文档库 最新最全的文档下载
当前位置:文档库 › 桑塔纳GSI2000数据流分析

桑塔纳GSI2000数据流分析

桑塔纳GSI2000数据流分析
桑塔纳GSI2000数据流分析

桑塔纳2000GSI(AJRM3.8.2)

桑塔纳2000GSI的引擎机型为AJR,控制系统为M3.8.2。选择测试功能,即可读取电脑的运行数据,并以数据组号的形式显示。再根据需要选择不同的

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反 应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如 下: [][][]{}{})()()()(...t p t y K t y C t y M =+? ?????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵; {})(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{} )(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率f (其倒数即自振周期T )、振型Y(i)和 阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统, 结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种 改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就是这样一种方法。其最 大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便 地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测 量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展 也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥 梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态 参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试 法和自由振动法。稳态正弦激振法是给结构以一定的稳态正弦激励力,通过频率扫描的办法 确定各共振频率下结构的振型和对应的阻尼比。 传递函数法是用各种不同的方法对结构进 行激励(如正弦激励、脉冲激励或随机激励等),测出激励力和各点的响应,利用专用的分 析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振 型、频率、阻尼比)。脉动测试法是利用结构物(尤其是高柔性结构)在自然环境振源(如 风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析, 求得结构物的动力特性参数。自由振动法是:通过外力使被测结构沿某个主轴方向产生一定 的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点和局限性。利用共振法可以获得结构比较精确的自振频率和阻 尼比,但其缺点是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较 多的设备和较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对 于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函 数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,是近 年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分 析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或 悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变 化而影响到上部结构的振动(根据动力量测结果,可发现其频谱是相当丰富的,具有不同的

桑塔纳维修手册之全车电路

桑塔纳维修手册之全车电路 图9-131(j) 桑塔纳2000GSi型轿车空调继电器、空调A/C开关、风速开关、鼓风电机、散热风扇、室温开关、进风门电磁阀电路图 E9-风速开关 E30-空调A/C开关 F18-散热风扇热敏开关 F38-室温开关 J32-空调继电器 K48-空调A/C开关指示灯 N23-鼓风电机减速电阻 N63-进风门电磁阀 S1-散热风扇保险丝(不用空调时)(30A) S14-继电器保险丝(20A) S126-空调鼓风电机保险丝(30A)T1-空调鼓风电机线束与仪表板线束插头连接(1针,在中央线路板后面) T2c-空调操纵线束与空调鼓风电

机线束插头连接(2针,在加速踏板上方) T2d-空调操纵线束与空调鼓风电机线束插头连接(2针,在加速踏板上方) T2e-仪表板开关线束与空调操纵线束插头连接(2针,在空调操纵面板后面) T2f-发动机线束与空调操纵线束插头连接(2针,在中央线路板后面)T3f-空调操纵线束与发动机线束插头连接(3针,在中央线路板后面) T29-仪表板线束与仪表板开关线束插头连接(29针,在组合仪表下方) V2-鼓风电机 V7-左散热风扇 V8-右散热风扇 A1-接地连接线(在发动机线束内)①-接地连接线(在发动机控制单元旁车身上)B2-连接线(在前大灯线束内) B3-接地连接线(在前大灯线束内)

图9-131(k) 桑塔纳2000GSi型轿车散热器风扇控制器、压缩机切断继电器、冷量开关、组合开关、空调水温控制开关电路图 E33-冷量开关 F40-空调水温控制开关 F129-组合开关 J26-压缩机切断继电器 J293-散热器风扇控制器 S104-散热器风扇保险丝(高速档使用空调时)(30A) S108-散热器风扇保险丝(低速档使用空调时)(20A) T2g-发动机线束与前大灯线束插头连接(2针,在中央线路板后面) T3f-空调操纵线束与发动机线束插头连接(3针,在中央线路板后面) T4-前大灯线束与散热器风扇控制器插头连接(4针,在散热器风扇控制器上) T8a-发动机线束与发动机右线束插头连接(8针,在发动机舱中间支架上) T10-前大灯线束与散热器风扇控制器插头连接(10针,在散热器风扇控制器上) B5-连接线(在前大灯线束内) B6-正极连接线(在前大灯线束内) B7-连接线(在前大灯线束内)

结构动力分析

【结构工程的软件时代】 结构工程已全面进入软件时代,结构工程师要从繁琐的重复劳动中解脱出来,培养结构概念和体系,锻炼结构整体思维。 《结构概念和体系》是国际著名的结构大师林同炎广为流传的著作。相信大多数从事建筑结构的工程人员都或多或少读过这本书。其实,这本书可以说是结构工程师的必修课。从事结构工作,很重要的一点就是在工作中培养结构概念体系和整体性思维的方法。这对于结构工程师来讲,是十分重要的。 如今的软件技术已相当发达,很多繁琐的工作都可以通过软件完成,甚至于智能化到了“一键式完成”的地步。设想,如果在软件再这么智能化而且功能强大下去,到时候,只要输入基本的设计参数和经济指标,按一个回车键,软件就将建筑方案设计、结构方案设计、施工图设计全部一条线完成出来了,那么对结构工程师来说不是一场灾难嘛。软件取代所有主要工作,技术人员不就要下岗了啊。所以,我认为,从一个角度来讲,结构工程软件时代的到来,意味着结构工程师的一场“危机”。如何在这场即将到来的危机面前“明哲保身”,做软件所不能做到的事情是很关键和重要的,什么最关键而重要,我认为就是结构的概念和体系思维,这个才是将来结构工程师的价值所在,而这恰恰是软件所难以做到的。 闲话暂放,言归正传。这篇博客将粗浅地探讨结构动力学问题的概念和体系问题。之所以关注结构动力学问题,一是因为结构静力学研究已比较成熟,林同炎前辈的《结构概念和体系》一书中已阐明很完善精辟了,二是因为现阶段工程结构抗震问题是研究的热点和前沿,这个时代里不懂工程抗震概念的结构工程师很难成为一个好工程师。 构件→结构→结构体系,整体性思维,需要工程实践的锻炼以及不断思考的积累。在实践中,反复向自己提问是培养结构概念的一个好方法。比如,问自己什么叫振型分解法?有哪些假定?什么叫时程分析法?有哪些优缺点?……这样积累下来,很多概念就越辩越明,结构的概念也就逐渐得到建立。 【结构动力分析的分类】 结构动力分析主要包括:特征值分析、反应谱分析、时程分析三大块。特征值分析也称结构自振特性分析,主要求解结构的自振周期和振型向量。反应谱分析基于振型分解反应谱理论,是一种工程上最常用的计算地震作用下结构动力响应方法,但这种方法只限于线弹性结构,弹塑性阶段振型分解法不再适用。时程分析包括线弹性时程分析和弹塑性时程分析两大类,与振型分解法的主要区别在于采用实测的地震波输入结构计算结构的响应,弹塑性时程分析具体还可分为静力弹塑性时程分析(也称Pushover分析)和动力弹塑性时程分析两类。 上述结构动力分析中,特征值分析和反应谱分析比较常用。而时程分析一般仅针对重要建筑以及体型非常复杂的建筑。小震水准下可进行结构线弹性时程分析,大震水准下需要采用结构弹塑性时程分析方法。现阶段,弹塑性时程分析还属于工程上比较前沿的分析内容,还属于一部分实力较强的设计院和科研机构的“专利业务”。当然,我认为随着结构技术人员水平的不断提高,以及软件技术的发达,结构弹塑性时程分析在将来将会越来越普及,甚至成为结构设计人员的“家常便饭”。 【特征值分析】 特征值分析也称结构自振特性分析,因为在数学上这个问题属于齐次线性方程组特征值的求解问题,故亦称特征值分析。其目的是求解结构的自振周期和振型。以前曾经碰到这样一个很有意思的概念问题:结构的阻尼比越大,那么结构的自振周期是减小还是增大呢?概念不清就很容易产生混乱。其实,结构的自振特性均是指无阻尼自由振动的特性值,因此不存在阻尼的影响问题。还有一个问题就是什么是振型?虽然我们经常提振型这个概念,不少人一时半会答不上来。从概念上讲,振型是结构发生无阻尼自由振动时各质点的相对位移,

弧形闸门静动力特性分析研究

弧形闸门静动力特性分析研究 吴琦斌 摘要:建立了某水电站大型弧形闸门的有限元模型,分析和研究了在闭门挡水状态的闸门主要部件的应力状态和变形情况。并对闸门在考虑流固耦合和不考虑流固耦合两种情况下的自振特性(频率和振型)进行研究。为闸门的结构优化设计提供了依据。 关键词:弧形闸门;静力特性;自振特性;流固耦合 The Radial Gate Static And Dynamic Characteristics Analysis Research Wu qibin Abstract:The finite element model of a hydropower station large radial gate was established. The main components stress and deformation state of gate was analyzed and researched in the condition of closed water retaining. Natural vibration characteristics (frequency and vibration mode) of the gate were performed considering fluid-structure coupling and ignoring fluid-structure coupling. The analysis and research provide the basis for structure optimization design of the gate. Key words: radial gate; static characteristics; natural vibration characteristics; fluid-structure coupling 0 引言 弧形闸门被作为水闸中最简单、经济、灵活的一种门型,得到了广泛的应用。然而在我国几十年的使用过程中,还是出现了不少的问题,通过对闸门的破坏事件[1]统计可知:一方面是由于设计及结构布置的不合理,如按平面体系设计时不能准确反应闸门各构件间的相互联系以及非计算构件在闸门上的作用,使得某些关键部位安全富裕度不够、闸门两侧止水漏水引起的闸门自激振动,支臂刚度较差导致的支臂失稳破坏;传统的闸门大多是按平面结构体系方法进行设计,仅在主框架平面内进行计算,不能全面反映闸门的空间受力情况,会造成闸门强度和整体结构的不协调[2]。 另一方面是由于闸门在启闭及局部开启运行中由于外部激励源的作用而产生振动,当激励源的频率与结构的固有频率接近时,结构会发生共振,造成闸门及周围建筑物的破坏。因此对已设计运行的弧形闸门进行静力及动力特性分析是很有必要的[3]。 1 弧形闸门静力特性分析 1.1有限元模型 弧形闸门主体结构主要由门叶、支臂和支铰三大部分组成。门叶主要由主、次横梁、主、次纵 梁、肋板,上下底梁、边梁等构件组成。支臂用于支承主横梁或者主纵梁,主梁与支臂构成主框架, 它们承受由面板和次梁传递来的自重和水压力等荷载,然后将力传递给支铰,最后通过支铰把力传 递给闸墩。 作者简介:吴琦斌(1989-),男,E-mail:wqb10086 @https://www.wendangku.net/doc/bf13191572.html,

桑塔纳2000全车电路图

一、桑塔纳2000Gsi轿车电气线路图 桑塔纳2000GSi型轿车全车电气线路图如图8-2-16~图8-2-40所示。 图8-2-16 桑塔纳2000GSi型轿车交流发电机、蓄电池、起动机、点火开关电路图 A-蓄电池 B-起动机 C-交流发电机 C1-调压器 D-点火开关 T2-发动机线束与发电机线束插头连接(2针,在发动机舱中间支架上) T3a-发动机线束与前大灯线束插头连接 (3针,在中央线路板后面)②-接地点(在蓄电池支架上)⑨-自身接地-接地连接线(在前大灯线束内)

图8-2-17 桑塔纳2000GSi型轿车点火装置、发动机控制单元、 霍尔传感器、冷却液温度传感器、进气温度传感器电路图 G2-水温表传感器 G40-霍尔传感器 G62-冷却液温度传感器G72-进气温度传感器J220-发动机控制单元 N152-点火线圈 P-火花塞插头 Q-火花塞 S17-发动机控制单元保险丝(10A) T4-前大灯线束与散热扇控制器插头连接(4针,在散热风扇控制器上) T8a-发动机线束与发动机右线束插头连接(8针,在发动机舱中间支架上) T80-发动机线束、发动机右线束与发动机控制单元插头连接(80针,在发动机控制单元上)④-接地点(在 离合器壳上的支架上)⑨-自身接地-连接线(在发动机右线束内)-+5V连接线 (在发动机右线束内)

图8-2-18 桑塔纳2000GSi型轿车发动机控制单元、节气门控制部件、 1、2缸爆震传感器电路图 F60-怠速开关 G61-1、2缸爆震传感器 G69-节气门电位计 G88-节气门定位电位计J220-发动机控制单元 J338-节气门控制部件 T3c-发动机右线束与1、2缸爆震传感器插头连接(3针,在发动机舱中间支架上) T8b-发动机右线束与节气门控制部件插头连接(8针,在节气门控制部件上) T80-发动机线束、发动机右线束与发动机控制单元插头连接(80 针,在发动机控制单元上) V60-节气门定位器-连接线(在发动机右线束内)

桑塔纳2000全车电路图1DOC

桑塔纳2000全车电路图1(DOC)

————————————————————————————————作者:————————————————————————————————日期:

第二节桑塔纳2000轿车电气线路图 一、桑塔纳2000轿车电气线路图概述 桑塔纳2000系列轿车整车电气系统采用中央线路板方式,即大部分继电器和保险丝都安装在中央线路板正面(如图8-2-1和表8-2-1所示),主线来从中央线路板反面接插后通往各用电器(如图8-2-2所示)。中央线路板上标有线束和导线接插位置的代号及接点的数字号。主要线束的插件代号有A、B、C、D、E、G、H、L、K、M、N、P、R。其中R插座插入常火线,R、K、M均为空位插孔。查找时只要根据电路图中导线与中内线路板区域中下框线交点处的代号,就能了解其导线在某个线束中的第几个插头上。 桑塔纳2000系列轿车电路图中的符号说明如图8-2-3所示。 图8-2-1 中央线路板正面布置 1-空位 2-进气歧管预热继电器 3-空位 4-空位 5-空调组合继电器 6-双音喇叭继电器7-雾灯继电器 8-X-接触继电器 9-拆卸保险丝专用工具 10-前风窗刮水及清洗继电器11-空位 12-转向继电器 13-冷却风扇继电器 14-摇窗机继电器 15-摇窗机继电器16-内部照明继电器 17-冷却液位指示继电器 18-后雾灯保险丝(10A) 19-过热保护器20-空调保险丝(30A) 21-自动天线保险丝(10A) 22-电动后视镜保险丝(3A) 表8-2-1 中央线路板上的保险丝(单位:A) 编号名称额定电流编号名称额定电流 1 散热器风扇30 14 鼓风机(空调)20 2 制动灯10 15 倒车灯、车速传感器10 3 点烟器、收音机、钟、车内灯、中 央集控门锁15 16 进气预热器温控开关、怠速切 断电磁阀 15 4 危险报警闪光灯1 5 17 双音喇叭10 5 燃油泵15 18 驻车制动、阻风门指示灯15 6 前雾灯15 19 转向灯10 7 尾灯和停车灯(左)10 20 牌照灯、杂物箱照明灯10

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

沙湾矮塔斜拉桥静动力特性分析(精)

沙湾矮塔斜拉桥静动力特性分析 本文以广州东新高速公路沙湾特大桥矮塔斜拉桥为工程背景,开展矮塔斜拉桥结构性能的分析研究,通过计算沙湾大桥在施工过程中和成桥运营阶段的静、动力响应,掌握了该大桥的受力状态,总结归纳了矮塔斜拉桥的一些结构特性。本文主要工作包括以下几点:(1)运用大型桥梁结构分析软件桥梁博士 V3.03建立沙湾大桥全桥平面梁单元结构模型,详细计算该桥在施工、运营阶段的结构静力力学行为。(2)分析混凝土收缩、徐变等主要时间效应因素对成桥后期结构的影响,计算分析运营阶段活载、风荷载、体系温度变化、温度梯度等各单独工况作用及各种组合下桥梁静力响应。(3)运用大型桥梁结构分析软件MIDAS2006建立沙湾大桥全桥空间梁单元结构模型,计算大桥的自振频率与周期;采用程序的反应谱分析功能计算大桥的振型,完成大桥的初步抗震分析工作。(4)沙湾特大桥采用二次调索施工措施,使得斜拉索在施工阶段的最大应力和最小应力比较均匀。在荷载作用下斜拉索的安全系数接近1.67,小于常规斜拉桥,提高了拉索的利用率。(5)沙湾特大桥的一阶自振周期为3.546s,远小于同等跨度斜拉桥的基本周期。矮塔斜拉桥的自振频率介于连续梁(刚构)与常规斜拉桥之间,属于刚柔相济的桥型。本文通过对沙湾特大桥的静、动力分析,较全面地掌握了该矮塔斜拉桥的力学特性,提出了该类桥梁设计中应注意的关键细节,为今后同类桥梁的设计和施工提供了良好的参考和借鉴。 同主题文章 [1]. 李黎,陈伟,龙晓鸿,胡亮. 四渡河特大悬索桥静力非线性分析' [J]. 华中科技大学学报(城市科学版). 2006.(02) [2]. 何新平. 矮塔斜拉桥的设计' [J]. 公路交通科技. 2004.(04) [3]. 赵卫东. 浅谈做好施工阶段投资控制的方法' [J]. 建筑设计管理. 2010.(01) [4]. 权刚. 特征值区域控制原理及其在电力系统稳定控制中的应用' [J]. 吉林电力. 1988.(Z1) [5]. 王治钧. 谈给排水工程的施工管理' [J]. 广东科技. 2009.(24) [6]. 王俊,刘立新,赵静超. 折线先张预应力混凝土梁施工阶段性能试验研究' [J]. 中外公路. 2009.(06) [7]. 季智敏. 建筑工程施工阶段成本管理与控制探讨' [J]. 中国高新技术

桑塔纳2000AJR发动机构造图解(一般技术文件)

汽车发动机的构造 通常,发动机由包括机体在内的曲柄连杆机构、配气机构、冷却系、燃料供给系、润滑系、进排气系、点火系、起动机等组成。 件。 .

、气缸垫、气缸盖、衬垫、压条、气缸盖罩、气缸体、机油盘衬垫、机油盘(油底壳) 、 曲轴带轮、曲轴正时齿形带轮、曲轴、连杆、卡环、活塞销、活塞环带、活塞、油环、第二道气环、第一道气环、止推环、主轴承轴瓦、飞轮、连杆螺栓、连杆盖

、曲轴正时齿形带轮、中间轴齿形带轮、涨紧轮、凸轮轴正时齿形带轮、正时齿形带、凸轮轴、液压挺柱组件、排气门、进气门、挺柱体、柱塞、单向阀钢球、小弹簧4、托架、回位弹簧、油缸、气门弹簧座锁片上气门弹簧座、气门弹簧、气门杆油封、气门

、温控开关真空接口、温控开关、温控开关曲轴箱和凸轮室通阀、气阀空气滤清器壳体、空气滤清器滤芯、真空软管、阀门、阀门位置真空控制器、进气软管、空气滤清器、化油器、油气分离器、汽油泵、汽油滤清器回油管、供油管 、油箱、快速排气管、细通气管、加油口、汽油滤清器滤芯 、油气分离器滤芯 、空气滤清器、进排气歧管、排气管、前消声器、中间消声器、主消声器、进气预热罩出口、进气预热罩、垫片、排气歧管、进气歧管、进气电预热器

汽油泵为燃料供给系统重要组成部分) 、加油管、快速排气管接口、供油管接口、细通气管接口、回油管接口、防热金属护板、油面传感器插座、油箱体、油面传感器、浮子、集滤器、塑料护板、进油口、出油口、回位弹簧、摇臂、进油单向阀、滤网、邮油单向阀、泵膜 、护罩、电动风扇、带、散热器、从动风扇、水泵带轮、水泵组件、气缸体水道、气缸盖水道、热敏开关、进气歧管出水管、膨胀箱管.冷却液膨胀箱、排气管、冷却液下橡胶软管、冷却液上橡胶软管、电动风扇双速热敏开关、膨胀箱盖

机床动力学特性研究

机床动力学特性研究 摘要 介绍机床主轴系统动力学和基于非线性的数控机床结合部动力学特性的研究进展以及基于空间统计学的机床动力学特性。主轴系统的建模、动态特性的研究方法、轴承参数及加工条件等多种因素对机床主轴动力学特性的影响方面作了系统阐述,简要介绍主轴系统的优化设计方法以及结构改进。由于结合部存在着变刚度、变阻尼、迟滞等非线性行为,因此文章指出只有从非线性动力学角度研究结合部,才能适应研发高档数控机床的需要。并明确了从非线性角度研究结合部的主要研究内容和可以采用的研究方法。 abstract This paper introduces the dynamics of machine tool spindle system and the dynamic characteristics of CNC machine tool joints based on nonlinearity, and the dynamic characteristics of machine tools based on spatial statistics. The main shaft system modeling, the dynamic characteristic research method, the bearing parameter and the processing condition and so on many kinds of factors to the machine tool spindle dynamics characteristic aspect has made the system elaboration, briefly introduced the spindle system optimization design method as well as the structure improvement. Due to the non-linear behaviors such as variable stiffness, variable damping and hysteresis in the joint, it is pointed out that only by studying the joint part from the non-linear dynamics, can we meet the needs of high-end CNC machine tools. And the main research contents and the research methods that can be used are studied from the non-linear angle. 前言:众所周知,在机床加工过程中,振动的危害极大,尤其对于超精密机床。使用金刚石刀具作超精密切削时,要求机床工作极其平稳,振动极小,否则很难保证较高的加工精度和超光滑的表面质量。因此,对机床的动力学分析就成为超精密加工中,保障加工质量的关键技术之一。 通过查阅大量的资料文献发现,目前国内外对机床的主轴、导轨等单个零件的动力学分析有很多,但是对机床整机的动力学研究就相对少很多。有介绍机床整机的动力学分析的也是大概笼统的介绍了下,很少有很详细全面的研究。对于这种情况大致了解了到是因为对机床整机进行动力学分析,因为机床本身的体积很大,很难进行有效的激振,需要考虑的因素较多。例如:机床整机不是一个单一的零件,做动力学分析难度较大;机床整机的体积较大,外界环境的干扰较大;所以做机床整机的动力学分析,想要得到有效的动力学数据,必须合理的设计实验步骤和实验平台。 机床的加工性能与其动力学特性非常密切,其动态性能(振动、噪声及稳定性等)是影响其工作性能及品质质量最重要的性能指标。随着机床向高精度、高表面质量和高生产率方向发展,关于机床的振动问题,近年来备受关注。其加工精度很大程度上取决于加工过程中机床的振动,振动的产生不仅制约了数控机床的生产效率,而且还会在加工工件的表面留下波纹,这大大影响了机床加工精度。因此,对机床的动力学研究一直以来都是一个重要的课题。我国及世界其他国家都在竞相发展以高速、高精、高效为主要特征的超精密机床,对这类机床进行动力学优化就显得更加重要。对于高速精密机床而言,进行机床动力学特性分析,了解机床结构本身具有的刚度特性即机床的固有频率和主振型,将可以避免在使用中因振动造成不必要的损失。

基于ANSYS钢桁架桥的静动力分析

基于ANSYS钢桁架桥的静动力分析 黎波含 华北科技学院 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了空间有限元建模;对桁架桥进行了静力分析和动力分析(模态分析),作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面,在对桁架桥进行模态分析时,主要绘制出了桁架桥的八阶模态振型图,得出一些结论,这些都为桥梁的设计、维护、检测提供了一些技术参数。关键词:ANSYS;钢桁架桥;模态分析;动力特性 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其进行静动力学分析了解其受力特性具有重要的意义。基于此文中对某下承式钢桁梁桥进行了静动力学分析,初步得到了该桥的一些静动力学结果该结果对桥梁的设计、维护、检测具有一定的指导意义。 1工程简介 某一下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。桥面板为0.3米厚的混凝土板,桁架桥的杆件均使用的是工字型截面但型号有所不同,钢桥的形式见图1,其结构简图见

图2 图1 图2 刚桁架桥简图 所用的桁架杆件有三种规格,见表1 表1 钢桁架杆件规格 杆件截面号形状规格 端斜杆 1 工字形400X400X16X16 上下弦 2 工字形400X400X12X12 横向连接梁 3 工字形400X400X12X12 其他腹杆 4 工字形400X300X12X12 所用的材料属性见表2 表2 材料属性 参数钢材混凝土弹性模量EX 2.1×1011 3.5×10 泊松比PRXY 0.3 0.1667 密度DENS 78502 2500 2 模型构建 将下承式钢桁梁桥的各部分杆件,包括上弦杆、下弦杆、腹杆、

结构动力特性试验

第七章结构动力特性试验 7.1概述 建筑结构动力特性是反映结构本身所固有的动力性能。它的主要内容包括结构的自振频率、阻尼系数和振型等一些基本参数,也称动力特性参数或振动模态参数。这些特性是由结构形式、质量分布、结构刚度、材料性质,构造连接等因素决定,但与外荷载无关。 建筑结构动力特性试验量测结构动力特性参数是结构动力试验的基本内容,在研究建筑结构或其他工程结构的抗震、抗风或抗御其它动荷载的性能和能力时,都必须要进行结构动力特性试验,了解结构的自振特性。 1.在结构抗震设计中,为了确定地震作用的大小,必须了解各类结构的自振周期。同样,对于已建建筑的震后加固修复,也需了解结构的动力特性,建立结构的动力计算模型,才能进行地震反应分析。 2测量结构动力特性,了解结构的自振频率,可以避免和防止动荷载作用所产生的干扰与结构产生共振或拍振现象。在设计中可以便结构避开干扰源的影响,同样也可以设法防止结构自身动力特性对于仪器设备的工作产生干扰的影响,可以帮助寻找采取相应的措施进行防震,隔震或消震。 3.结构动力特性试验可以为检测、诊断结构的损伤积累提供可靠的资料和数据。由于结构受动力作用,特别是地震作用后,结构受损开裂使结构刚度发生变化,刚度的减弱使结构自振周期变长,阻尼变大。由此,可以从结构自身固有特性的变化来识别结构物的损伤程度,为结构的可靠度诊断和剩余寿命的估计提供依据。 建筑结构的动力特性可按结构动力学的理论进行计算。但由于实际结构的组成,材料和连接等因素,经简化计算得出的理论数据往往会有一定误差。对于结构阻尼系数一般只能通过试验来加以确定。因此,建筑结构动力特性试验就成为动力试验中的一个极为重要的组成部分,而引起人们的关注和重视。 结构动力特性试验是以研究结构自振特性为主,由于它可以在小振幅试验下求得,不会使结构出现过大的振动和损坏,因此经常可以在现场进行结构的实物试验,正如本章所介绍的试验实例。当然随着对结构动力反应研究的需要,目前较多的结构动力试验,特别是研究地震,风震反应的抗震动力试验,也可以通过试验室内的模型试验来测量它的动力特性。 结构动力特性试验的方法主要有人工激振法和环境随机振动法。人工激报法又可分为自由振动法和强迫振动法。 人工激振法是一种早期使用的方法,试验得到的资料数据直观简单,容易处理;环境随机振动法是一种建立在计算机技术发展基础上采用数理统计处理数据的新方法,由于它是利用环境脉动的随机激振,不需要激振设备,对于现场测试特别有利。以上任何一种方法都能测得结构的各种自振特性参数,由于计算机技术的发展和数据分析专用仪器的普及使用,为各种方法所测得的资料数据提供了快速有效的处理分析条件。 7.2人工激振法测量结构动力特性 7.2.且结构自振频率测量 一、自由振动法 在试验中采用初位移或初速度的突卸或突加荷载的方法,使结构受一冲击荷载作用而产生自由振动。在现场试验中可用反冲激振器对结构产生冲击荷载;在工业厂房中可以通过锻锤、

桑塔纳2000系列知识

桑塔纳2000系列虽已停产,但以他的经济耐用一直受到广大用户的称赞,也是 二手市场的抢手货。 桑塔纳2000系列有很多车型,外型又基本相似,以致很多用户也搞不清楚自己开的是哪种型号,许多想够买的爱车族也常辨别不清,上当的也不在少数,特 发此贴供大家参考。 1.桑塔纳2000化油器车型,普桑JV化油器发动机,尾标GLS,1996年4月投放市场。桑塔纳2000GLI 车型,俗称小电喷,在普桑JV发动机上加装电喷装置,发动机型号为AFE,尾标GLI。GLS、GLI两车型的前门窗都有三角玻 璃,保险杠与车身不同色。 2.桑塔纳2000时代超人,编号为SVW7182CFI(包括98款、00改款),尾标GSI,1998年3月投放市场,发动机型号为AJR,从时代超人起前门窗玻璃为整块,保险杠与车身同色,00改款于00年7月投放市场,仪表为蓝色。桑塔纳2000俊杰,编号为SVW7182EFI,发动机型号为AYJ,尾标GSI,4挡自动,前翼子板有AT标志,方向盘中间有VW金属标志,空调开关为旋纽,仪表为蓝色,尾标GSI,00年11月上市。 3.桑塔纳2000自由沸点,00年8月上市,应该为00改款时代超人的简配, 保险杠与车身不同色。 4.桑塔纳2000时代超人01改款,编号为SVW7182GFI,发动机型号为AYJ,尾标1.8,01年下半年投放市场,该款车型是在原桑塔纳2000时代超人的基础上作了12项技术改进而成的01款汽车的改进项目主要有:在车身前围板、车顶、地板、轮罩等处作了减噪处理,令汽车行驶噪声更低;增加了遥控功能,通过遥控发射器开启或锁紧汽车所有门锁;座椅及门内饰板采用了新面料;增加左脚搁脚板;采用新换档机构、新款组合尾灯、新造型方向盘(方向盘中间 有VW金属标志)等等。 5.桑塔纳2000时代骄子,编号为SVW7182HFI,发动机型号为AYJ,尾标1.8T,02年6月投放市场,三幅方向盘带气囊,同原有车型比较,时代骄子在舒适性、安全性、产品外观的时尚性以及产品的质量四 个方面都有了重大突破。它应用了往往只在中高档汽车才装备的发动机液压支 承,提高了驾乘的舒适 性,并提升了发动机的可靠性和使用寿命。先进的三锥面同步器,使一、二档换档轻便自如。前保险杠横梁、前纵梁等车身结构的优化,提高了碰撞时整车安全性能。内饰面料则采用新的针织方法,手 感质感更佳、内饰图案活泼明快。空调旋转面板由原来的拨杆式改为旋转式操纵结构,美观大方,操作更加可靠。车内改进的遮阳板、新造型的三辐条方向盘以及中央通道和换档结构,造型时尚、富有现代感。 6.桑塔纳2000时代阳光编号为SVW7182JFI,4挡自动,发动机型号为AYJ,尾标1.8,03年上市。时代阳光的变化和进步不仅仅在装配了天窗上,上海大众还运用了大量新技术、新装置,使得时代阳光外观小改,内在全新。首先,动力系统全面升级,采用了新一代电子控制系统;其次,优化过的空调系统、

结构动力学概念题

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。 有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义

110kV耐张角钢塔ANSYS静动力特性分析

110kV耐张角钢塔ANSYS静动力特性分析 随着输电线路电压等级的提高,对输电线路杆塔系统的静态和动态稳定性提出了更高的要求。本文基于已有设计杆塔图纸中角钢类型繁多,建模复杂等特点。为了缩短建模周期,提高建模质量,本文运用新的建模方式对架空输电杆塔进行建模。通过对华南沿海区域110kV耐张角钢塔的有限元建模和动静力分析,证明了该有限元建模方法的有效性和可行性。 标签:输电杆塔;角钢;有限元建模 随着我国经济建设的快速发展[1],电力作为我国一项基本工业,其发展的速度直接影响、制约着其他产业的发展。现阶段,架空输电杆塔已经成为各国电力供应最重要的载体。作为高负荷的电能输送载体的输电线路体系,对国家经济生产和维持人民群众的日常生活正常运行担负着非常重要作用。 1、输电杆塔ANSYS建模 1.1输电杆塔建模的基本步骤 该110J2J604型耐张输电杆塔塔高41.3m,根开9.8m,结构全采用角钢。此输电塔共采用了2种钢材,分别为Q235,Q345。 本文采用桁梁混合模型对输电杆塔进行建模。由于模型中角钢种类多达30余种,不适合直接将输 电杆塔几何模型直接导入有限元软件。 有限元建模具体的实施步骤如下: a)根据设计的施工图纸建立三维几何模型,并获取几何模型的节点坐标; b)通过关键点在ANSYS中建立输电杆塔有限元模型; c)加载求解。 1.2采用的单元类型[2] 杆单元用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不能承受弯矩,节点只有平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应力刚化(也称几何刚度、初试应力刚度等)等功能。 LINK180无实常数型初应变,但可以输入初应力文件,可考虑附加质量;

桑塔纳2000维修手册第9章3电气

第七节全车电路桑塔纳轿车的各种线束布置如图9-114~图9-126所示。 图9-114 发动机室左侧线束布置 图9-115 发动机室照明线束布置 图9-116 发动机室线束布置

图9-117 车速里程表传感器布置 图9-118 仪表板线束布置 图9-119 仪表板线束布置

图9-120 仪表板线束布置 图9-121 门内线束布置

图9-122 门内线束布置 图9-123 车内线束布置

图9-124 车后部线束布置 图9-125 行李箱盖线束布置

图9-126 内部照明灯线束布置 桑塔纳2000系列轿车整车电气系统采用中央线路板方式,即大部分继电器和保险丝都安装在中央线路板正面(如图9-127和表9-8所示),主线来从中央线路板反面接插后通往各用电器(如图9-128所示)。中央线路板上标有线束和导线接插位置的代号及接点的数字号。主要线束的插件代号有A、B、C、D、E、G、H、L、K、M、N、P、R。其中R插座插入常火线,R、K、M均为空位插孔。查找时只要根据电路图中导线与中内线路板区域中下框线交点处的代号,就能了解其导线在某个线束中的第几个插头上。 桑塔纳2000系列轿车电路图中的符号说明如图9-129所示。 为了识读电路,现以图9-130为例进行说明: (l)整车电气系统正极电源分三路:标有“30”的为常火线,电压为12V,即与蓄电池直接相连,中间不经过任何开关,不论是停车时或发动机处于熄火状态均有电。专供发动机熄火时也需用电的电器使用,如停车灯、制动灯、报警灯、顶灯、冷却风扇电动机等;标有“15”的为小容量电器火线,它是在点火开关接通后方能有电的火线;标有“X”的为车辆起步时方可接通的大容量电器用火线。 (2)搭铁线也分三路:标有“①”的为搭铁线;标有“②”、“③”、“④”的为中央线路板搭铁线;标有“①”的为尾灯线束搭铁线。而标有“31”的为中央线路板内搭铁线。

相关文档
相关文档 最新文档