文档库 最新最全的文档下载
当前位置:文档库 › 《二次根式》典型例题和练习题

《二次根式》典型例题和练习题

《二次根式》典型例题和练习题
《二次根式》典型例题和练习题

(

e

s

i n

e

i n ) )

) ) )

) )

功和功率知识点梳理与典型例题

功知识点梳理与典型例题: 一、功 1.功:如果一个力作用在物体上,物体在这个力的方向我们就说力对物体做了功.2.做功的两个必要因素:和物体在力的方向上. 3.计算公式:,功的单位:,1焦耳物理意义是。 4.不做功的几种情况: A.“劳而无功”物体受到力的作用,但物体没有移动,这个力对物体不做功. 如小孩搬大石头搬不动. B.“不劳无功”由于惯性保持物体的运动,虽有通过的距离,但没有力对物体做功.如冰块在光滑水平面上运动. C.“垂直无功”当物体受到的力的方向与物体运动方向垂直时,这个力对物体不做功. 如提着重物在水平地面上行走.甲、乙图是力做功的实例,丙、丁图是力不做功的实例 基础题 【例1】在国际单位制中,功的单位是() A.焦耳B.瓦特C.牛顿D.帕斯卡 【例2】以下几种情况中,力对物体做功的有() A.人用力提杠铃,没有提起来B.沿着斜面把汽油桶推上车厢 C.用力提着水桶水平移动2米,水桶离地面高度不变 D.物体在光滑水平面上匀速前进二米 【例3】下列关于物体是否做功的说法中正确的是() A.起重机吊着钢筋水平匀速移动一段距离,起重机对钢筋做了功 B.被脚踢出的足球在草地上滚动的过程中,脚对足球做了功 C.小刚从地上捡起篮球的过程中,小刚对篮球做了功 D.小丽背着书包站在路边等车,小丽对书包做了功 【例4】如图所示的四种情景中,人对物体做功的是() 的是() 【例5】关于图所示的各种情景,下面说法错误 ..

A .甲图中:系安全带可预防汽车突然减速时人由于惯性前冲而撞伤 B .乙图中:人用力向上搬大石块没有搬动,则重力对大石块做了功 C .丙图中:在拉力作用下拉力器弹簧变长,说明力可使物体发生形变 D .丁图中:抛出的石块在重力作用下改变原来的运动方向和运动快慢 【例6】 物体A 在水平拉力F =20N 的作用下,第一次加速运动了10m ,第二次匀速运动了 10m ,第三次减速运动了10m ,在三次不同的运动情况中比较拉力F 对物体做的功 ( )A .第一次最多 B .第二次最多 C .三次一样多 D .第三次最多 【例7】 一个人先后用同样大小的力沿水平方向拉木箱,使木箱分别在光滑和粗糙两种不同 的水平地面上前进相同的距离.关于拉力所做的功,下列说法中正确的是( ) A .在粗糙地面上做功较多 B .在光滑地面上做功较多 C .两次做功一样多 D .条件不够,无法比较两次做功的多少 【例8】 如图所示,已知A B C M M M >>.在同样大小的力F 作用下,三个物体都沿着力的 方向移动了距离s ,则力F 所做的功( ) A .A 情况下F 做功最多 B .B 情况下F 做功最多 C .C 情况下F 做功最多 D .三种情况下F 做功相同 【例9】 一名排球运动员,体重60kg ,跳离地面0.9m ,则他克服重力做功(取g =10N/kg ) ( )A .54J B .540J C .9J D .600J 【例10】 今年6月美国将在科罗拉多大峡谷建成观景台.观景台搭建在大峡谷的西 侧谷壁上,呈U 字型,离谷底1200m 高,取名为“人行天桥”,如图所 示.如果在建造过程中有一块质量为0.1kg 的石子从观景台掉落谷底,则 下落过程中,石子的重力做功为(g 取10N/kg )( ) A .12J B .1200J C .51.210J ? D .61.210J ? 【例11】 某商场扶梯的高度是5m ,扶梯长7m ,小明体重为600N .扶梯把小明 从三楼送上四楼的过程中对小明做功_________J . 中档题 【例12】 足球运动员用500N 的力踢球,足球离开运动员的脚后向前运动了50m ,在此运动过程中,运动员对足球做的功是 J . 【例13】 某人用20N 的力将重为15N 的球推出去后,球在地面上滚动了10m 后停下来,这 个人对球所做的功为( ) A .0 B .200J C .150J D .条件不足,无法计算 【例14】 重为1000N 的小车,在拉力的作用下沿水平地面匀速前进10m ,小车所受阻力为 车重的0.3倍,则拉力对小车做的功为_________J ;小车的重力做的功为 _________J .

北京交通大学信号与系统第四章典型例题

第四章 典型例题 【例4-1-1】写出下图所示周期矩形脉冲信号的Fourier 级数。 t 周期矩形信号 分析: 周期矩形信号)(~t x 是实信号,其在一个周期[-T 0/2,T 0/2]内的定义为 ???>≤=2/ 02/ )(~ττt t A t x 满足Dirichlet 条件,可分别用指数形式和三角形式Fourier 级数表示。 解: 根据Fourier 级数系数C n 的计算公式,有 t t x T C t n T T n d e )(~ 1000j 2/2/0ω--?=== --? t A T t n d e 10j 2/2 /0ωττ 2/2/j 000e )j (ττωω=-=--t t t n n T A 2/)2/sin(00τωτωτTn n A =)2 (Sa 00τωτn T A = 故周期矩形信号)(~ t x 的指数形式Fourier 级数表示式为 t n n t n n n n T A C t x 00j 00j e )2(Sa )(e )(~ωωτωτ∑∑∞ -∞ =∞-∞=== 利用欧拉公式 2 e e )cos(00j j 0t n t n t n ωωω-+= 可由指数形式Fourier 级数写出三角形式的Fourier 级数,其为 ()t n n T A T A t x n 0001 0cos )2(Sa )2()(~ωτωττ∑ ∞ =+= 结论: 实偶对称的周期矩形信号)(~ t x 中只含有余弦信号分量。 【例4-1-2】写出下图所示周期三角波信号的Fourier 级数。 t 周期三角波信号 分析: 周期矩形信号)(~ t x 是实信号,其在一个周期 [-1/2,3/2]的表达式为

超重失重 大量练习题 较难

2014-2015学年度???学校3月月考卷 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.下列关于超重与失重的说法中,正确的是( ) A .超重就是物体的重力增加了 B .失重就是物休的重力减少了 C .完全失重就是物体的重力没有了 D .不管是超重、失重或完全失重,物体所受的重力都不变 【答案】D 【解析】分析:当物体对接触面的压力大于物体的真实重力时,就说物体处于超重状态,此时有向上的加速度;当物体对接触面的压力小于物体的真实重力时,就说物体处于失重状态,此时有向下的加速度;如果没有压力了,那么就是处于完全失重状态,此时向下加速度的大小为重力加速度g . 解答:解:A 、超重是物体对接触面的压力大于物体的真实重力,物体的重力并没有增加,所以A 错误. B 、失重是物体对接触面的压力小于物体的真实重力,物体的重力并没有减小,所以B 错误. C 、完全失重是说物体对接触面的压力为零的时候,此时物体的重力也不变,所以C 错误. D 、不论是超重、失重,还是完全失重,物体所受的重力是不变的,只是对接触面的压力不和重力相等了,所以D 正确. 故选D . 点评:本题主要考查了对超重失重现象的理解,人处于超重或失重状态时,人的重力并没变,只是对支持物的压力变了. 2.下列说法正确的是 A.对运动员“大力扣篮”过程进行技术分析时,可以把运动员看做质点 B.“和谐号”动车组行驶313km 从成都抵达重庆,这里的“313km"指的是位移大小 C.高台跳水运动员腾空至最高位置时,处于超重状态 D.绕地球做匀速圆周运动且周期为24h 的卫星,不一定相对于地面静止 【答案】D 【解析】 试题分析:A 、当物体的形状和大小对研究的问题影响可忽略时,物体就能看出质点,运动员扣篮的技术分析需要研究动作的变化,不能忽略形状和大小,故不能看出质点,选项A 错误。B 、动车行驶的313km 是路程,只有单向直线运动,位移的大小等于路程,选项B 错误。C 、竖直上抛的最高点时0v =,a g =竖直向下,处于完全失重,选项C 错误。D 、只有地球同步卫星相对于地面静止,满足五定(定周期24h T =、定高度 36000km h =、定轨道平面为赤道平面、定线速度、定加速度) ,选项D 正确。故选D 。 考点:本题考查了质点、位移与路程、超重与失重、地球同步卫星。 3.下列关于力的说法中正确的是( ) A .作用力和反作用力作用在同一物体上 B .伽利略的理想斜面实验说明了力不是维持物体运动的原因 C .物体对悬绳的拉力或对支持面的压力的大小一定等于重力 D .两个分力的大小和方向是确定的,则合力也是确定的 【答案】BD

初中化学第四章化学方程式(中)典型例题

第四章 化学方程式?中? ?根据化学方程式的计算? 唐荣德 典型例题 1.实验室用 g 锌跟足量的盐酸反应,可制氢气和氯化锌各多少克? 分析:在化学反应中,反应物与生成物之间的质量比是成正比关系,因此,利用正比例关系,根据化学方程式和已知的一种反应物(或生成物)的质量,可求生成物(或反应物)的质量。 解:设制得氢气的质量为x ,制得氯化锌的质量为y ………设未知量, Zn +2HCl = ZnCl 2+H 2? …………写出正确的化学方程式 65 136 2 …………写出有关物质的质量比, g y x …………写出已知量和未知数 g 7.365=y 136,y =65 g 7.3136?=7?7g …………列比例式,求解 g 7.365=x 2, x =65 g 7.32?=0?1 g 答:制得氢气 g ,氯化锌 g ,………写出简要答案。 2.对于反应:X 2+3Y 2=2Z ,可根据质量守恒定律推知下列说法一定错误的是? AD ? A ? 若X 2的式量为m ,Y 2相对分子质量为n ,则Z 的相对分子质量为?m +3n ? B ? 若m g X 2和n g Y 2恰好完全反应,则生成?m +n ? g Z C ? 若m g X 2完全反应生成n g Z ,则同时消耗?m -n ? g Y 2 D ? Z 的化学式为XY 2 解析:根据质量守恒定律,B 、C 正确。由原子守恒,可得出Z 的化学式为XY 3,故D 错。由题意知,反应物的总质量为m +3n ,而生成物的总质量为2?m +3n ?,显然违背了质量守恒定律,故A 是错的。 答案:AD 。 3.反应:A +3B =2C ,若7 g A 和一定量B 完全反应生成 g C ,则A 、B 、C 的相对分子质量之比为 ( B ) A. 14∶3∶7 B. 28∶2∶17 C. 1∶3∶2 D. 无法确定 解析:由质量守恒定律可知:B 为 g -7 g = g 。再根据化学方程式中各物质的化学计量数之比为粒子数之比,可得出它们的相对分子质量之比为:M A ∶M B ∶M C =715852 13∶∶..=7∶∶=28∶2∶17。 答案:B 。 4.将金属镁和氢氧化镁的混合物在空气中灼烧,混合物的质量在冷却后没有变化,求原混合物中镁元素的质量分数。[已知:Mg(OH)2MgO +H 2O] 解析:根据质量守恒定律,反应前后镁元素的质量不变,混合物总质量不变。剩余物为MgO ,故MgO 中Mg 元素的质量分数即为原混合物中镁元素的质量分数。

超重和失重的典型例题

超重和失重 问题 超重和失重是两个很重要的物理现象。当物体的加速度向上时,物体对支持物的压力大于物体的重力,这种现象叫做超重;当物体的加速度向下时,物体对支持物的压力小于物体的重力,这种现象叫做失重;当物体向下的加速度为g 时,物体对支持物的压力为零,这种现象叫做完全失重。下面通过举例说明超重和失重的有关问题。 【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2): (1)当弹簧秤的示数T 1=40N ,且保持不变. (2)当弹簧秤的示数T 2=32N ,且保持不变. (3)当弹簧秤的示数T 3=44N ,且保持不变. 解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的 作用.规定竖直向上方向为正方向. 当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,则 0/410440211=?-=-=s m m mg T a 由此可见电梯处于静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,则 2 222/2/44032s m s m m mg T a -=-=-= 式中的负号示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升. (3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,则 2 233/1/44044s m s m m mg T a =-=-= 加速度为正值表示电梯的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降. 小结:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态. 【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2) 解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N , (1)在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升 降机应具有向上的加速度 对于重物:F -m 2g=m 2 a 1,则 2 2221/2/10010001200s m s m m g m F a =-=-= (2)当升降机以a 2=2.5m/s 2的加速度加速下降时,重物失重.对于重物, F mg 图1

高中物理功和功率典型例题精析

高中物理功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

第四章:基本平面图形知识点及经典例题

第四章:基本平面图形知识点 一、寻找规律: (1) 2 n n - ◆ 数线段条数:线段上有n 个点(包括线段两个端点)时,共有(1) 2 n n -条线段 ◆ 数角的个数:以0为端点引n 条射线,当∠AOD<180°时, 则(如图)?小于平角的角个数为(1) 2 n n -. ◆ 数直线条数:过任三点不在同一直线上的n 点一共可画(1) 2 n n -条直线. ◆ 数交点个数:n 条直线最多有(1) 2 n n -个交点. ◆ 握手问题:数n 个人两两握手能握(1) 2 n n -次. 二、基本概念 1.线段、射线、直线 (1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段. 线段的特点:是直的,它有两个端点. (2)射线:将线段向一方无限延伸就形成了射线. 射线的特点:是直的,有一个端点,向一方无限延伸. (3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点 把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论: (1)因为AM=BM=12 AB ,所以M 是线段AB 的中点. (2)因为M 是线段AB 的中点,所以AM=BM=12 AB 或AB=2AM=2BM . 3.角 由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边. 角也可以看成是由一条射线绕着它的端点旋转而成的. 一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角. 4.角平分线 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.两点之间的距离 两点之间的线段的长度,叫做这两点之间的距离. 6.直线的性质 经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”. 7.线段的性质 两点之间的所有连线中,线段最短. 三、线段、角的表示方法 线段的记法: ①用两个端点的字母来表示 ②用一个小写英文字母表示 射线的记法: 用端点及射线上一点来表示,注意端点的字母写在前面 直线的记法: ①用直线上两个点来表示 ②用一个小写字母来表示 角的表示:①用三个大写字母表示,表示顶点的字母写在中间:∠AOB ; ②用一个大写字母表示:∠O ; ③用一个希腊字母表示:∠a; ④用一个阿拉伯数学表示:∠1。 四、线段、角的比较 度量法 叠合法 1.作一条线段等于已知线段 作法: O A 顶点 边 边 B a 1 O A 射线OA A B a 直线AB 直线a

超重与失重(高考题及答案详解)

集备:管日权纪殿荣授课日期:2018年5月 超重与失重专题为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态。在箱子下落过程中,下列说法正确的是 A.箱内物体对箱子底部始终没有压力 教学目标:掌握超重失重规律及应用 预习案 1匀加速下降加速度方向() B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 2匀减速下降加速度方向()C.箱子接近地面时,箱内物体受到的支持力比刚投下时大 D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 3匀加速上升加速度方向()3.(11四川19)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为: 打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在 4匀减速上升加速度方向()火箭喷气过程中返回舱做减速直线运动,则 A.火箭开始喷气瞬间伞绳对返回舱的拉力变小 5平抛运动物体()重B.返回舱在喷气过程中减速的住要原因是空气阻力 C返回舱在喷气过程中所受合外力可能做正功 6竖直上抛物体()重D.返回舱在喷气过程中处于失重状态 4.(10浙江14)如图所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。 7人浮在水中不动()重下列说法正确的是 A.在上升和下降过程中A对B的压力一定为零 A 探究案B.上升过程中A对B的压力大于A对物体受到的重力 C.下降过程中A对B的压力大于A物体受到的重力 v B D.在上升和下降过程中A对B的压力等于A物体受到的重力 5.(10海南8)如右图,木箱内有一竖直放置的弹簧,弹簧上方有一物块;木箱静止时弹簧处于压缩状态且物块压在箱顶上。若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为 A.加速下降B.加速上升 1.(09广东8)某人在地面上用弹簧秤称得体重为490N。他将弹簧秤移至电梯内称其体重,t0 C.减速上升D.减速下降 至t3时间段内,弹簧秤的示数如图5所示,电梯运行的v-t图可能是(取电梯向上运动的方向为 正) 2.(08山东19)直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示。设投放初速度

(完整)初三物理_功和功率专题

功和功率 一、知识要点 1、功的定义:物体受到____________且在这个力的________上通过了_______,则这个力对物体做了 功。 2、做功的两个必要因素:①______________________②__________________ 3、做功的过程实质上就是____________________的过程,力对物体做了多少功,就有多少 _________________发生了转化。故可用___________来量度能量转化的多少。能量的单位与功的单位相同,都是___________。 4、功的表示符号:______ 计算公式:_________________ 国际主单位:焦耳(J) 5、功率定义:单位时间内完成的功,叫做功率 6、功率的物理意义:表示______________里做功的________。功率是反映物体做功____________ 的物理量。 7、功率的表示符号:______ 计算公式:_________________ 8、国际主单位:瓦特(W)1 W=________ 常用单位:千瓦________、兆瓦(MW)换算关系:1kW=1000W 1MW=106W 二、知识运用典型例题 1.如图1所示为运动员投掷铅球过程的示意图,下列说法中错误的是 A.在a到b的过程中,运动员对铅球做了功 B.在b到c的过程中,运动员对铅球没有做功 C.在c到d的过程中,没有力对铅球做功 D.在a到c的过程中,铅球的运动状态在不断变化 2:如图所示描述的力,有对物体做功的是() 熊猫用力举着杠铃不动用力拉绳匀速提升重物用力搬石头没搬动用力提着水桶沿水平方向移动 A B C D 3:下列关于力做功的说法,正确的是() (A) 汽车在水平公路上匀速行驶,汽车所受重力对汽车做功 (B) 人提着箱子站在地面不动,手的拉力对箱子没有做功 (C) 过山车向下运动过程中,车上乘客所受重力对乘客没有做功 (D) 人把箱子从二楼提到三楼,手的拉力对箱子没有做功 4.如图所示,在粗糙程度相同的表面上,用大小相等的拉力F,沿不同的方向拉物体运动相同的路程s,则下列关于拉力做功的判断中正确的是() (A) 乙图中的拉力做功最少 (B) 甲图中的拉力做功最少 (C) 甲、乙、丙三种情况下拉力做功一样多 (D) 丙图中的拉力做功最多 S

功和功率典型例题

功和功率 【例2】如图所示,线拴小球在光滑水平面上做匀速圆周运动,圆的半径是1m ,球的质量是0.1kg ,线速度v =1m/s ,小球由A 点运动到B 点恰好是半个圆周。 那么在这段运动中线的拉力做的功是( ) A .0 B .0.1J C .0.314J D .无法确定 【例3】质量为m 的物体,受水平力F 的作用,在粗糙的水平面上 运动,下列说法中正确的是( ) A .如果物体做加速直线运动,F 一定做正功 B .如果物体做减速直线运动,F 一定做负功 C .如果物体做减速直线运动,F 可能做正功 D .如果物体做匀速直线运动,F 一定做正功 【例4】 质量为2t 的农用汽车,发动机额定功率为30kW ,汽车在水平路面行驶时能达到的最大时速为54km/h 。若汽车以额定功率从静止开始加速,当其速度达到v =36km/h 时的瞬时加速度是多大? 【例5】卡车在平直公路上从静止开始加速行驶,经时间t 前进距离s ,速度达到最大值v m 。设此过程中发动机功率恒为P ,卡车所受阻力为f ,则这段时间内,发动机所做的功为( ) A .Pt B .fs C .Pt =fs D .fv m t 【例6】 质量为0.5kg 的物体从高处自由下落,在下落的前2s 内重力对物体做的功是多少?这2s 内重力对物体做功的平均功率是多少?2s 末,重力对物体做功的即时功率是多少?(g 取2 /10s m ) 功和功率针对训练 1.用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升.如果前后 两过程的运动时间相同,不计空气阻力,则 A .加速过程中拉力的功一定比匀速过程中拉力的功大 B .匀速过程中拉力的功比加速过程中拉力的功大

超重与失重教学案例

《超重与失重》教学案例 【教学目标】 一、知识与技能 1、认识超重和失重现象的本质,知道超重与失重现象中,地球对物体的作用力并没有变化; 2、能够根据加速度的方向,判别物体的超重和失重现象; 3、知道完全失重状态的特征和条件,知道人造卫星中的物体处于完全失重状态; 4、运用牛顿第二定律,解释实际中的超重和失重现象。 二、过程与方法 1、经历观看实验,分组实验、讨论交流的过程,观察并体验超重和失重现象; 2、经历探究产生超重和失重现象原因的过程,学习科学探究的方法,进一步学会应用牛顿运动定律解决实际问题的方法。 三、情感态度与价值观 1、通过探究性学习活动,体会牛顿运动定律在认识和解释自然现象中的重要作用,产生探究的成就感; 2、通过运用超重与失重知识解释身边物理现象,激发学习的兴趣,认识到掌握物理规律是有价值的;

3、通过观看有关杨利伟在太空的视频片段,激发学生爱国、爱科学的热情。 页 1 第 【教学的重点与难点】 重点:把超重和失重现象与牛顿运动定律联系起来,探究现象本身和加速度的内在联系。 难点:设计问题梯度,筛选教学资源,设计典型实验,引导学生探究,控制讨论交流时间是本节的难点。 【教学策略】 演示、讨论、讲解、分组实验探究。 【教学用具】 每两位同学一个弹簧秤与一个砝码。 【教学过程】 情景引入:播放杨利伟在太空的工作的视频片段。 航天员杨利伟返回地面后,电视台记者在对他进行采访时,有一段很生动的对话: 记者:当你乘坐飞船升空时,你有什么感觉? 杨利伟:感到有载荷,就是感到胸部受到压力。 记者:压力很大?感到很难受吗? 杨利伟:还可以,不觉得很难受。我们平时训练时,这种压力可达到8个G,说得通俗一点,就等于有8个人压在你的身上。飞船加速上升时,压力没有这么大。

(完整版)高中物理功和功率要点归纳

学习重点: 1、功的概念 2、功的两个不可缺少的要素 3、机械功的计算公式 4、功率的概念及其物理意义 知识要点: (一)功的概念 1、定义: 如果一个物体受到力的作用,并且在力的方向上发生了一段位移,物理学中就说力对物体做了功。 2、做功的两个不可缺少的要素: 力和物体在力的方向上发生的位移。(分析一个力是否做功,关键是要看物体在力的方向上是否有位移) (二)功的公式和单位 1、公式: W=F·Scosα 即:力对物体所做的功,等于力的大小、位移的大小、力和位移夹角的余 弦三者的乘积。 2、功的单位: 在国际单位制中功的单位是“焦耳”,简称“焦”,符号“J” 1J=1N·m(1焦耳=1牛·米) 3、公式的适用条件: F可以是某一个力,也可以是几个力的合力,但F必须为恒力,即大小和方向都不变的力。 4、两种特殊情况:(从A运动到B) (1)力与位移方向相同,即α=0° W=F·S·cos0°=F·S (2)力与位移方向相反,即α=180° W=F·S·cos180°=-F·S 5、公式中各字母的正负取值限制:F和S分别指“力的大小”和“位移的大小”即公式中的F和S恒取正值,α指力和位移之间的夹角,也就是力的方向和位移的方向之间的夹角,α的取值范围是:0°≤α≤180°。 6、参考系的选择: 位移与参考系的选取有关,所以功也与参考系的选取有关。 在中学范围内,计算时一律取地面或相对于地面静止的物体作为参考系。 (三)正功与负功 1、功的正负完全取决于α的大小: (1)当0°≤α<90°时,cosα>0,W>0,此时力F对物体做正功,该力称为物体的“动力”。 (2)当α=90°时,cosα=0,w=0,此时力F对物体做零功,或称力对物体不做功。 (3)当90°<α≤180°时,cosα<0,W<0,此时力F对物体做负功,或称物体克服力F做功,该力称为物体的“阻力”。 2、功是标量,只有大小、没有方向。功的正负并不表示功有方向。 (四)合力所做的功等于各分力做功的代数和。 即:W合=W1+W2+… (五)功率的概念:

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

最新新浙教版七年级上册数学第四章《代数式》知识点及典型例题.docx

新浙教版七年级上册数学第四章《代数式》知识点及典型例题 意义:能把数和数量关系一般化地、简明地表示出来 用字母表示数 举例如用“ a+b=b+a”表示加法的交换律就非常地简洁明了 代数式概念:由数、表示数的字母和运算符号组成的数学表达式称为代数式,这里的运算是指 加、减、乘、除、乘方和开方。特别规定:单独一个数或者一个字母也称为代数式 意义:代数式可以简明地、具有普遍意义地表示实际问题中的量 列代数式:特别注意找规律这种类型的题目 直接代入法 代数式的值 整体代入法 定义:由数与字母或字母与字母相乘组成的代数式叫做单项式。特别规定:单 独一个数或一个字母也叫单项式 代数式 单项式系数:单项式中的数字因数叫做这个单项式的系数 次数:一个单项式中,所有字母的指数的和叫做这个单项式的的次数 整式多项式定义:由几个单项式相加组成的代数式叫做多项式 多项式的项:在多项式中,每个单项式叫做多项式的项 多项式多项式的次数:次数最高的项的次数就是这个多项式的次数 常数项:不含字母的项叫做常数项 多项式的命名:几次几项式 同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项 合并同类项:把多项式中的同类项合并为一项的过程叫做合并同类项 合并同类项 合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母与字母的指 数不变 去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变; 括号前是“—” ,把括号和它前面的“—”号去掉,括号里各项都改变符号 整式的加减 整式加减的步骤:先去括号,再合并同类项 关于整式加减的简单应用:如求图形的面积等 单项式 整式 关于代数式分类的拓展代数式 有理式 多项式 分式 无理式 (被开方数含有字母 )

高一物理超重和失重典型例题解析

超重和失重·典型例题解析 【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图24-1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2): (1)当弹簧秤的示数T 1=40N ,且保持不变. (2)当弹簧秤的示数T 2=32N ,且保持不变. (3)当弹簧秤的示数T 3=44N ,且保持不变. 解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的作用.规定竖直向上方向为正方向. (1)当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,解得这时 电梯的加速度=-=-×=,由此可见,电梯处于a 404104 m /s 012T mg m 1 静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,解得这 时电梯的加速度===-.式中的负号表a 2m /s 22T mg m m s 2232404 --/ 示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升. (3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,解得这时 电梯的加速度==-=.为正值表示电梯a 44404 m /s 1m /s a 3223T mg m 3- 的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降. 点拨:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物

体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态. 【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2) 解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N , 在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升降机应具有向上的加速度 对于重物,-=,所以==-×=; F m g m a a 120010010100m /s 2m /s 221122F m g m -22 当升降机以2.5m/s 2的加速度加速下降时,重物失重.对于重物, m g F m a m 120010 2.5 kg 160kg 3323-=,得==-=.F g a -2 点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变. 【例3】如图24-2所示,是电梯上升的v ~t 图线,若电梯的质量为100kg ,则承受电梯的钢绳受到的拉力在0~2s 之间、2~6s 之间、6~9s 之间分别为多大?(g 取10m/s 2) 解析:从图中可以看出电梯的运动情况为先加速、后匀速、再减速,根据v -t 图线可以确定电梯的加速度,由牛顿运动定律可列式求解 对电梯的受力情况分析如图24-2所示: (1)由v -t 图线可知,0~2s 内电梯的速度从0均匀增加到6m/s ,其加速度a 1=(v t -v 0)/t =3m/s 2 由牛顿第二定律可得F 1-mg =ma 1

高一必修二物理功和功率练习题带答案解析讲解

7.3 功率同步练习题解析(人教版必修2) 1.质量为m的木块放在光滑水平面上,在水平力F的作用下从静止开始运动,则开始运动时间t后F的功率是()。 A. 2 2 F t m B. 22 2 F t m C. 2 F t m D. 22 F t m 2.一辆小车在水平路面上做匀速直线运动,从某时刻起,小车受到的牵引力F和阻力f随时间的变化规律如图所示,则小车所受的牵引力的功率随时间变化的规律是()。 3.近年我国高速铁路技术得到飞速发展,2010年12月3日京沪杭高铁综合试验运行最高时速达到486.1千米,刷新了世界记录,对提高铁路运行速度的以下说法,错误的是()。 A.减少路轨阻力,有利于提高列车最高时速 B.当列车保持最高时速行驶时,其牵引力与阻力大小相等 C.列车的最高时速取决于其最大功率、阻力及相关技术 D.将列车车头做成流线形,减小空气阻力,有利于提高列车功率 4.如图所示是健身用的“跑步机”示意图,质量为m的运动员踩在与水平面成α角的静止皮带上,运动员用力向后蹬皮带,皮带运动过程中受到的阻力恒为f,使皮带以速度v 匀速向后运动,则在运动过程中,下列说法正确的是()。 A.人脚对皮带的摩擦力是皮带运动的动力 B.人对皮带不做功 C.人对皮带做功的功率为mgv D.人对皮带做功的功率为fv 5.一辆小汽车在水平路面上由静止启动,在前5 s内做匀加速直线运动,5 s末达到额定功率,之后保持额定功率运动,其vt图象如图所示。已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,g取10 m/s2,则()。

A.汽车在前5 s内的牵引力为4×103 N B.汽车在前5 s内的牵引力为6×103 N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s 6.纯电动概念车E1是中国馆的镇馆之宝之一。若E1概念车的总质量为920 kg,在16 s内从静止加速到100 km/h(即27.8 m/s)。受到恒定的阻力为1 500 N,假设它做匀加速直线运动,其动力系统提供的牵引力为____N。当E1概念车以最高时速120 km/h(即33.3 m/s)做匀速直线运动时,其动力系统输出的功率为____kW。 7.一辆电动自行车的铭牌上给出了如下技术指标: 规格 车型26型电动自行车 整车质量30 kg 最大载重120 kg 额定输出功率120 W 额定电压40 V 额定电流3.5 A 质量为M=70 kg F f恒为车和人总重的0.02倍,g取10 m/s2。则在电动自行车正常工作时,人骑车行驶的最大速度为多少? 8.图示为修建高层建筑常用的塔式起重机。在起重机将质量m=5×103kg的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a=0.2 m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m=1.02 m/s的匀速运动。取g=10 m/s2,不计额外功。求: (1)起重机允许输出的最大功率; (2)重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率。

第四章基本平面图形典型例题

第四章基本平面图形练习题 典型考题一: 线段的中点问题 1.已知线段AB=10cm,在AB的延长线上取一点C,使AC=16cm,则线段AB的中点与AC的中点的距离为 2.如果A,B,C三点在同一条直线上,且线段AB=4cm, BC=2cm,则那么A,C两点之间的距离为 3.已知线段AB=20cm,在直线AB上有一点C,且BC=10cm,M是线段AC的中点,求线段AM的长. 4.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC的中点. (1)求线段MN的长; (2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗? 典型考题二: 角的平分线问题 1.已知:OC是∠AOB的平分线,若∠AOB=58°,则∠AOC= 2.如图,OC是∠AOB的平分线,OD平分∠AOC,若∠COD=25°,则∠AOB的度数为 3.如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC, (1)求∠MON的度数。 (2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数。 (3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数。 (4)从(1)(2)(3)的结果你能看出什么规律? 4.已知∠AOB=120°,∠AOC=30°,OM平分∠AOC,ON平分∠AOB, (1)求∠MON的度数; (2)通过(1)题的解法,你可得出什么规律? 5.已知∠AOB是一个直角,作射线OC,再分别∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC =70°时,求∠DOE的度数;

高一物理 超重和失重 典型例题解析

超重和失重 典型例题解析 【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图24-1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2): (1)当弹簧秤的示数T 1=40N ,且保持不变. (2)当弹簧秤的示数T 2=32N ,且保持不变. (3)当弹簧秤的示数T 3=44N ,且保持不变. 解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的作用.规定竖直向上方向为正方向. (1)当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,解得这时 电梯的加速度=-=-×=,由此可见,电梯处于a 404104 m /s 012T mg m 1 静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,解得这 时电梯的加速度===-.式中的负号表a 2m /s 22T mg m m s 2232404 --/ 示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升.

(3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,解得这时 电梯的加速度==-=.为正值表示电梯a 44404 m /s 1m /s a 3223T mg m 3- 的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降. 点拨:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态. 【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2) 解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N , 在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升降机应具有向上的加速度 对于重物,-=,所以= =-×=;F m g m a a 120010010100m /s 2m /s 221122F m g m -22 当升降机以2.5m/s 2的加速度加速下降时,重物失重.对于重物, m g F m a m 120010 2.5 kg 160kg 3323-=,得==-=.F g a -2 点拨:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,

相关文档
相关文档 最新文档