文档视界 最新最全的文档下载
当前位置:文档视界 > 最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

高考真题理科数学分类汇编(解析版)

函 数

1、(高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n n

f x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4

(C ) {}3,4,5 (D ){}2,3

【答案】B

【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B

2、(高考(北京卷))函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )=

A.1e x +

B. 1e x -

C. 1e x -+

D. 1e x --

最新高考真题理科数学分类汇编(解析版):函数及答案

3、(高考(广东卷))定义域为R 的四个函数3y x =,2x y =,2

1y x =+,2sin y x =中,奇函数的个数是( )

A . 4

B .3

C .2

D . 【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .

4、(高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为

(A )()1,1- (B )11,

2??- ??? (C )()-1,0 (D )1,12?? ???

【答案】B 【解析】由题意可知 1210,x -<+<,则1

12

x -<<-。故选B

5、(高考(全国(广西)卷))函数()()1=log 10f x x x ??+

> ???的反函数()1=f x - (A )()1021x x >- (B )()1021

x x ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A 【解析】由题意知1112(0)21

y y x y x +=?=<-, 因此

最新高考真题理科数学分类汇编(解析版):函数及答案

,故选A

6、(高考(全国(广西)卷))若函数()211=,2f x x ax a x ??++∞ ???

在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+

最新高考真题理科数学分类汇编(解析版):函数及答案

7、(高考(湖南卷))函数()2ln f x x =的图像与函数()2

45g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0

【答案】B

【解析】画出两个函数的图象,可得交点数。

1.8、(高考(江苏卷))已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等

式x x f >)(的解集用区间表示为 ▲ .

【答案】()()5,05,-+∞

【解析】因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =--

解不等式得到x x f >)(的解集用区间表示为()

()5,05,-+∞

8、(高考(江西卷))函数ln(1-x)的定义域为

最新高考真题理科数学分类汇编(解析版):函数及答案

A .(0,1) B.[0,1) C.(0,1] D.[0,1]

最新高考真题理科数学分类汇编(解析版):函数及答案

9、(高考(江西卷))如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间l //1l ,l 与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D两点,设弧FG 的长为(0)x x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

10、(高考(辽宁卷))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则

A B -=

(A )2216a a -- (B )2216a a +-

(C )16- (D )16

【答案】B

【解析】 ()f x 顶点坐标为(2,44)a a +--,()g x 顶点

最新高考真题理科数学分类汇编(解析版):函数及答案

坐标(2,412)a a --+,并且每个函数顶点都在另一个函数

的图象上,图象如图, A 、B 分别为两个二次函数顶点的纵

坐标,所以A-B=(44)(412)16a a ----+=-

【点评】(1)本题能找到顶点的特征就为解题找到了突破口。

(2)并非A ,B 在同一个自变量取得。

11、(高考(山东卷)

最新高考真题理科数学分类汇编(解析版):函数及答案

(A )-2 (B )0 (C )1 (D )2

【答案】A

【解析】因为函数为奇函数,所以(1)(1)(11)2f f -=-=-+=-,选A.

12、(高考(上海卷))设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,2

()9a f x x x =++7,若()1f x a ≥+,对一切x ≥0恒成立,则a 的取值范围为___

答案:8

(,]7

-∞- 13、(高考(四川卷))函数2

31

x x y =-的图象大致是( )

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

14、(高考(天津卷))函数0.5()2|log |1x f x x =-的零点个数为

(A) 1 (B) 2 (C) 3 (D) 4

最新高考真题理科数学分类汇编(解析版):函数及答案

15、(高考(天津卷))已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ??-?????

, 则实数a 的取值范围是

(A) ?????

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

(B) ?????

(C) ?? ?????

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

?? (D) ?- ??∞

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

16、(高考(新课标II 卷))设a=log 36,b=log 510,c=log 714,则

(A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c

最新高考真题理科数学分类汇编(解析版):函数及答案

17、(高考(新课标I 卷))已知函数()f x =22,0ln(1),0

x x x x x ?-+≤?+>?,若|()f x |≥ax ,则a 的取值范围是

A .(,0]-∞

B .(,1]-∞

C .[-2,1]

D .[-2,0]

【命题意图】本题主要考查函数不等式恒成立求参数范围问题的解法,是难题。

【解析】∵|()f x |=22,0ln(1),0x x x x x ?-≤?+>?,∴由|()f x |≥ax 得,202x x x ax ≤??-≥?且0ln(1)x x ax

>??+≥?,

由202x x x ax

≤??-≥?可得2a x ≥-,则a ≥-2,排除A,B, 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D.

18、(高考(浙江卷))已知x ,y 为正实数,则

A .2lg x +lg y =2lg x +2lg y

B .2lg(x +y )=2lg x ? 2lg y

C .2lg x ? lg y =2lg x +2lg y

D .2lg(xy )=2lg x ? 2lg y

【命题意图】本题考查指数和对数的运算性质,属于容易题

【答案解析】D 由指数和对数的运算法则,lg()(lg lg )lg lg 2

222xy x y x y +==?,所以,选项D 正确

19、(高考(重庆卷))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )

A 、(),a b 和(),b c 内

B 、(),a -∞和(),a b 内

C 、(),b c 和(),c +∞内

D 、(),a -∞和(),c +∞内

【答案】:A

最新高考真题理科数学分类汇编(解析版):函数及答案

最新高考真题理科数学分类汇编(解析版):函数及答案

20、(高考(安徽卷))设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =

(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-);

(Ⅱ)给定常数(0,1)k ∈,当时,求长度的最小值。

【答案】 (Ⅰ)

21a a +. (Ⅱ) 2

1 【解析】 (Ⅰ))1,

0(0])1([)(22a a x x a a x x f +∈?>+-=.所以区间长度为21a a +. (Ⅱ) 若2

11111

111-1),1,0(2=+≤+=+=+≤≤∈a a a a l k a k k 时,且 k a k a l a +≤≤=1-121,1满足,取最小值时且当.2

1的最小值为l .

相关文档
  • 高考数学分类汇编函数

  • 高考试题分类汇编函数

  • 理科数学分类汇编函数

  • 高考试题分类汇编

  • 高考数学分类汇编

  • 高考理科数学分类汇编

相关推荐: