文档库 最新最全的文档下载
当前位置:文档库 › 热管技术及其工程应用传热极限计算

热管技术及其工程应用传热极限计算

热管技术及其工程应用传热极限计算
热管技术及其工程应用传热极限计算

热管技术及其工程应用

热管的传热极限

声速极限: 热管管内蒸汽流动,由于惯性力的作用,在蒸发端出口处蒸汽速度可能达到声速或者超声速,而出现堵塞现象,这时的最大传热量被称为声速极限。

毛细极限:热管正常工作的必要条件是△P cap ≥△P v +△P l ±△P g 。如果加热量超过了某一数值,由毛细力作用抽回的液体就不能满足蒸发所需的量,于是便会出现蒸发段的吸液芯干涸,蒸发段管壁温度剧烈上升,甚至出现烧坏管壁的现象,这就是所谓的毛细传热极限。

沸腾极限:热管蒸发段的主要传热机理是导热加蒸发。当热管处于低热流量的情况下,热量的一部分通过吸液芯和液体传导到汽-液分界面上,另一部分则通过自然对流到达汽-液分界面,并形成液体的蒸发。如果热流量增大,与管壁接触的液体将逐渐过热,并会在核化中心生成气泡。热管工作时应避免气泡的生成,因为吸液芯中一旦形成气泡后,如果不能顺利穿过吸液芯运动到液体表面,就将引起表面过热,以致破坏热管的正常工作。因此将热管蒸发段在管壁处液体生成气泡时的最大传热量称作沸腾传热极限。

粘性极限:当蒸汽的压力由于粘性力的作用在热管冷凝段的末端降为零,如液态金属热管,在这种情况下,热管传热极限将受到限制,热管的工作温度低于正常温度时将遇到这种极限,它又被称为蒸汽压力极限。

携带极限:当热管中的蒸汽速度足够高时,液汽交界面存在的剪切力可能将吸液芯表面液体撕裂将其带入蒸汽流。这种现象减少了冷凝回流液,限制了传热能力。

以下就以氨为工质展开五种传热极限的相关计算,氨的物性参数如下表所示:

例:工质氨的热管,直径φ=3mm,壁厚 =0.3mm,长度L=300mm ,工作温度240K,有效长度eff l 为150mm 。试确定该热管的传热功率。

一、声速极限

解: 3NH 在240K 时的有关物理参数如下: 蒸汽密度 ρ=0.8972 kg/m 3

饱和温度 T/K 饱和压 力

Pv/106

P a

汽化潜热h fg /(kJ /kg) 蒸汽密度ρv /(kg/m 3)

蒸汽粘度μ

v /10-6

(N ·s/m 2) 表面张力σ/10

-3(N/m ) 液体密度ρl /(kg/m 3)

液体粘度μ

l /10-8

(N ·s/m 2) 240 0.10226 1369 0.8972 9.16 33.9 681.4 273

250 0.16496 1339 1.404 9.54 31.5 668.9 245 260 0.25529 1307 2.115 9.93 29.2 656.1 220 270 0.381 1273 3.086 10.31 26.9 642.9 197 280 0.55077 1237 4.38 10.7 24.7 629.2 176 290 0.77413 1198 6.071 11.07 22.4 615.0 157.7 300 1.0614 1159 8.247 11.45 20.2 600.2 141.0 310 1.4235 1113 11.01 11.86 18 584.6 126.0 320 1.8721 1066 14.51 12.29 15.9 568.2 113.4 330 2.4196

1014 18.89 12.74 13.7 550.9 101.9

饱和蒸汽压 v P =0.10226×610Pa 汽化潜热 fg h =1369×310J/kg 比热容比 v γ=4/3=1.33 分子量 M=17

通用气体常数 o R =8.314×310J/(kmol ·K)

蒸汽的气体常数 v R =8.314×310÷17=478.47 J/(kg ·K) 汽腔的横截面积 v A =26232

108.3)102.2(4

4

m d --?=??=

π

πν

将以上数据带入计算公式中,有

2

1

max

,)1(2??

????+=v o v v fg o v s T R h A Q γγρ

=()2

1

3

6

133.1224047.47833.11013698972.010

8.3?

?

????+????????-

=844.97W 声速极限的规律总结如下:

二、毛细极限

解: 3NH 在240K 时的有关物理参数如下:

液体密度 l ρ=681.4kg/m

3

液体黏度 l μ=273×810- N ·s/m 2 液体导热系数 l k =0.615W/(m ·K) 液体的表面张力系数 σ=33.9×310-N/m 蒸汽密度 ρ=0.8972 kg/m 3

蒸汽黏度 v μ=9.16×610-N ·s/m 2 汽化潜热 fg h =1369×310J/kg 有效毛细半径 r c =1/(2N)=6.4510-?m 最大毛细压力 m ax ,c P =

=c

r σ

2 1.06310?N/m 2 垂直方向上的液体静压力 v l gd ρcos φ=14.69N/m 2 轴向的液体静压力 gl l ρsin φ= 0

液体流道的平均半径 m r =()2/δ+v d =1.25310-? 吸液芯的横截面积 w A =()4/22v i d d -π=7.22710-?m 2 吸液芯弯卷系数 S=1.05 (经验数据) 吸液芯的空隙率 ε=1-πSNd/4=0.594

吸液芯的渗透率 K= ()

2

221122ε

ε-d =4.071110-?m 2

液体的摩擦系数 l F =

=fg

l w l h KA ρμ99.6 (N/m 2

)/(W ·m )

蒸汽腔的横截面积 v A =4/2v d π=3.8310-?m 2 蒸汽腔的水力半径 hv r ==2/v d 1.1310-?m 阻力系数 v v f Re =16 蒸汽的摩擦系数 F v =

()fg

v hv v v

v v h r A f ρμ2

2Re =1.57 210-? (N/m 2)/

(W ·m )

将以上数据带入计算公式中,有

()eff

v l l v l c l F F gl gd r

Q +±-=φρφρσ

sin cos 2

=

(

)

15

.01057.16.9969

.1410602

??+--=69.97W 毛细极限的规律总结如下:

三、沸腾极限

解: 3NH 在240K 时的有关物理参数如下: 蒸发段长度 e l =0.15mm 吸液芯的有效导热系数 e λ=2.58 W/(m ·℃) 氨的表面张力系数 σ=33.9×310-N/m 蒸汽密度 ρ=0.8972 kg/m 3 汽化潜热 fg h =1369×310J/kg 管子内径 i d =2.4×310-m 蒸汽腔直径 v d =2.2×310-m 汽包临界生成半径 b r =2.54×710-m

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

热管的换热原理及其换热计算

热管的换热原理及其换热计算 一热管简介 热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。 热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。其结构如图所示: 热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。蒸发段

的饱和蒸汽压随着液体温度上升而升高。在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。如此往复,不断地将热量从蒸发段传至冷凝段。绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。 在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。 (1) 产品展示

(2) 产品参数说明

(3) 产品性能测试图例 图1 长度700mm的真空退火管最大传热功率测试 图2 热管等温性测试曲线

热管技术及其工程应用

热管技术及其工程应用(2) 晨怡热管2007-6-9 22:07:05 第二章热管及其特性 热管:是一种传热性极好的人工构件,常用的热管由三部分组成:主体为一根封闭的金属管(管壳),内部空腔内有少量工作介质(工作液)和毛细结构(管芯),管内的空气及其他杂物必须排除在外。热管工作时利用了三种物理学原理: ⑴在真空状态下,液体的沸点降低; ⑵同种物质的汽化潜热比显热高的多; ⑶多孔毛细结构对液体的抽吸力可使液体流动。 从传热状况看,热管沿轴向可分为蒸发段,绝热段和冷凝段三部分。 一.热管的组成 图2.1 热管示意图 1—管壳;2—管芯;3—蒸汽腔;4—工作液 国外资料: (From https://www.wendangku.net/doc/bb11393303.html,) A traditional heat pipe is a hollow cylinder filled with a vaporizable liquid. A. Heat is absorbed in the evaporating section. B. Fluid boils to vapor phase. C. Heat is released from the upper part of cylinder to the environment; vapor condenses to liquid phase. D. Liquid returns by gravity to the lower part of cylinder (evaporating section).

(Heat Pipes for Dehumidification(除湿气) 热管的管壳是受压部件,要求由高导热率、耐压、耐热应力的材料制造。在材料的选择上必须考虑到热管在长期运行中管壳无腐蚀,工质与管壳不发生化学反应,不产生气体。 管壳材料有多种,以不锈钢、铜、铝、镍等较多,也可用贵重金属铌、钽或玻璃、陶瓷等。管壳的作用是将热管的工作部分封闭起来,在热端和冷端接受和放出热量,并承受管内外压力不等时所产生的压力差。 热管的管芯是一种紧贴管壳内壁的毛细结构,通常用多层金属丝网或纤维、布等以衬里形式紧贴内壁以减小接触热阻,衬里也可由多孔陶瓷或烧结金属构成。如右图所示为几种不同的管芯的结果示意图

计算传热学

1、已知:一块厚度为0.1mm 的无限大平板,具有均匀内热源,q =50×103W/m 3,,导热系数K =10W/m.℃,一侧边界给定温度为75℃,另一侧对流换热,T f =25℃,,h=50W/m 2.℃,求解稳态分布。(边界条件用差分代替微分和能量平衡法),画图。(内,外节点) 2、试以下述一维非稳态导热问题为模型,编写求解一维非稳态扩散型问题的通用程序: 00 00000()()()() L L f x x x x L fL L x x x x T T k s c x x T k h T T W x T k h T T W x T T x τρτ =====???+=????=-+??-=-+?= 其中,x 是空间坐标变量,τ是时间坐标变量,T 是温度(分布),k 是材料的导热系数,s 是内热源强度,ρ是材料的密度,c 是材料的比热,h 0和h L 分别是x 0和x L 处流体与固体壁面间的换热系数,而T f0和T fL 分别是固体壁两侧流体的温度,W 0和W L 是x 0和x L 处(非对流换热)热流密度,T 0(x )是固体壁内初始温度分布。注意k 、ρ、c 、s 、h 0 、h L 、W 0和W L 均可以是温度T 和/或空间坐标x 的函数。 具体要求: 1) 将数学模型无量纲化; 2) 考虑各种可能的边界条件和初始条件组合 3) 提供完整的程序设计说明,包括数学推导过程和程序使用说明 3、对于有源项的一维稳态方程, s dx d T dx d u dx d +=)()(φφρ 已知 x=0,φ=0,x=1, φ=1.源项S=0.5-X 利用迎风格式、混合格式、乘方格式求解φ的分布.

传热学上机C程序源答案之一维稳态导热的数值计算

一维稳态导热的数值计算 1.1物理问题 一个等截面直肋,处于温度t ∞=80 的流体中。肋表面与流体之间的对流换热系数为 h =45W/(m 2?℃),肋基处温度t w =300℃,肋端绝热。肋片由铝合金制成,其导热系数为λ=110W/(m ?℃),肋片厚度为δ=0.01m ,高度为H=0.1m 。试计算肋内的温度分布及肋的总换热量。 1.2数学描述及其解析解 引入无量纲过余温度θ = t?t ∞t w ?t ∞ ,则无量纲温度描述的肋片导热微分方程及其边界条件: 22 20d m dx θθ-= x=0,θ=θw =1 x=H, 0x θ?=? 其中m = 上述数学模型的解析解为:[()] ()() w ch m x H t t t t ch mH ∞∞--=-? ()()w hp t t th mH m ∞?= - 1.3数值离散 1.3.1区域离散 计算区域总节点数取N 。 1.3.2微分方程的离散 对任一借点i 有:22 2 0i d m dx θ θ??-= ??? 用θ在节点i 的二阶差分代替θ在节点i 的二阶导数,得:211 2 20i i i i m x θθθθ+--+-= 整理成迭代形式:()1122 1 2i i i m x θθθ+-=++ (i=2,3……,N-1) 1.3.3边界条件离散 补充方程为:11w θθ==

右边界为第二类边界条件,边界节点N 的向后差分得:1 0N N x θθ--= ,将此式整理为 迭代形式,得:N 1N θθ-= 1.3.4最终离散格式 11w θθ== ()1122 1 2i i i m x θθθ+-= ++ (i=2,3……,N-1) N 1N θθ-= 1.3.5代数方程组的求解及其程序 假定一个温度场的初始发布,给出各节点的温度初值:01θ,02θ,….,0 N θ。将这些初值代 入离散格式方程组进行迭代计算,直至收敛。假设第K 步迭代完成,则K+1次迭代计算式为: K 11w θθ+= () 11 11 2212i i K K K i m x θθθ+-++= ++ (i=2,3……,N-1) 1 11N K K N θθ-++= #include #include #define N 11 main() { inti; float cha;/*cha 含义下面用到时会提到*/ float t[N],a[N],b[N]; float h,t1,t0,r,D,H,x,m,A,p; /*r 代表λ,x 代表Δx ,D 代表δ*/ printf("\t\t\t 一维稳态导热问题\t\t"); printf("\n\t\t\t\t\t\t----何鹏举\n"); printf("\n 题目:补充材料练习题一\n"); printf("已知:h=45,t1=80, t0=200, r=110, D=0.01, H=0.1 (ISO)\n"); /*下面根据题目赋值*/ h=45.0; t1=80.0; t0=300.0; r=110.0; D=0.01; H=0.1; x=H/N; A=3.1415926*D*D/4; p=3.1415926*D; m=sqrt((h*p)/(r*A)); /*x 代表步长,p 代表周长,A 代表面积*/ printf("\n 请首先假定一个温度场的初始分布,即给出各节点的温度初值:\n");

热管技术及其工程应用传热极限计算

热管技术及其工程应用 热管的传热极限 声速极限:热管管蒸汽流动,由于惯性力的作用,在蒸发端出口处蒸汽速度可能达到声速或者超声速,而出现堵塞现象,这时的最大传热量被称为声速极限。 毛细极限:热管正常工作的必要条件是△P cap≥△P v+△P l±△P g 。如果加热量超过了某一数值,由毛细力作用抽回的液体就不能满足蒸发所需的量,于是便会出现蒸发段的吸液芯干涸,蒸发段管壁温度剧烈上升,甚至出现烧坏管壁的现象,这就是所谓的毛细传热极限。 沸腾极限:热管蒸发段的主要传热机理是导热加蒸发。当热管处于低热流量的情况下,热量的一部分通过吸液芯和液体传导到汽-液分界面上,另一部分则通过自然对流到达汽-液分界面,并形成液体的蒸发。如果热流量增大,与管壁接触的液体将逐渐过热,并会在核化中心生成气泡。热管工作时应避免气泡的生成,因为吸液芯中一旦形成气泡后,如果不能顺利穿过吸液芯运动到液体表面,就将引起表面过热,以致破坏热管的正常工作。因此将热管蒸发段在管壁处液体生成气泡时的最大传热量称作沸腾传热极限。 粘性极限:当蒸汽的压力由于粘性力的作用在热管冷凝段的末端降为零,如液态金属热管,在这种情况下,热管传热极限将受到限制,热管的工作温度低于正常温度时将遇到这种极限,它又被称为蒸汽压力极限。 携带极限:当热管中的蒸汽速度足够高时,液汽交界面存在的剪切力可能将吸液芯表面液体撕裂将其带入蒸汽流。这种现象减少了冷凝回流液,限制了传热能力。 以下就以氨为工质展开五种传热极限的相关计算,氨的物性参数如下表所示: 例:工质氨的热管,直径φ=3mm,壁厚 =0.3mm,长度L=300mm,工作温度240K, l为150mm。试确定该热管的传热功率。 有效长度 eff 一、声速极限 NH在240K时的有关物理参数如下: 解: 3 蒸汽密度ρ=0.8972 kg/m3

计算传热学程序设计

中国石油大学(华东) 储建学院热能与动力工程系 《计算传热学程序设计》 设计报告 1引言 有关墙体传热量计算的方法是随着人们对房间负荷计算精度要求的不断提高而不断发展的.考虑辐射强度和周围空气温度综合作用,当外界温度发生周期性的变化时,屋顶内部的温度和热流密度也会发生周期性的变化。 计算题目 有一个用砖墙砌成的长方形截面的冷空气通道,其截面尺寸如图1所示。假设在垂直于纸面方向上冷空气及砖墙的温度变化相对较小,可近似地予以忽略。试计算稳态时砖墙截面的温度分布及垂直于纸面方向1米长度的冷量损失。设砖墙的导热系数为(m·℃)。内、外壁面均为第三类边界条件,外壁面:t f1=30℃,h1=10W(m2·℃);内壁面:t f2=10℃, h2=4W(m2·℃)。

图1 砖墙截面 已知参数 砖墙的基本尺寸,砖墙的导热系数,外壁面的表面传热系数,对应的流体温度,内壁面的表面传热系数,对应的流体温度。 2 物理与数学模型 物理模型 由题知垂直于纸面方向上冷空气及砖墙的温度变化相对较小,可近似予以忽略,墙面为常物性,可以假设: 1)砖墙在垂直于纸面方向上没有导热。 2)由于系统是几何形状与边界条件是对称的,它的中心对称面就是一个绝热边界,这时只需求解1/4个对称区域就可以得到整个区域的解。 数学模型 考虑到对称性,取右下的1/4为研究对象,建立如图2的坐标系。 a 图2 砖墙的稳态导热计算区域 由上述的物理模型与上面的坐标系,该问题的数学模型可直接由导热微分方程简化而来,即 22220T T x y ??+=?? (1) 相应的边界条件是:

1.1 0y T y =?=? 1.5 0x T x =?=? (2) 110 ()f x x T h T T x λ ==?-=-? (3) 111.1 1.1 ()f y y T h T T y λ ==?-=-? (4) 22(0.5,00.6)(0.5,00.6) ()f x y x y T h T T x λ =<<=<

热管技术及其在热能工程中的应用

文章编号:1004-8774(2003)03-24-04 热管技术及其在热能工程中的应用 收稿日期:2002-09-09 何天荣 (湖南大学衡阳分校,湖南421101) 摘要:热管技术越来越得到人们的重视,热管的应用也日益广泛。然而,热管技术在热能动力工程上的应用还处于初期阶段。文章在介绍热管技术基本知识的基础上,介绍了热管技术在热能工程中的应用的几个方面及安全问题,用以推动热管技术的进一步发展。 关键词:热管技术;热能工程;应用与安全 中图分类号:Tk172.4 文献标识码:B Heat Pipe Technology and its Application in Thermal Engineering HE Tian-rong Abstract:Heat pipe technoIogy is getting more and more regards,and its appIications are aIso extensive increasingIy. However,in thermaI power engineering,it is stiII being earIy stage.In this paper,after the basic knowIedge of heat pipe technoIogy is introduced,we anaIyze severaI kinds of appIication of heat pipe technoIogy in thermaI engineering and security probIem thereof,in order to impeI it to deveIop further. Key words:Heat pipe technology;Thermal engineering;Application and security 1 前言 1964年热管诞生于美国的洛斯?阿拉莫斯(Los AIamos)科学实验室,1967年该实验室首次将一支实验用水热管送上了地球卫星轨道,1968年热管第一次用于测地卫星GEOS-!,用来控制仪器的温度。除空间技术外,热管相继为电子工业所采用,用来冷却电子管、半导体元件和集成电路板等电子元件,并应用于机械、电机部件的冷却。20世纪70年代热管应用于医用手术刀,随后应用的新领域是能源工程。国外用于余热回收和空调的热管换热器已部分商品化。并开展了热管技术在太阳能和地热利用方面的研究。1972年我国研制出第一根热管,它是以钠为工质的,接着研制了以氨、水、导热油为工质的热管。 热管除了在宇航、石化、电子、机械、轻纺工业及医学上的应用外,目前热管已逐渐应用于热能工程,并显示出它的强大优势。 2 热管的基本结构及原理 2.1 热管的基本结构 热管是由管壳、管芯(或称吸液管)和工作液体三部分组成,如图1所示。管壳是由碳钢、不锈钢、铜等金属材料制造的能承受一定压力的完全密闭的管状容器,内部空腔具有较高的原始真空度。管芯是紧贴管壁的由毛细多孔结构材料制成,它一般为金属丝网或烧结的金属粉末。工业用热管也有采用槽道吸液结构或丝网与槽道复合结构。工作液体是热管工作时传递热量的工作介质,一般有水、氨、甲醇、丙酮、R-21、R-113等,其中水的工作范围为45~210C。工作液在热管内呈气态和液态两种工作状态,它是在热管处于真空状态下被充入,并填满毛细材料中的微孔,然后予以密封的。 2.2 热管的工作原理 如图1所示,热管一端为蒸发段,中间一段为绝热段(即与外界无热交换),另一端为冷凝段。当蒸发段受热时,毛细材料中的液体蒸发产生蒸汽流向另一端冷凝段。冷凝端由于放热冷却使蒸汽又凝结成液体,液体再沿毛细多孔材料流回蒸发段,如此不断循环,将热量从一端传到另一端。从热管内部的工作过程来看,也对应分成三个工作段,即汽化段、输运段和放热凝结段。利用这种原理工作的热管称为毛细管式热管。 42工业锅炉2003年第2期(总第78期)

热管技术及其在多年冻土工程中的应用研究

第27卷 第6期 岩 土 工 程 学 报 Vol.27 No.6 2005年 6月 Chinese Journal of Geotechnical Engineering June, 2005 热管技术及其在多年冻土工程中的应用研究 Thermosyphon technology and its application in permafrost 杨永平1,2,魏庆朝2,周顺华1,张鲁新2 (1. 同济大学 道路与铁道工程教育部重点实验室,上海 200331; 2. 北京交通大学 土建学院,北京 100044) 摘 要:热管技术是国外寒区工程中广泛使用的一项主动冷却地基土体的技术,青藏铁路修建之前,国内很少对此技术进行研究。本文针对应用于青藏铁路多年冻土工程中的热管类型,通过国内外的研究资料,综述了与青藏铁路热管应用效果相关的理论研究与工程实践成果。由于青藏铁路沿线独有的气候和冻土条件,文中的理论与实践方法与参数虽然不能简单照搬应用于青藏铁路的设计,但是可以对青藏铁路多年冻土区热管的设计与应用起到借鉴的作用。 关键词:青藏铁路;热管;多年冻土;综述 中图分类号:U 416文献标识码:A文章编号:2005–4548(2005)06–0698–09 作者简介:杨永平(1976– ),男,博士,2004年12月于北京交通大学土木建筑工程学院获博士学位,现为同济大学博士后,从事高速铁路特殊土质路基结构分析及数值分析研究。 YANG Yong-ping1,2,WEI Qing-chao2,ZHOU Shun-hua1,ZHANG Lu-xin2 (1. Key Laboratory of Road Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 200331, China; 2. Civil Engineering School, Beijing Jiaotong University, Beijing 100044, China) Abstract: Thremosyphon is a widely used technology applied to the engineering projects in permafrost regions at home and abroad. Before the construction of the Qinghai-Tibet railway, there was little study on this technology. This study is based on the type of the thermosyphon used in the Qinghai-Tibet railway. For the weather and permafrost conditions of Qinghai-Tibet plautea are different from the conditions of foreign countries, it is not proper to directly apply their theory and productions to the design of thermosyphon embankments in Qinghai-Tibet railway. This paper will be useful for the design and application of the thermosyphon used in permafrost regions of Qinghai-Tibet railway. Key words: Qinghai-Tibet railway;thermosyphon;permafrost;comprehensive study 0 引 言 两相闭式热虹吸管(Two-phase closed thermosyphon)又称重力热管,简称热虹吸管。是冻土区广泛使用的一种热管。青藏铁路使用的热管是低温、氨—碳钢热管,是一种制冷热管,由于热虹吸管内没有吸液芯这一重要特点,不仅结构简单,制造方便,成本低廉,而且传热性能优良,工作可靠,青藏铁路冻土区适用的热管就是这种类型。 1 主要应用国家概述 美国在20世纪60年代末申请了应用于多年冻土中的热管技术专利后,成立了研究机构,对热管技术在多年冻土中的应用进行了一些研究,主要的领军者为美国北极基础有限公司、阿拉斯加大学寒区工程研究所以及美国寒区军事工程研究所。加拿大在60年代后期向美国购置了热管专利,开展了热管技术应用的研究,并于70年代后期成立了加拿大北极基础有限公司,向加拿大多年冻土区提供热管系统和技术服务。 加拿大已将热管广泛应用于北美寒冷地区的工程建筑物,用于冷却地基确保冻土稳定性。目前主要的应用领域有工业与民用建筑、公路工程、铁路工程、机场跑道、输油管线、通讯塔、大坝及冻结墙等工程。 当前美国和加拿大正在联合研究并推进热管在铁路工程中的应用,开发热管通用分析方法,研究和编制通用简便的电子计算机程序,改进制造和安装工艺。但是这些方面的研究成果仍属于公司所有,不予公开发表。 前苏联在60年代早期曾由学者ТаЛеев C ∏提到过热传导桩的概念[1]。列宁格勒铁路运输设计院、莫斯科铁路运输设计院以及西伯利亚冻土研究站曾用煤油做工质设计了单相单管和多管热传导设计,应用于伊尔库茨克公路和雅库斯克水库等工程项目中。煤油热管属于液体对流,较汽-液两相对流的热管传热效率要差。目前也被成功地应用于土芯坝基等水利工程,以及冻土区铁路路基工程,但热管技术的研究远不及美国和加拿大。 ─────── 收稿日期:2004–08–19

特种热管及传热介质

特种热管及传热介质 一. 概述 热能工程一直以来是人类关注的焦点技术领域.早在二十世纪四十年代.国外首先发明了以液体为介质的进行热能传递的元件--热管.作为一种特种传热元件.他以很小的温差传送大量热量.其特性基本上可以归纳为两 :(一)导热性好(二)均热效果高.在所有的金属非金属材料中.就传热性能而言.几乎没有哪种材料能够与热管元件相比.热管的工作介质或称工体流体(Working Fluid)可有多种.主要是采用水或油.乙醇等液体有机化合物为传热介质.在封闭的真空金属管中通过快速循环的相变达到传热的目的.即先在吸热端接受热能.使介质受热后由液态变为气态.到冷端(即放热端)释放出热能后.介质冷凝还原为液态再返回吸热端.完成一次相变循环.我们通常将这种热管称为常规热管. 常规碳钢--水热管可以在30℃~200℃的温度范围内工作.并有较高的传热效率.可以快速进行热能传递.并达到一定的节能效果.所以在一些工业部门得到了应用.但是.由于有机介质热管工作时管内存在较大压强.而压强大小与温度密切相关.温度过高.就会爆管.此外还存在载体材料与其内部工质材料不相容.产生不凝性气体而腐蚀管壁的问题.容易导致热管失效.进入九十年代以后.随着现代科学技术的迅猛发展.许多尖端设备对温度的传递范围.传热效率.使用寿命等提出了更高的技术要求.使得普通热管已无法满足工作需要.我公司科研人员从八十年代后期.就一直关注热管工业的发展.在传统热管(Heat pipe)的基础上.经过十余年的潜心研究和不管实验.开发并研制出一种优于传统热管的新型热管--特种热管. 二. 特种热管 特种热管采用的是无机介质作为热传导的一种高效传热技术.这是材料科学领域内的一项新的技术发明.其新颖性和独创性目前在国内外有关文献的检索中未见报道.属我国首创的一项领先技术. 特种热管的技术原理为:独立的(管状.夹层板状及组合状等)系统内加入A.B两种工质后.(管径≥3mm.板状间距≥1mm以上)经过真空处理密封等等工序就构成了特种传热原件.特种传热元件是一个独立的真空系统.在热能传导过程中介质受热激发产生振荡.可将热能迅速由热端向冷端快速传递并发生摩擦.众所周知.所有材料(金属和非金属).其自身均存在不同程度的热阻.决定并制约了材料的导热及热交换能力.热管的应用.减除了传热过程中的热阻.使热能更加适应远距离传递和各种形式的热能交换.特种热管具有较高的传热能力.中国科学院一位从事化学和热物理研究30余年的科学家谭志城教授经过深入研究后说.特种热管传热机理及与传热介质传热方式的异同点.使其不仅可以在热管上应用.而且可以在所有涉及热交换和热传递的设备系统中使用.特别是适用于一些有特殊要求的传热系统.这种无机传热材料的推广.应用将影响所有热量传递的领域.对提高热能利用率.节约能源将产生重大影响.尤其将为取之不尽的太阳能的利用和用之不竭的地热开发几低品位热能的回收开辟一条高速通道. 三. 特种传热介质及其载体技术参数 特种传热介质为固体.液体两种.其中固体介质在常温下为灰黑色粉末.由多种无机元素组成.当与液体介质一同灌注在密闭的载体内.并形成一定真空度时.即可实现热能高速传递.传热介质所灌注的载体(管子或夹层片状体)经密闭后.即形成高效热管.热管材料不受材质限制.可采用金属(如碳钢.不锈钢.铜)或玻璃.塑料等材料.并可采用盘旋管.弯曲板.同时可采用多管(板)组合形成.特种热管其轴向的导热是以分子告诉运动的特定方式来实现其热能传导的.

微热管及其传热理论分析

微热管及其传热理论分析 摘要:随着微电子制造技术的快速发展,微热管在航天器热控系统、微电子元器件散热等领域中有着广泛的应用。微热管是利用密封在管内工质相变进行热量传输的器件,具有体积小、重量轻、传热效率高、成本低、易于集成、无需外加动力等显著优点,能有效解决目前微小型器件和芯片的散热问题,具有广泛的应用前景。作者综述了微热管的发展与当前研究现状,详细介绍了微热管的工作原理,并指出微热管与常规微热管的区别,对槽道式平板微热管进行理论分析,最后展望了该领域的未来研究方向。 关键词:微热管,工作原理,平板微热管, 引言 随着电子科技技术的进步,许多电子产品向着高性能化、高功率化和小型化方向发展,同时产品的高集成度使其散热空间更为狭小,导致了电子元器件单位面积的热量急剧上升,如高性能微处理器的热流密度已达到100W/cm2[1]。元器件的温度每升高10℃,系统的可靠性降低50%[2],所以必须采用高效的传热技术对电子元器件进行散热。 微热管是一种利用相变传热的高效传热元件,其导热能力大大超越了铜、铝材料的空气强制对流散热方案[3-4],因此,具有高导热率、良好的等温性,以及结构简单等优点[1,5]的微热管成为微电子散热领域的关键元件,并广泛应用于各种电子产品。其中平板微热管由于其良好的蒸发吸热特性和形状易于与芯片贴合等优点被越来越多地应用于高效散热中。而微热管或热管内微结构具有强化传热传质的作用,引起研究者越来越多的关注。 1. 微热管的发展与国内外研究现状 微热管是利用密封在管内工质相变进行热量传输的器件,具有体积小、重量轻、传热效率高、成本低、易于集成、无需外加动力等显著优点,能有效解决目前微小型器件和芯片的散热问题,具有广泛的应用前景。 1944 年Gaugler第一次提出了热管的工作原理;1963 年美国《应用物理》杂志报道了世界上的第一根热管;1984 年Cotter等人提出了热管微型化的设想,为微热管的研究开辟了道路;1984年,T.P.Cotter在第五届国际热管会议上首次提出了微热管的概念,并指出微热管在用于电子芯片冷却散热领域具有广阔的应用前景。 关于微热管的研究,最初集中于几个厘米长,工质通道横截面为带有尖角区域的图形,通道的水力半径在10μm~100μm 的单根微热管。工质回流主要靠的是横截面尖角区域所形成的毛细力。这种单根微热管主要应用在传输热量不是很大,但要求温度分布均匀稳定的领域。随后微热管的研究分别从实验研究和理论研究两方面逐步展开,研究结果均体现出这一传热元件相比其它传热手段具有效率高而无需外加动力的优点。而关于微热管结构的研究也从单根微热管逐步发展到微热管阵列,即在固体基板上开出一簇簇微型槽道,这样的方式大大提高了微热管的传热能力,但这只是单根微热管的一种简单的并列组合。进一步的改进是具有连通蒸汽腔的平板微热管。平板微热管通过连通蒸汽腔降低了气液界面高速对流产生的界面摩擦力,使热管的传热能力进一步提高,从而成为目前微热管领域的研究热点。 2. 微热管工作原理 图l所示为微热管工作原理示意图。根据微热管内部蒸汽流动情况,沿其轴向可分为蒸发段、绝热段和冷凝段。从结构上分析,微热管包括管壳、毛细吸液芯和工作介质(液流)。为降低热阻和工作介质沸点,提高微热管工作效率,管壳内部需保持一定的真空度。在微热管工作时,工作介质在蒸发段吸收热源热量发生相变,蒸汽流经过绝热段到达冷凝段释放热量并凝结为液体,冷凝液流在毛细吸液芯的毛细作用下回流到蒸发段,如此循环下去,微热管不断

计算传热作业1

储运与建筑工程学院能源与动力工程系 计算传热学课程大作业报告 作业题目:代数方程组的求解 学生姓名:田 学号: 专业班级:能动1 2017年9月23日

目录 一、计算题目 (3) 二、离散方程 (3) 三、程序设计 (4) 3.1 高斯赛德尔迭代法 (4) 3.2 TDMA法 (5) 四、程序及计算结果验证 (6) 五、网格独立性考核.................... 错误!未定义书签。 3.1 高斯赛德尔迭代法 (7) 3.2 TDMA法 (8) 六、结果分析与结论 (8) 3.1 高斯赛德尔迭代法 (9) 3.2 TDMA法 (10)

一、计算题目 分别用高斯赛德尔迭代和TDMA 方法求解方程 2 2dx d dx d u φφρΓ= (1) 在Γ u ρ=-5,-1,0,1,5情况下的解,并表示在图中。 其中,x =0,φ=0;x =1,φ=1. 二、离散方程 采用控制容积法: 即??Γ=e 22w e w dx d dx d u φφ ρ(2) ) )()(()2 2 ( w W P e P E p w p e x x u δφφδφφφφφφρ---Γ=+- +(3) 假设均分网格,则有x x x w e ?==)()(δδ 上式则变为: )2(2)(W P E W E u x φφφφφρ+-Γ=-?(4) 即11)2()2(4-+?+Γ+?-Γ=Γi i i u x u x φρφρφ(5) 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ(6)

三、程序设计 3.1 高斯赛德尔迭代法 由已知公式 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ可设计高斯赛德尔迭代C 语言程序如下: #include #include #include int main() { double e=0,x; int i,j,b,k,d; double a[100]; scanf("%lf%d",&x,&d); for (j=0;j<1/x;j++) { a[j]=0; } b=1/x; a[b]=1; while (1){ for (i=0;i<1/x-1;i++) { a[i+1]=((2-x*d)*a[i+2]+(2+x*d)*a[i])/4; printf("i = %d\n",i); if (i==1/x-3) e=a[i+2]; } if (fabs((a[i]-e))/a[i]<0.00001) break ; } for (k=0;k<=1/x;k++) { printf("%lf ",a[k]); } system("pause"); return 0;

9-微型热管技术的研究现状与发展

微型热管技术的研究现状与发展 朱高涛刘卫华 (南京航空航天大学) 摘要微型热管(micro heat pipe,MHP)被广泛用于冷却航天、航空、军用武器、车辆、计算机等众多领域的电子设备,是有效冷却高热流密度电子器件的主要途径之一,已成为现代热管技术重要的发展方向和研究热点。目前对M HP的研究主要集中在管内流动及传热、传质的机制研究,新型高效结构形式的设计,制造工艺技术的改进等方面。较系统地总结近来MHP在理论、设计及制造工艺等方面的技术研究进展,综述其应用现状并分析其发展趋势。 关键词微型热管传热传质电子设备冷却 The current status and development of micro heat pipe technique Zhu Gaotao Liu Weihua (Nanjing U niversity of Aeronautics and Astronautics) ABSTRACT Micro heat pipe(MHP)is w idely used to cool equipments of aerospace electron-ics,avionics,military electronics,automotive technologies,computers and so on.It is one of main approaches w hich can cool electronic components of high heat-flux es effectively.At pre-sent,it becomes one of hotspots of modern heat pipe technolog y.Most of the studies are fo-cused on the principle of heat and mass transfer and vapor-liquid flow in the MHP,novel design of high effective MHP structure,improvement of MHP m anufacture technology and so on.In this paper,recent studies on MHP are summarized as four parts:theoretical analysis and exper-im ental study of the MHP principle,design of new structure MHP,m anufacture technology, application of MHP,and the development trend. KEY WORDS micro heat pipe;heat and mass transfer;electronic equipments cooling 自1984年Cotter[1]提出MHP的概念以来,人们对MHP进行了大量的理论和实验研究,并取得了一系列的研究成果和技术进步。如MH P的结构,就经历了从重力型、具有毛细芯的单根热管型到具有一束平行独立微槽道的平板热管型,再到内部槽道束通过蒸汽空间相互连通型等一系列变化,其目的就是要更好地为各种小面积、高热流密度元器件的散热提供更有效的手段。但是随着热管结构尺寸的减小,除毛细极限、沸腾极限等常规热管均具有的传热极限限制了MHP的传热能力之外, MH P还遇到了常规热管所没有的传热极限,比如蒸汽连续流动极限就限制了MH P在低温状态下的工作等。正是由于MHP结构的特殊性,才使得有关MH P的理论研究、实验研究及制造工艺研究等有别于常规热管。笔者旨在着眼于MHP的特殊性,总结近期MHP在理论和实验研究、设计及制造工艺等方面的技术进展,分析其发展趋势,以明确今后工作方向。 1MHP研究进展 1.1MHP传热能力研究 MHP一般没有传统热管的毛细吸液芯,管内液体回流主要依靠槽道尖角区形成弯月面的毛细压差来提供动力。MH P尺寸的减小突出了薄液膜区的作用,轴向管壁热传导所占份额的增加使得 第6卷第2期2006年4月 制冷与空调 REFRIG ERAT ION AN D A IR-CON DIT IO NI NG9-14 X收稿日期:2005-03-01 通讯作者:刘卫华,E-mail:Liuw h@https://www.wendangku.net/doc/bb11393303.html,

计算传热学课程设计报告 中国石油大学(华东)

《计算传热学基础》 对空气在有泡沫金属介质管内流动与传热的研究 热能与动力工程系10-1班 张皓威10123113 雒飞10123112 陈诚10123115 白代立10123122 指导教师:黄善波巩亮徐会金 2013年7月

目录 题目 (1) 一、问题分析 (3) 二、解题过程 (4) (一)对各个模型的流动和换热进行无量纲化 (4) 1、对各个模型的换热进行无量纲化 (4) 2、对各个模型的流动进行无量纲化 (5) (二)Darcy模型的温度分布 (7) (三)Brinkman模型的速度分布和温度分布 (9) (四)Forchheimer模型的速度和温度分布 (13) (五)Brinkman模型和Forchheimer模型的速度分布和温度分布进行对比。 (17) (六)Brinkman模型和Forchheimer模型的f, fRe, Nu值 (18) (七)总结 (20) 附录 (21) 附录1 计算Darcy模型的温度程序 (21) 附录2 计算Brinkman模型的速度和温度及Nu程序 (23) 附录3 计算Forchheimer模型的速度和温度及Nu程序 (26) 附录4 计算f和fRe的程序 (30) 参考文献 (31)

问题三十三(难度:5.0) 一根完全填充多孔介质管外表面为恒热流边界条件(2500m w q w =),管内径为00.02=r m ,平1=m u m s 的空气在管内流动,其内部层流充分发展 流动模型通常有Darcy 模型、Brinkman 模型和forchheimer 模型,管内填充孔 隙率为0.6ε =的多孔介质,渗透率表示为: () 232 1501εε= -d K 惯性系数表示为: 23 1.75150ε = F C 有效导热系数表示为: (1)εε=+-e f s k k k 充分发展的Darcy 流动模型: μ=-f dp u dz k (1) 充分发展的Brinkman 模型: 2μμ?=- +?f e p u u K (2) 充分发展的forchheimer 模型: 2μμρε?=- + ?-f f f F C p u u u u K K (3) 质量守恒方程: 0=?u 动量方程: ()()2ρμμρεε??=-?---????f f f f F C u u p u u u u J K K (4) 式中,J=u/∣u ∣是沿坐标轴方向的单位速度矢量;ρf 和μf 分别为流体的密度和动力粘度;V 为速度矢量;K ,ε,C F 分别为渗透率、孔隙率和惯性系数。动量方程右边的4项分别为:压力梯度、Brinkman 项、Darcy 项和forchheimer 项。 能量守恒方程: ()[]ρν??=????f F e C T k T (5)

相关文档