法原理

椭圆的算法原理
椭圆的算法原理

椭圆的算法原理

圆心在原点、长半轴为a 、短半轴为b 的椭圆方程的隐函数表达式为:

椭圆将平面划分成三个区域:对于椭圆上的点,F(x ,y)=0;对于椭圆外的点,F (x ,y )>0;对于椭圆内的点,F (x ,y )<0,如下图所示。

考虑到椭圆对称性,可以用对称轴x =0,y =0,把椭圆分成4等份。只要绘制出第一象限内1/4椭圆弧,如图3-10的阴影部分Ⅰ和Ⅱ所示,根据对称性就可绘制出整个椭圆,这称为四分法绘制椭圆算法。已知第一象限内的点 0

),(222222=-+=b a y a x b y x

F

P (x ,y ),可以顺时针得到另外3个对称点:P (x,-y ),P (-x ,-y ),P (-x ,y )。

在处理第一象限的1/4椭圆弧时,进一步以法矢量两个分量相等的点把它分为两部分,上半部分Ⅰ和下半部分Ⅱ。该椭圆上一点P (x ,y )处的法矢量为:

式中,i 和j 是沿x 轴向和沿y 轴向的单位矢量。

在图3-11所示的部分Ⅰ的AC 椭圆弧段,法矢量的x 向分量小于y 向分量,斜率k 处处满足|k|<1,|△x|>|△y|,所以x 方向为主位移方向;在C 点,法矢量的x 向分量等于y 向分量,斜率k 满足k =-1,|△x|=|△y|;在部分Ⅱ的CB 椭圆弧段,法矢量x 向分量大于y 向分量,斜率k 处处满足|k|>1,|△y|>|△x|,所以y 方向为主位移方向。

yj a xi b j y F i x F y x N 2222),(+=??+??=

, )

图3-11

椭圆的中点Bresenham 算法的原理:在部分Ⅰ:每次在主位移x 方向上走一步,y 方向上退不退步取决于中点偏差判别式的值;在部分Ⅱ:每次在主位移方向y 上退一步,x 方向上走不走步取决于中点偏差判别式的值。

222/b a a +222/b a b

+

由于x方向为主位移方向,假定当前点是P(xi,yi),下一步只能在正右方的像素Pu(x i+1,y i)和右下方的像素Pd(x i+1,yi-1)中选取。

由于y方向为主位移方向,假定当前点是P(xi,yi),下一步只能在正下方像素Pl(x i,y i-1)和右下方的像素Pr(x i+1,yi-1)中选取。

1、构造上半部分Ⅰ中点偏差判别式

在上半部分Ⅰ,x方向每次加1,y方向上减不减1取决于中点偏差判别式的值。从P(xi,yi)走第一步,为了选取下一像素点的,需将Pu(x i+1,y i)和Pd(x i+1,yi

-1)的中点M (x i +1,y i -0.5)代入隐函数,构造中点偏差判别式:

当d1<0时,中点M 在椭圆内,下一像素点应点亮Pu ,即y 方向不退步;当d>0时,中点M 在椭圆外,下一像素点应点亮Pd ,即y 方向退一步;当d =0时,中点M 在椭圆上,Pu 、Pd 和椭圆的距离相等,点亮Pu 或Pd 均可,约定取Pd ,如图3-13所示。

2、上半部分Ⅰ的递推公式

图3-13中,为了能够继续判断椭圆上的每个点,需要给出中点偏差判别式d1的递推公式和初始值。

2

222221)5.0()1()5.0,1(),(b a y a x b y x F y x F d i i i i M M --++=-+==

3、中点偏差判别式的递推公式

现在如果考虑主位移方向再走一步,应该选取哪个中点代入中点偏差判别式以决定应该点亮的像素,如图3-14所示,分两种情况讨论。

⑴当d1<0时,下一步的中点坐标为:

M(x i+2,y i-0.5)。所以下一步中点偏差判别式为:

⑵当d1≥0时,下一步的中点坐标为:M(x i+2,y i-

1.5)。所以下一步中点偏差判别式为:

4、中点偏差判别式d1的初值

上半部分椭圆的起点为A (0,b ),因此,第一个中点是(1,b -0.5),对应的d1的初值为:

void MidPointEllipse(int a,int b,int value)

{

int x=0;

int y=b;

double d=b*b-a*a*(b-0.25);

cout<<"首点的坐标为:("<

int n=2;

while(a*a*(y-0.5)>b*b*(x+1)) //区域1

{

if(d<0)

d=d+b*b*(2*x+3);

else

{

d=d+b*b*(2*x+3)+a*a*(-2*y+2);

y--;

} x=x++; 2222210(1,0.5)(0.5)d F b b a b a b =-=+--

cout<<"区域1第"<

}

d=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b;

n=2;

while(y>=0) //区域2

{

if(d<0)

{

d=d+b*b*(2*x+2)+a*a*(-2*y+3);

x++;

}

else

d=d+a*a*(-2*y+3);

y--;

cout<<"区域2第"<

}

}

迪杰斯特拉算法和Floyd算法实现无向图的最短路径的计算和求解

摘要 本次课程设计主要核心为利用迪杰斯特拉算法和Floyd算法实现无向图的最短路径的计算和求解。要求理解算法的具体实现流程、学会正确使用该算法求解实际问题。本次课程设计具体内容是:通过对两个算法的理解与应用来比较两个算法的优缺点。本程序要求结合最短路算法以及相应的数据结构的定义和使用,实现一个最短路径算法的简单应用。本课程设计是对书本知识的简单应用,以此培养大家用书本知识解决实际问题的能力;培养实际工作所需要的动手能力;培养以科学理论和工程上能力的技术,规范地开发大型、复杂、高质量的应用软件和系统软件。 关键字:迪杰斯特拉算法,Floyd算法,最短路径,算法设计,数据结构

目录 摘要 --------------------------------------------------------------- 1 一、Dijkstra算法--------------------------------------------------- 3 1.1定义概览 ---------------------------------------------------- 3 1.2算法描述 ---------------------------------------------------- 3 1.2.1算法思想:--------------------------------------------- 3 1.1.2算法步骤----------------------------------------------- 3 1.3算法代码实现 ------------------------------------------------ 4 1.4算法实例 ---------------------------------------------------- 5 二、Floyd算法------------------------------------------------------ 7 2.1定义概览 ---------------------------------------------------- 7 2.2算法描述 ---------------------------------------------------- 7 2.2.1算法思想原理------------------------------------------- 7 2.3算法代码实现 ----------------------------------------------- 10 三、结论 ---------------------------------------------------------- 11 四、参考文献 ------------------------------------------------------ 12

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

仪表显示的图像识别算法研究

仪表显示的图像识别算法研究 摘要:随着社会的逐渐发展,人类的生活越来越趋于智能化。本文根据当今社会对于图像识别研究的发展现状,针对目前人们生活中人工读表的弊端,提出了通过采集仪表显示的图像并进行图像识别算法处理来达到智能自动读表的方法。 为了能快速获得采集数据,减少人们生活中繁复的人工作业。本文通过多样的图像处理来代替人眼识别图像。只需要得到采集到的图像,就可以利用计算机来进行计算和识别,得出最后的数字。本文采用了一系列的图像处理方法,包括图像的去噪,二值化分割,边缘检测和基于数学形态学的膨胀腐蚀操作等。同时通过多种尝试和比较各种方法的优缺点得到了一套简易而又完善,快速的图像识别算法。 在进行多次测试试验后,本文采用数码相机来进行图像的采集,同时经过图像预处理、图像分割、图像识别等一系列流程得出了较为完善的图像采集和识别系统,为未来信息传递智能化提供了基础,对于促进工业发展或是改善生活水平都有重要的意义。 关键词:图像预处理、二值化、边缘检测、形态学、去噪、图像分割、图像匹配 The research of image recognition displayed by the instrument Abstract: With the continuous development of society, people's lives become more and more intelligent. Based on the current development in today's society for the study of image recognition, according to the present disadvantages of manual meter reading in peop le’s lives, this page proposed the way by collecting the instruments display image and then deals it with image recognizing algorithms to achieve intelligent automatic meter. In order to quickly gather data, reducing manual work in people’s lives complicated. The page uses a series of image processing to replace human eye image recognition. Just need the collected images, we can use a computer to calculate and identify, then we will arrive at a final figure. We used a variety of image processing methods, including image denoising, thresholding segmentation, expansion of edge-detection based on mathematical morphology and corrosion and so on. And

视觉检测原理介绍

技术细节 本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。 图1 控制系统流程图 光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分 CCD/CMOS图像采集部分 系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程 数据处理部分 在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。 算法基本步骤如下: 1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征; 2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果; 3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。 设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

车辆牌照图像识别算法研究与实现本科毕设论文

Q260046902 专业做论文 西南科技大学 毕业设计(论文)题目名称:车辆牌照图像识别算法研究与实现

车辆牌照图像识别算法研究与实现 摘要:近年来随着国民经济的蓬勃发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制、安全管理的要求也日益提高。因此,汽车牌照识别技术在公共安全及交通管理中具有特别重要的实际应用意义。本文对车牌识别系统中的车牌定位、字符分割和字符识别进行了初步研究。对车牌定位,本文采用投影法对车牌进行定位;在字符分割方面,本文使用阈值规则进行字符分割;针对车牌图像中数字字符识别的问题,本文采用了基于BP神经网络的识别方法。在学习并掌握了数字图像处理和模式识别的一些基本原理后,使用VC++6.0软件利用以上原理针对车牌识别任务进行编程。实现了对车牌的定位和车牌中数字字符的识别。 关键词:车牌定位;字符分割;BP神经网络;车牌识别;VC++

Research and Realization of License Plate Recognition Algorithm Abstract:In recent years, with the vigorous development of the national economy,there are more and more construct in the domestic expressway, urban road, and parking area. The requisition on the traffic control, safety management improves day by day. Therefore, license plate recognition technology has the particularly important practical application value in the public security and the traffic control. In the paper, a preliminary research was made on the license location, characters segment and characters recognition of the license plate recognition. On the license location,the projection was used to locate the license plate; On the characters segmentation, the liminal rule was used to divide the characters; In order to solve the problem of the digital characters recognition in the plate, BP nerve network was used to recognize the digital characters. After studying and mastering some basic principles of the digital image processing and pattern recognition, the task of license plate recognition was programmed with VC++ 6.0 using above principles. The license location and the digital characters recognition in the license plate were implemented. Keywords: license location, characters segmentation, BP nerve network, license plate recognition, VC++

Floyd算法Matlab程序

Floyd算法Matlab程序第一种: %floyd.m %采用floyd算法计算图a中每对顶点最短路 %d是矩离矩阵 %r是路由矩阵 function ,d,r,=floyd(a) n=size(a,1); d=a; for i=1:n for j=1:n r(i,j)=j; end end r for k=1:n for i=1:n for j=1:n if d(i,k)+d(k,j)

end k d r end 第二种: %Floyd算法 %解决最短路径问题,是用来调用的函数头文件 %[D,path]=floyd(a) %输入参数a是求图的带权邻接矩阵,D(i,j)表示i到j的最短距 离,path(i,j)i,j之间最短路径上顶点i的后继点 %[D,path,min1,path1]=floyd(a,i,j) %输入参数a是所求图的带权邻接矩阵,i,j起点终点,min1表示i与j最短距离,path1为最短路径function [D,path,min1,path1]=floyd(a,start,terminal) D=a;n=size(D,1);path=zeros(n,n); for i=1:n for j=1:n if D(i,j)~=inf path(i,j)=j; end end end for k=1:n for i=1:n

for j=1:n if D(i,k)+D(k,j)

Floyd算法详解

求最短路径算法总结 分类:数据结构 标签: floyd算法 it 部分内容参考 All-Pairs 的最短路径问题:所有点对之间的最短路径 Dijkstra算法是求单源最短路径的,那如果求图中所有点对的最短路径的话则有以下两种解法: 解法一: 以图中的每个顶点作为源点,调用Dijkstra算法,时间复杂度为O(n3); 解法二: Floyd(弗洛伊德算法)更简洁,算法复杂度仍为O(n3)。 n 正如大多数教材中所讲到的,求单源点无负边最短路径用Dijkstra,而求所有点最短路径用Floyd。确实,我们将用到Floyd算法,但是,并不是说所有情况下Floyd都是最佳选择。 对于没有学过Floyd的人来说,在掌握了Dijkstra之后遇到All-Pairs最短路径问题的第一反应可能会是:计算所有点的单源点最短路径,不就可以得到所有点的最短路径了吗。简单得描述一下算法就是执行n次Dijkstra算法。 Floyd可以说是Warshall算法的扩展了,三个for循环便可以解决一个复杂的问题,应该说是十分经典的。从它的三层循环可以看出,它的复杂度是n3,除了在第二层for中加点判断可以略微提高效率,几乎没有其他办法再减少它的复杂度。 比较两种算法,不难得出以下的结论:对于稀疏的图,采用n次Dijkstra比较出色,对于茂密的图,可以使用Floyd算法。另外,Floyd可以处理带负边的图。 下面对Floyd算法进行介绍: Floyd算法的基本思想: 可以将问题分解,先找出最短的距离,然后在考虑如何找出对应的行进路线。如何找出最短路径呢,这里还是用到动态规划的知识,对于任何一个城市而言,i到j的最短距离不外乎存在经过i与j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(ij)与d(ik)+d(kj)的值;在此d(ik)与d(kj)分别是目前为止所知道的i到k 与k到j的最短距离,因此d(ik)+d(kj)就是i到j经过k的最短距离。所以,若有d(ij)>d(ik)+d(kj),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(ij)重写为d(ik)+d(kj),每当一个k查完了,d(ij)就是目前的i到j的最短距离。重复这一过程,最后当查完所有的k时,d(ij)里面存放的就是i到j之间的最短距离了。 Floyd算法的基本步骤: 定义n×n的方阵序列D-1, D0 , … Dn-1, 初始化:D-1=C D-1[i][j]=边的长度,表示初始的从i到j的最短路径长度,即它是从i到j的中间不经过其他中间点的最短路径。 迭代:设Dk-1已求出,如何得到Dk(0≤k≤n-1)? Dk-1[i][j]表示从i到j的中间点不大于k-1的最短路径p:i…j, 考虑将顶点k加入路径p得到顶点序列q:i…k…j, 若q不是路径,则当前的最短路径仍是上一步结果:Dk[i][j]= Dk-1[i][j]; 否则若q的长度小于p的长度,则用q取代p作为从i到j的最短路径。

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

基于Matlab的图像边缘检测算法的实现及应用汇总

目录 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1 课程设计选题的背景及意义 (3) 1.2 图像边缘检测的发展现状 (4) 第二章边缘检测的基本原理 (5) 2.1 基于一阶导数的边缘检测 (8) 2.2 基于二阶导的边缘检测 (9) 第三章边缘检测算子 (10) 3.1 Canny算子 (10) 3.2 Roberts梯度算子 (11) 3.3 Prewitt算子 (12) 3.4 Sobel算子 (13) 3.5 Log算子 (14) 第四章MATLAB简介 (15) 4.1 基本功能 (15) 4.2 应用领域 (16) 第五章编程和调试 (17) 5.1 edge函数 (17) 5.2 边缘检测的编程实现 (17) 第六章总结与体会 (20) 参考文献 (21)

摘要 边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。 边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。 关键词:边缘检测;图像处理;MATLAB仿真

引言 边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。 本设计主要讨论其中5种边缘检测算法。在图像处理的过程需要大量的计算工作,我们利用MATLAB各种丰富的工具箱以及其强大的计算功能可以更加方便有效的完成图像边缘的检测。并对这些方法进行比较

floyd算法的C语言实现

//Floyd算法 //求网G(用邻接矩阵表示)中任意两点间最短路径 //D[][]是最短路径长度矩阵,path[][]最短路径标志矩阵 void Floyd(MGraph * G,int path[][MAX_VERTEX_NUM],int D[][MAX_VERTEX_NUM],int n){ int i,j,k; for(i=0;iA[i][j]A[i][j]; } } for(k=0;kD[i][k]+D[k][j]) { D[i][j]=D[i][k]+D[k][j]; //取小者 path[i][j]=path[i][k]; //改Vi的后继 } } } } } int main(){ int i,j,k,v=0,n=6; //v为起点,n为顶点个数 MGraph G; int path[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //v到各顶点的最短路径向量int D[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //v到各顶点最短路径长度向量 //初始化 AdjType a[MAX_VERTEX_NUM][MAX_VERTEX_NUM]={ {0,12,18,MAX_INT,17,MAX_INT}, {12,0,10,3,MAX_INT,5}, {18,10,0,MAX_INT,21,11},

弗洛伊德算法求解最短路径

课程设计任务书

目录 第1章概要设计 (1) 1.1题目的内容与要求 (1) 1.2总体结构 (1) 第2章详细设计 (2) 2.1主模块 (2) 2.2构建城市无向图 (3) 2.3添加城市 (4) 2.4修改城市距离 (5) 2.5求最短路径 (6) 第3章调试分析 (7) 3.1调试初期 (7) 3.2调试中期 (7) 3.3调试末期 (7) 第4章测试及运行结果 (7) 附页(程序清单) (10)

第1章概要设计 1.1题目的内容与要求 内容:给出一张无向图,图上的每个顶点表示一个城市,顶点间的边表示城市间存在路径,边上的权值表示城市间的距离。试编写程序求解从某一个城市出发到达任意其他任意城市的最短路径问题。 要求: 1)能够提供简单友好的用户操作界面,可以输入城市的基本信息,包括城市名 称,城市编号等; 2)利用矩阵保存城市间的距离; 3)利用Floyd算法求最短路径; 4)独立完成系统的设计,编码和调试; 5)系统利用C语言完成; 6)按照课程设计规范书写课程设计报告。 1.2总体结构 本程序主要分为四个模块(功能模块见图1.1):主模块对整个程序起一主导作用,开始构建一城市无向图,对其进行添加城市顶点,以及对原来的距离数据进行修改,整体构建结束可以实现求一城市到其他城市的最短路径问题。 图1.1 功能模块图

第2章详细设计 2.1主模块 用户根据屏幕上显示的操作提示输入要进行操作的模块,通过调用相对应的模块程序,达到用户所想进行操作。程序的总框架大致分为四个模块:1.建立城市无向图2.添加城市模块3.修改城市距离4.求最短路径。具体实现过程见2.2:建立城市无向图2.3:添加城市2.4:修改城市距离2.5:求最短路径。流程图中通过输入n,由n的值来选择调用相对应子函数,实现所选择的功能,调用完后可以返回调用主函数进行下一次选择,从而实现反复调用子函数而实现四个模块的功能等。 图2.1 主模块流程图

数据隐藏课程设计论文——图像的信息隐藏检测算法和实现

中国科学技术大学继续教育学院课程设计 论文报告 论文题目:图像的信息隐藏检测算法和实现学员姓名:黄琳 学号:TB04202130 专业:计算机科学与技术 指导教师: 日期:2007年1月20日

图像的信息隐藏检测算法和实现 [摘要] Information hiding analysis is the art of detecting the message's existence or destroying the stega nographic cover in order to blockade the secret communication. And information Information hiding includes steganography and digital watermark. The application of steganography can be traced to ancient time, and it is also an n hiding detection is the very first step in information hiding analysis. Firstlly, architectonic analysis about information hiding detection is proposed, including the analysis of digital image characteristics, image based detecting algorithms and some problems in its realization. Secondly, many detecting algorithms are introduced with theoretical analyses and experimental results in details. Thirdly, two applications of detecting technology are put forward. Finally, a detecting model used in Internet is discussed [关键词]安全信息隐藏检测 1. 引言 数字图像的信息隐藏技术是数字图像处理领域中最具挑战性、最为活跃的研究课题之一。本文概述了数字图像的信息隐藏技术,并给出了一个新的基于彩色静止数字图像的信息隐藏算法。 数字图像可分为静止图像和动态图像两种,后者一般称为视频图像。视频图像的每一帧均可看作是一幅静止图像,但是这些静止图像之间并不是相互孤立的,而是存在时间轴上的相关性。静止图像是像素(Pixel)的集合,相邻像素点所对应的实际距离称为图像的空间分辨率。根据像素颜色信息的不同,数字图像可分为二值图像、灰度图像以及彩色图像。数字图像的最终感受者是人的眼睛,人眼感受到的两幅质量非常相同的数字图像的像素值可能存在很大的差别。这样,依赖于人的视觉系统(Human Visual System,HVS)的不完善性,就为数字图像的失真压缩和信息隐藏提供了非常巨大的施展空间。 信息隐藏与信息加密是不尽相同的,信息加密是隐藏信息的内容,而信息隐藏是隐藏信息的存在性,信息隐藏比信息加密更为安全,因为它不容易引起攻击者的注意。 2. 信息隐藏技术综述 2.1信息隐藏简介 信息隐藏(Information Hiding),也称作数据隐藏(Data Hiding),或称作数字水印(Digital Watermarking)。简单来讲,信息隐藏是指将某一信号(一般称之为签字信号,Signature Signal)嵌入(embedding)另一信号(一般称之为主信号,Host Signal,或称之为掩护媒体,cover-media)的过程,掩护媒体经嵌入信息后变成一个伪装媒体(stegano-media)。这一嵌入过程需要满足下列条件:

最短路径Floyd算法动态规划问题及其程序设计样本

最短路径动态规划问题及其程序设计 林旭东 (深圳大学管理学院,广东深圳518060) [摘要]本文以最短路径问题为例,在给出佛洛伊德算法的基础上,设计了求解该算法的计算程序,这样可大大提高最短路径计算的效率。 [关键词]最短路径; 动态规划; 程序设计 1 佛洛伊德算法 已知有n个顶点的有向图,佛洛伊德算法能够求解出每一对顶点之间的最短路径。假设使用邻接矩阵d ( i, j)来对图进行存储, d ( i, j)表示υi 到υj 之间的距离,可是该距离不一定是最短距离。佛洛伊德算法的基本思想是:为求顶点υi→υj 之间的最短距离,需要进行n次试探。首先将υ0 加入路[收稿日期] - 12 - 22[作者简介]林旭东(1972 - ) ,男, 湖北武汉人,深圳大学管理学院副教授,博士后,主要研究方向:数量模型与决策分析。径,考虑路径υi →υ0 →υj 是否存在,如果存在,则比较υi →υj和υi →υ0 →υj 的路径长度,取长度短的路径作为υi →υj 的路径,记作(υi ,υj ) 。接着在路径上再增加一个顶点υ1 ,比较υi→υ1 →υj 和(υi ,υj )的路径长度, 取长度短的路径作为(υi ,υj) 。不断将顶点υ2 ,υ3 , .,υn - 1加入进行试探, 最后得到的(υi ,υj )必定为υi →υj 的最短路径。若使用数组dk ( i, j)表示加入顶点k后,最短路径长度的变化情况,使用数组pk ( i, j)表示加入顶点k后,最短路径上顶点的变化情况,这样佛洛伊德算法就会产生一组d 0 ( i, j) ,d1 ( i, j) , ., dn - 1 ( i, j)和一组p0 ( i, j) , p1 ( i, j) , ., pn - 1 ( i, j) 。 R2 = 01314 014 01286 0 01197 01263 01394 01146

图像识别技术浅析

图像识别技术浅析 Analysis of Image Recognition Technology 刘峰伯软件学院2010544029 【摘要】:本文描述了图像识别系统的结构与工作原理,在对图像预处理、特征提取、分类、图像匹配算法进行深入研究和分析的基础上,分析和比较了各种算法的优缺点,并讨论了其中的关键技术。 【关键词】:图像识别;预处理;特征提取;匹配 【Abstract】This paper describes the structure and working principle of an image recognition system. The advantages and disadvantages of various a1gorithms are compared on the basis of in-depth analysis of the image pre-processing, feature extraction, classification and image matching algorithms, and discussed the key technology. 【Key Word】Image Recognition;Pre-Processing;Feature Extraction;Matchi ng. 一、引言 图像识别,是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。随着计算机技术与信息技术的发展,图像识别技术获得了越来越广泛的应用。例如医疗诊断中各种医学图片的分析与识别、天气预报中的卫星云图识别、遥感图片识别、指纹识别、脸谱识别等,图像识别技术越来越多地渗透到我们的日常生活中。 二、图像识别系统 1、概述 自动图像识别系统的过程分为五部分:图像输入、预处理、特征提取、分类和匹配,其中预处理又可分为图像分割、图像增强、二值化和细化等几个部分。 (1)图像输入 将图像采集下来输入计算机进行处理是图像识别的首要步骤。 (2)预处理 为了减少后续算法的复杂度和提高效率,图像的预处理是必不可少的。其中

人脸识别几种解决方案的对比_人脸识别技术原理介绍

人脸识别几种解决方案的对比_人脸识别技术原理介绍 人脸识别概要人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别特点非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有强制性; 非接触性:用户不需要和设备直接接触就能获取人脸图像; 并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别; 除此之外,还符合视觉特性:以貌识人的特性,以及操作简单、结果直观、隐蔽性好等特点。 人脸识别技术原理分析人脸识别主要分为人脸检测(face detecTIon)、特征提取(feature extracTIon)和人脸识别(face recogniTIon)三个过程。 人脸检测:人脸检测是指从输入图像中检测并提取人脸图像,通常采用haar特征和Adaboost算法训练级联分类器对图像中的每一块进行分类。如果某一矩形区域通过了级联分类器,则被判别为人脸图像。 特征提取:特征提取是指通过一些数字来表征人脸信息,这些数字就是我们要提取的特征。常见的人脸特征分为两类,一类是几何特征,另一类是表征特征。几何特征是指眼睛、鼻子和嘴等面部特征之间的几何关系,如距离、面积和角度等。由于算法利用了一些直观的特征,计算量小。 不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。 表征特征利用人脸图像的灰度信息,通过一些算法提取全局或局部特征。其中比较常用的特征提取算法是LBP算法。LBP方法首先将图像分成若干区域,在每个区域的像素640x960邻域中用中心值作阈值化,将结果看成是二进制数。

Floyd算法

问题描述 实现Floyd算法,并求所示有向图中各顶点之间的最短路径及其长度。 算法思想 采用图的邻接矩阵存储,实现Floyd算法~,数组P[][][]存储是否存在中间点使长度缩短。 设计描述 数据存储结构类型的定义: typedef struct MGraph{ char vexs[MAX_VERTEX_NUM]; int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; int vexnum,arcnum; GraphKind kind; }MGraph; 源程序 #include #include #define INFINITY 1000 // 最大值 #define MAX_VERTEX_NUM 20 // 最大顶点个数 #define TRUE 1 #define FALSE 0 typedef enum{DG, DN, UDG, UDN} GraphKind; // 四种图类型 typedef struct MGraph{ charvexs[MAX_VERTEX_NUM]; // 顶点向量 intarcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵 intvexnum,arcnum; // 图的当前顶点数和弧数 GraphKindkind; // 图的种类标志 }MGraph; void find(int P[MAX_VERTEX_NUM][MAX_VERTEX_NUM][MAX_VERTEX_NUM],MGraph G,int a,int b); void main(){ M Graph G; i nt

相关文档
相关文档 最新文档