文档库 最新最全的文档下载
当前位置:文档库 › 纳米金属镍粉催化剂的制备及其后处理

纳米金属镍粉催化剂的制备及其后处理

纳米金属镍粉催化剂的制备及其后处理
纳米金属镍粉催化剂的制备及其后处理

纳米金属镍粉催化剂的制备及其后处理

李茸,刘祥萱,王煊军

(西安高科技研究所503室,陕西西安710025)

摘要:过渡金属镍纳米粉体是未来最有前途的新型催化剂之一,尤其在军事领域日趋重要。制备方法和工艺是决定纳米镍粉的组成、结构和性质的主要因素。而后处理是解决目前纳米镍粉大规模工业化应用的关键技术。本文综述了近年来国内外应用较多的纳米镍粉的制备方法,分别就气相法、液相法和固相法中纳米镍粉具体制备方法的优缺点和应用现状进行了评述;介绍了纳米镍粉后处理在实际应用中的重要性,并详尽评述了纳米镍粉的纯化、分散和表面保护等后处理的具体技术方法;最后对纳米金属镍粉制备的发展趋势给出了自己的观点。

关键词:过渡金属;纳米镍粉;制备;后处理;催化剂

中图分类号:O643;T Q246文献标志码:A

纳米级过渡金属镍粉催化剂粒径处于1~ 100nm范畴,由于其有极高的表面活性,在提高催化反应效率、优化反应途径、提高反应速度方面的研究是未来催化学的重要研究课题。研究结果表明,纳米镍金属粒子及其合金等金属粉作为催化材料在军民领域中显示出优异的催化活性和选择性。在加氢脱氢、偶联、氧化、有机合成、岐化反应等过程有着广泛的应用[1-4];而在火箭发射用的固体燃料推进剂中,如添加质量分数约1%的纳米镍微粒,每克燃料的燃烧热可增加1倍[5]。纳米催化材料的性能取决于几个重要因素:晶粒大小及分布,化学组成,界面或表面的存在及其结构特征(颗粒间界、晶面间界、杂质原子、结构缺陷等),组分间或相间的相互作用,而这些因素最终取决于化学组成及其制备方法[6]。本文较为详实地评述了应用较多的纳米镍粉制备方法以及粉体的纯化、分散和表面保护等后处理方法,并对纳米金属镍粉制备工艺的发展趋势进行了展望。

1纳米金属镍粉的制备

制备纳米粒子基本的原理,一是将大块的固体分裂成纳米粒子,二是在形成颗粒时控制粒子的生长,使其维持在纳米尺寸。按照原始物质的状态进行分类,则可以分为气相法、液相法和固相法。

111气相法

气相法是直接利用气体或利用各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成微粒的方法。制备纳米镍粉的气相法主要有金属丝电爆破法、羰基镍热分解法、蒸发-冷凝法等。气相法的优点是制备的纳米微粒细、分散性好、粒径分布窄;缺点是投资大、设备复杂、生产过程控制困难,不宜大规模生产。

金属丝电爆破法该方法制备纳米镍粉是在一定的气体介质环境下,通过沿金属Ni丝轴线方向加直流高电压,在原料丝内部形成很高的电流密度(107A/cm3),使之爆炸获得10~100nm的Ni粉。T epper[7]在氩气中对金属丝施加高能电脉冲产生爆炸,获得了高活性、内部有晶格缺陷、可自燃的球形纳米Ni粉。此方法能量转化率高,易于工业化,但所制备粉体粒径分布较宽。

羰基镍热分解法其主要反应为:Ni+CO(g) y Ni(CO)4,可制备粒径在30~300nm的Ni 粉[8-9]。工艺流程可概括为3个过程:羰化合成y精馏y热分解。羰化合成过程主要制备出粗产品,精馏则是利用羰基金属沸点的差异性使Ni(CO)4挥发出来,从而制出较纯产品,热分解过程是通过控制热分解参数来制备不同性能的镍粉。此法制备出的镍粉具有纯度高,分散性好,化学活性高的特点,已在工业上得到大量应用,但Ni粒径较大。

蒸发-冷凝法用电弧、高频或等离子体将原料加热,使之气化或形成蒸气,然后骤冷,使之凝结成纳米粒子,通过采用通入惰性气体,改变压力的办法来控制微粒大小。胡志华等[10]用氢、氩混合直流电弧等离子体法制得5~50nm Ni粉。该法生产效率低,颗粒易氧化,设备复杂,技术要求高,成本昂贵,难以实现工业化生产。

112液相法

80年代以来,随着对材料性能与结构关系的深入研究,出现了依据化学手段,在不需要复杂仪器的前提下,通过简单的溶液过程实现纳米/超结构过程0的基本途径,即液相法。其中溶胶-凝胶法、电化学法、微乳液法和常温液相化学还原法具有工艺简单和产物的粒径、分布、形貌、纯度易控制等特点,备

#

86

#5新技术新工艺6#材料与表面处理技术2007年第9期

受关注,C射线辐射法和超声雾化-热分解法的技术难度高,目前不宜工业化。

溶胶-凝胶法低温下,将金属镍的醇盐或无机盐在溶液经水解、聚合先生成溶胶,再生成具有一定空间结构的凝胶,最后将凝胶干燥、焙烧,得到纳米Ni粉的方法称为溶胶-凝胶法。Chatterjee[11]采用此法制备出5~11nm的Ni粉。此方法反应温度低,产物颗粒小,粒度分布窄,纯度高,组成精确,但是由于用金属醇盐作原料,成本高,有污染。

微乳液法利用在微乳液的乳滴(8~80nm)中化学反应生产固体,以制得所需的纳米Ni粒子。刘艳真,张景林等[12]用超声波的空化作用在微乳液体系(含还原剂)下制备平均粒径分布30~40nm 的高纯度Ni粉。Chen[13]等在水/CTBA/正己醇微乳液体系中分别用N aBH4和水合肼还原Ni2+,得到5~50nm的Ni粉。由于微液滴极其微小,生成的Ni颗粒也非常微小且均匀。此法的特点是:试验装置简单,能耗低,操作容易,反应物浓度容易控制;可控制成核获得各种粒径的单分散纳米Ni粒子。

电化学法电化学法有电解法、化学镀法和电沉积法等。前者包括水溶液和熔盐电解方法,后者包括直流电沉积、脉冲电沉积、喷射电沉积等。M-i shra等[14-16]分别利用以上方法制备了20nm,16nm 或有机物包覆的Ni粉,由于电化学方法耗能较高,所以发展受到一定限制。

常压液相还原法该法属于湿法化学法的一种,在可溶性镍盐溶液中利用还原剂还原Ni2+,产物经分离、洗涤、干燥后即得纳米镍粉。目前较多的无机还原剂有氢气、硼氢化钠、水合肼等,有机还原剂有乙二醇、1,2丙二醇、一缩乙二醇等。谈玲华,李勤华等[17]用水合肼作还原剂的液相还原法制备了平均粒径为50nm的Ni粉,陈宏等[18]采用次磷酸钠为还原剂,制得直径为5~10nm N-i P非晶态粉末,同时回收利用镍资源,解决了化学镀镍废液污染。该方法具有工艺简单,产物粒径、形貌、纯度、性质易控等特点,目前备受人们的关注。

在制备过程中加入一定量的表面修饰剂如聚乙烯吡咯烷酮(PVP)等可以控制粒子的形状,改善其分散性,提高表面活性,使微粒表面产生新的物理、化学、机械性能及新的功能,还可以改善与其他物质之间的相容性。

C射线辐照法基本原理是:水经C射线辐射产生初级产物,Ni2+离子通过溶剂辐射分解所产生的还原性活性粒子逐级还原生成镍原子,新生成的镍原子聚集成核,最终生成纳米Ni颗粒,故无需化学还原剂。Kapo oer等[19]、陈祖耀等[20]采用此法制备了粒径范围在5~20nm的N i粉。此法技术难度较大,所以较少使用。

超声雾化-热分解法目标前驱体经过超声雾化器产生微米级雾滴并被载气带入高温反应器中发生热分解,得到均匀粒径的纳米Ni金属。Xia 等[21-22]利用该法分别制备了50nm的球形和纤维状纳米镍。此法技术难度较大,所以较少使用。113固相法

固相法包括固相物质热分解法和物理粉碎法。固相物质热分解法是利用金属Ni化合物的热分解来制备超微粒Ni,但其粉末易固结,还需再次粉碎,成本较高。物理粉碎是通过机械粉碎、电火花爆炸等法制得纳米Ni粒子,其原理是利用介质和物料间相互研磨和冲击,以达到微粒的超细化。但此法很难使粉体粒径小于100nm,只有采用强化或某些化学、物理手段,才能获得纳米粒子。在特定氩气气氛中通过机械球磨无水NiCl2与Na或M g,由固态置换反应制备纳米镍粉,粒径可达到7~13nm。用粉碎方法操作比较安全、简单,但容易引入杂质,纯度低,易使金属氧化,且存在颗粒不均匀和难以控制形态等弊端,故固相法还有待继续深入研究。

2纳米金属镍粉的后处理

对于纳米金属催化剂而言,极少的某种杂质都会引起严重的催化剂中毒,比如纳米金属镍催化剂的杂质会影响固体推进剂的燃烧催化性能,使燃烧不稳定,严重危胁火箭运行的安全。由于纳米颗粒的表面能很高、表面活性大,表面容易发生氧化甚至自燃等钝化反应,以单个颗粒形式存在时,处于不稳定状态,颗粒之间往往会自动相互吸引靠近以使自身转变成稳定状态,而引起纳米颗粒发生团聚。无论是钝化还是团聚都极易使得颗粒表面能降低,表面活性降低,因此,在制备纳米金属镍粉的过程中或制备完成后必须立即进行相应的粒子纯化、分散与表面改性保护等后处理,去除杂质,使其既能稳定地保持以单个颗粒存在而不发生团聚,又使每个颗粒能保持很高的表面能与表面活性,提高其实际使用效果[23]。

211纯化

纳米金属镍粉主要采用物理方法进行纯化。物理纯化分离过程可根据纳米粒子混合体系不同分为固-固分离、液-固分离、气-固分离3种分离形式。

固-固分离根据镍粉与杂质的不同物理性质如:磁性、电性、密度、硬度、粒度大小、颗粒形状等对镍粉进行纯化处理。含有磁性或可磁化的杂质,可采用吸铁石吸附的原理除杂;含有非磁性的杂质粉

#

87

#

5新技术新工艺6#材料与表面处理技术2007年第9期

体,可利用金属颗粒密度较大的现象,采用离心分离或旋风分离的方法纯化主体粉体;对于粒度处于期望粒度之外的粉体颗粒可采用多级筛分的方法获得粒度分布在既定范围的纳米镍粉。

液-固分离主要用于湿法制备的镍粉与液体分散质的分离,根据基本分离作用力不同产生的分离方式有:沉降分离、悬液分离、离心分离、抽滤或压滤分离、微孔陶瓷管蕊过滤分离及膜分离等。

气-固分离以气体为介质制备纳米镍粉,需要进行气-固分离纯化处理,其基本原理仍然是重力分离纯化和离心力分离纯化以及过滤分离纯化,而经典分离纯化则是利用电场力进行分离,采用的主要方法有:旋风分离、离心分离、过滤分离和静电吸附。212分散[24]

纳米金属镍粒子的团聚一般分为2种:软团聚和硬团聚。软团聚主要是由于颗粒间范德华力、静电力、毛细管力等较弱的力所致,其他外力作用下易于拆开;硬团聚主要是原料在煅烧或高温处理过程中由于产生较强的化学键合作用所引起,一般外力作用难以拆开。实际生产中粉体的分散常将物理分散和化学分散结合起来。

物理分散在机械力作用下实现纳米镍粉在液相中的分散。一旦机械力作用停止,颗粒间又会由范德华力聚集起来。常用的有机械搅拌分散、超声波分散或喷雾干燥等。

机械搅拌分散主要是借助外界剪切力或撞击力等机械能使纳米粉体在介质中充分分散的一种方法,也是一种目前应用最为广泛的分散方法。但是搅拌会造成溶液飞溅,使反应物损失。

超声波分散是将需要处理的Ni颗粒悬浮体直接置于超声场中用适当频率和功率的超声波在恰当时间内加以处理,是一种强度很高的分散手段。但由于能耗大,大规模使用成本太高,因此目前在实验室使用较多,不过随着超声技术的不断发展,超声分散在工业中应用是完全可能的。刘艳真等利用超声波空化作用制备出30~40nm镍粉[25]。

喷雾干燥法使纳米Ni粉溶液高速通过一个很细的喷嘴,使其分散成非常细小的雾状液滴,再喷入高温热气流中,溶剂迅速蒸发并经过分离装置后被排除,溶质则以纳米N i微粒的形式析出。此法工艺简单,所制粉体化学均匀性好、重复性好,并呈球形颗粒,目前该方法国内还未实现产业化。

化学分散实质是利用表面化学方法改变颗粒与液相介质、颗粒与颗粒间的相互作用,极大地增强颗粒间的排斥作用能,达到分散效果,主要方法为分散剂分散和偶联剂分散。

分散剂分散利用表面活性剂(分散剂)的羧基、醚基、或金属盐等极性基团吸附改变金属Ni2+的表面电荷分布,产生静电稳定和空间位阻稳定作用或氢键作用来达到分散效果。李鹏等[26]用聚乙烯吡咯烷酮PV P做保护剂控制纳米晶生长,制备出25nm Ni粉。殷波[27]研究发现乙醇溶剂中带有负电荷的油酸利用静电位阻作用使表面带有正电荷的纳米Ni有较好分散效果。这种方法的优点是操作简单,但通过物理吸附或氢键作用的改性界面不稳定,改性剂容易从镍粉表面剥离从而失去改性效果。

偶联剂分散是利用偶联剂的2种不同反应基团,形成有机相-偶联剂-有机相的结合层,从而提高纳米Ni粉体在有机相中的分散稳定性,使聚合物与无机材料界面间获得较好的黏接强度。常用偶联剂有硅烷、铝酸酯、钛酸酯等。王威娜等[31]用硅烷偶联剂(KH-550)对纳米Ni粉进行改性,其分散性明显提高。

213表面保护[28-29]

通常,对活性纳米Ni微粒进行保护的方法有: 1)在贮存纳米材料的瓶子或袋子里充上惰性气体如氩气、氮气等,密封保存;2)与黏合剂或增塑剂贮存,这样使用时较方便,也保护了粒子表面;3)利用表面处理剂对纳米Ni表面改性。

表面改性是根据实际需要对粉体的表面特性进行物理、化学、机械等深加工处理,控制其内应力,增加粉体颗粒间的斥力,降低粉体颗粒间的引力,使粉体的表面物理、化学性质发生变化,提高其活性和适用性,从而赋予纳米粉体新的功能,并使物性得到改善。包括偶联剂法、酯化反应和表面接枝改性法。李红霞等[30]用硬脂酸包覆镍粉对其进行改性,包覆样品的分散性、耐酸性、疏水性明显优于未包覆的镍粉。王威娜等[31]用硅烷偶联剂(KH-550)对纳米Ni 粉进行改性,结果表明经改性的纳米镍粉具有很好的抗氧化性,用这种粉体制备的涂层的电导率比用未改性粉体制备的涂层的电导率明显提高。

3展望

关于纳米金属镍催化剂制备的研究,虽然已经取得一定的成果,但无论在理论上和实践上都还存在许多问题有待研究,比如,如何有效地保持其活性等是在制备和应用中都面临的严峻问题;对合成纳米镍催化剂的过程机理,对控制微粒的形状、分布、粒度等技术和纳米微粒的收集、存放问题缺乏深入研究;多数制备的技术成果仅停留在实验室和小规模生产阶段,缺乏对规模生产所涉及工程技术的认识,因此从实验室走向工业化尚需进一步努力。在

#

88

#5新技术新工艺6#材料与表面处理技术2007年第9期

积极探索解决这些问题的方法和途径的基础上,今后纳米金属镍粉制备研究的重点在以下几个方面[32]:

1)在镍粉制备过程中如何有效地防止颗粒团聚,如何控制镍粉分布,防止产品镍粉的氧化,在现在的基础上获得有效的分离技术;

2)把目前的制备方法转化为工业规模生产,拓展其应用的关键是降低成本;

3)将几种不同的方法按各自的优点组合起来形成新的方法,新方法具备其所含个体没有的优点;

4)制备方法逐渐向清洁,能耗少,对环境无污染的方向改进。

[参考文献]

[1]Brao s G P,M air elles T P,Rodriguez C E,et al.Gas-phase hyddro genatio n o f acet onitr ile o n zir co nium-doped me-so po rous silica-suppo rted nickel cat alysts[J].Jo urnal o f M o-lecular Catalysis A:Chem ical,2003,193:185.

[2]Gao Jing-zhang,G uan Fei,Zhao Yan-chun,et al.Pr epar a-t ion of ultraf-ine nickel pow der and it s cataly tic dehydrog ena-t ion activ ity[J].M aterials Chemist ry and Physics,2001, 71:215.

[3]M ichio N o da,Sum io Shinoda,Yasukazu Sar ro.L iquid-phase dehydr ogenatio n of2-pr opano l by suspended nickel fine-par ticle catalyst[J].Bull.Chem.So c.Jpn.,1988,61(3).

[4]江治.纳米金属分的制备及特性[J].固体火箭技术, 2001,24(4):41-45.

[5]张富捐.纳米催化剂研究进展[J].许昌学院学报,2004, 23(5):38-40.

[6]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.

[7]T epper F.Nannosize pow der s pro duced by elect ro-ex plo-sio n o f wire and their pot ential applicatio ns[J].P ow der M et-all,2000,43(4):320-322.

[8]王炳根.国内外羰基镍粉的发展!生产及应用[J].四川有色金属,1997,4:6-10;33.

[9]屈子梅.羟基法生产纳米镍粉[J].粉末冶金工业,2003, 13(5):16-19.

[10]胡志华.纳米镍粉的制备工艺研究[J].西华大学学报, 2006,25(2).

[11]Chatterjee A,Chakrav or ty D.Preparat ion of nickel nan-o par ticles by metalo rg anic r oute[J].A pplied P hysics,1992, 60(1):138-142.

[12]刘艳真.超声波在纳米镍粉制备中的应用[J].化学工业与工程技术,2005,26(3).

[13]Chen D W,Wu S H.Synthesis of nickel nanoparticles in water-in-oil micro emulsions[J].Chen M ater,2000,12(5): 1354-1360.[14]M ishra R S,V aliev R Z,M cfadden S X,et al.Sever e p-astic defo rmatio n pro cessing and high st rain rate superplas-ticit y in an aluminum matr ix com posite[J].Scr ipt a M ater ia-lia,1999,40(1):1151-1155.

[15]王立平.电沉积镍纳米晶体材料制备及性能[J].电镀与涂饰,2004,23(3):1-2,5.

[16]何峰.制备超细金属粉末的新型电解法[J].粉末冶金技术,2001,19(2):80-82.

[17]谈玲华.纳米镍粉的制备及其催化性能研究[J].固体火箭技术,2004,27(3).

[18]陈宏.化学镀方法制备纳米铜粉及镍2磷粉[J].电镀与精饰,2002,24(3):1-4.

[19]K apo or S,Salunke H G,T r ipathil A K,et o l.Rasio lyt ic preparation and cataly tic propert ies o f nanophase nickel met-al part iclo es[J].M aterials Research Bulletin,2000,35: 143-148.

[20]陈祖耀.C-射线辐照从水溶液环境中制得金属镍超细分的晶粒度和磁学性质[J],化学物理学报,1997,10(1): 26-30.

[21]Xia B,L eng go ro I W,O kuyama K.P reparatio n o f Ni particles by ultrasonic spray py rolysis of N iCl2.6H2O pre-cur sor containing ammonia[J].J M ater Sci,2001,30: 1701-1705.

[22]邬建辉,张传福.纤维状纳米级镍粉制备的前驱体热分解[J].有色金属,2003,55(4):24-27.

[23]李凤生.微纳米粉体后处理技术及应用[M].北京:国防工业出版社,2005.

[24]盖国胜.超微粉体技术[M].北京:化学工业出版社,2004.

[25]刘艳真,张景林.超声波在纳米镍粉制备中的应用[J].化学工业与工程技术,2005,26(3).

[26]李鹏,官建国,张清杰,等.聚合物保护纳米镍粉的制备与表征[J].功能材料,2005,36(3):364-366.

[27]殷波,张振忠,高建卫,等.油酸对金属纳米镍、铜及铜镍复合粉体的分散性能影响[J].铸造技术,2006,27(2).

[28]王威娜.镍基纳米粉体的表面改性、表征及性能研究

[D],大连:大连理工大学,2006.

[29]贾晓林,谭伟.纳米分体分散技术发展概况[J].非金属矿,2003,7(27).

[30]李红霞,刘祥萱,王煊军,等,硬脂酸包覆超微镍粉的合成与性能表征[J].表面技术,2005,34(2).

[31]王威娜,黄昊,张雪峰,等.硅烷偶联剂改性纳米镍粉及其电磁性能研究[J].功能材料,2007,1(38).

[32]曾滔.超细镍粉制备进展[J].四川化工,2005,8(6).

作者简介:李茸(1977-),女,博士研究生,主要从事固体推进剂纳米金属催化剂方面的研究。

收稿日期:2007年5月11日

责任编辑王亚昆

#

89

#

5新技术新工艺6#材料与表面处理技术2007年第9期

loy.It indicates that the planeness o f plating layer and t he smo othness o f st ructur e befo re plating have an int imate rela-t ion.P ho sphor us content o f plating layer w hich is betw een 9.5%~11%is amo rpho us str ucture,but after dr awing tem-per the electr oless plat ing layer start s crystallization at 300e or so,the cr ystallizatio n process can almost finish at 400e.In additio n,the inv estigation show s that temperature has an obvious influence for plating rate,and co mplex ag ent also have timing character istic.

Key words:electro less plating,phase structure,temper Study on the Performance of Rapidly Solidified Mg-Zn-Y Alloy RS Ribbons

ZHA N G Zhenzhong,ZH A O F ang x ia,Y A N G Jianghai,L IU Jing yuan,SH EN Xiao do ng(School o f M aterials,Nanjing In-dust ry U niv ersit y,N anjing210009,China)

Abstract:Based on the successful pr epar atio n of rapidly so-lidified M g-Zn-Y melt spinning ribbons,their constituents and solidified str uctur es w ere studied by X RF and XRD,and the laws o f corr osio n resistance and micro-har dness w ere sy stematically studied by the means of the co rr osio n test,t he neutral salt spr ay and the m icro-har dness measur ement in this paper.T he r esults show that:1)T he chang e o f the so-lidified structur es had the tendency o f amo rphous phase w ith the incr easing of the co oling rat es.2)It w as similar that t he law s o f cor rosio n resistance o f the M g-Zn-Y alloy immersed in t he differ ent solutions,such as1%H Cl,10%N aO H,and 5%N aCl.T he co rr osion r esistance of the same constituents alloy increased w ith the incr easing of the co oling rates.A t the same coo ling rat e,the cor rosio n resistance o f M g-Zn-Y alloy immersed in1%HCl incr eased w ith the incr easing of the Y content,but it had har dly any change in10%N aOH, and5%N aCl.3)T he co rr osio n resistance o f the same con-stituents alloy solidified at the same cooling rate decr eases acco rding to t he o rder:10%NaO H>5%N aCl>1%H Cl.4) T he micro-har dness of the same const ituents a llo y increased with the increasing of the co oling r ates.T he micr o-hardness of the M g-Zn-Y RS ribbon is50%finer than t he M g-Zn-Y master alloy.T he reasons of these r esults pr oduced w ere a-l so discussed in this paper.

Key words:M g-Zn-Y allo y,r apid solidificatio n,corr osio n r e-sistance

Altering the Sputtering Equipment Used for Planes to that for Particulates

FA N H ong yuan1,ZH AN G Xipeng1,SH EN Bao luo1,XIN G Zho nghu2,L ON G Chongsheng2,Q IU Shaoy u2,Z OU H ong2 (11T he Department o f M at erials P ro cess,Sichuan U nivers-i t y,Cheng du610065,China;21T he N atio nal Key Labor ator y of N uclear F uel and M ater ials,Chengdu610041,China) Abstract:A sputtering equipment used fo r planes has been alter nated to that for part iculates(~100L m)by adding a ro-tat ing canister in its vacuum chamber.T he r esults show that par ticulates can be broug ht by the rotat ing canister and pass the depo siting a rea in the falling course.T he adhesio n force of the par ticulate t o the canister is fr om the molecular force each other,especially static fo rce.T he fig ur e of the par ticu-lates has impor tant influence o n the effect of their surf ace co atings.U sing the rebuilt equipment and the D.C mag ne-t ron sputt ering t echnolog y,the unifor mity and ro unded and micro ns chro mium films hav e been go tton tr iumphantly on the surface of the particulat e.It is approv ed t hat the way is available,and t hat it is necessary to alter the sput tering tar-g et and vacuum sy stem.

Key words:sput tering equipment,altering,chromium films, par ticulates Study on Removal of C obalt from Electroplating Wastewater by LDH Synthesizing in Situ

Y U Z himin1,CH EN T ianhu2,WU K e1,JIN Jie1,ZH A NG Y an1(11Depa rtment o f Bio log ical and Envir onment al Eng-i neer ing,Hefei U niv ersit y,H efei230022,China;21Co llege o f Resour ces and Envir onmental Eng ineer ing,Hefei U niv ersity of T echnolog y,Hefei230009,China)

Abstract:T he effects o f factor s such as initial co ncentration of Co2+,the ratio o f M g2+/Al3+and pH o n r emo val cobalt contained in the w astew ater from electro plating plant wer e studied by the method of L DH sy nthesizing.T he results show that pH had the g reat effects o n the remov al of cobalt dur ing L DH synthesizing in situ,then init ial concent ratio n o f Co2+and the ratio of M g2+/A l3+.T he remov al efficiency o f Co2+is mor e than96%,when the pH o f w astewater is at the r ang e of8.5-9.0,the r ang e o f initial co ncentration o f Co2+ 10-20mg/L and the rat io of M g2+/Al3+fro m1:1-1:2.T he structure of sample o f precipitate is analyzed.It indicates that the mechanism of remo val of Co2+is taken place by sub-stituting t o M g2+contained in the cry stal.

Key words:L DH,synthesizing in situ,Co2+

Study on N-i Al Intermetallic Porous Material by SHS H EI H ong jun,CU I H ongzhi,DON G Shug uang,ZH A NG Jin-ling,CA O L ili(College of M ater ials Science and Eng ineer ing, Shandong U niver sity of Science and T echno lo gy,Qing dao 266510,China)

Abstract:N-i Al Intermetallic P or ous M at erial is prepared by Self-pr opagation High-temper ature Sy nthesis(SH S).XR D and SEM ar e used t o analyze phase str uctur e and micr opor o-sity of simples.T he results sho w that N iA l and N i3A l ar e the most phases in the r eaction pro ducts and a few N i solid solut ions are in the r eact ions;the dr ill w ay of the r eaction pro ducts is o ut-of-shape,complex and meandering,and the w all of hole is unshaped.And as a result the specific surface ar ea o f the reactio ns is increased w idely.T he density o f the r eaction which the mass rat io betw een N i and A l is4B1is hig her than that w hich is3B1,and the diameter of the por e is low er.T he partials o f the reactio n with4B1ratio ar e smaller and mo re pro po rtioned than that3B1.

Key words:self-pro pag ating hig h-temperatur e synthesis (SH S),N-i A l inter metallic composite,po ro us mater ial

The Treatment Technology and Synthesis of Nickel Nanoparticles Catalyzer

L I Ro ng,L IU Xiang xuan,WA N G Xuanjun(X i'an Research Inst.O f H-i T ech H o ng qing T ow n,Xi'an710025,China) Abstract:T ransition-met al nickel nano particles w ill be one o f the mo st prom ising catalyzers in the futur e,especially will r epr esent increasing significance in militar y affa irs.Synthesis appr oaches and techno log y a re deter mining elements,w hich influence co mpo sitio n、crystal st ruct ur e and pr operty o f nick-el nano particles.Furthermo re,tr eatment techno log y is the chief technique to make the applicat ion of nickel nano par t-i cles as an industr ialized mass pro duction.I n this pa per,var-i ous sy nt hesis appr oaches such as g as phase,liquid phase and solid phase methods of nickel nanopart icles mostly used in r esent year s ar e summarized,and the advantages、the disad-vantages and the application status in industr y,of every actu-al synthesis appro aches ar e rev iewed.T he impor tance o f tr eatment techno lo gy is intro duced;and the mater ial techno-l og y o f purificatio n、dispersio n and surface protectio n is dis-cussed in details.F inally,the developmental trend of the synthesis technolog y is put for war d.

Key words:tr ansit ion-metal,nickel nanoparticles,synthesis, tr eatment techno lo gy

#

4

#5新技术新工艺6#英文摘要2007年第9期

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

雷尼镍催化剂的制法

骨架镍催化剂的制法 骨架镍催化剂(Raney nickel,拉尼镍)是利用粉碎了的镍一硅合金或镍一铝合金与苛性钠水溶液反应而制得。用这种方法制得的催化剂具有晶体骨架结构,其内外表面吸附有大量氢气,具有很高的催化活性。在放置过程中,催化剂会慢慢失去氢,在空气中活性下降得特别快。因此只有在密闭良好的容器中,将骨架镍催化剂放在醇或其它惰性溶剂的液面以下,隔绝空气才会保持其活性。 拉尼镍是一种应用范围广泛的催化剂,差不多对所有能进行氢化和氢解的官能团都起作用。对烯烃或芳环的氢化相当有效,能顺利地氢解碳--硫键(脱硫作用);但对酰胺、酯的氢解效果不佳。它的主要特点是在中性或碱性溶液中,能发挥很好的催化作用,尤其是在碱性条件下,催化作用更好。因此在氢化时常加入少量的碱性物质,例如三乙胺、氢氧化钠和氢氧化锂等,均能明显提高活性(硝基化合物除外)。如还原羰基化合物时,加入少量的碱,吸氢速度可以增加3~4倍。与其它贵金属催化剂例如氧化铂、钯/炭等相比,其氢化温度和压力较高,但价格要便宜的多。而且来源方便,制备简便。 卤素(尤其是碘),含磷、硫、砷或铋的化合物及含硅、锗、锡或铅的有机金属化合物在不同程度上可使拉尼镍中毒。在压力下,有水蒸气存在时,拉尼镍会很快失活,使用时应予注意。 拉尼镍活性降低的主要原因是①失去氢;②催化剂表面层组成改变,⑧由于生成结晶而使催化剂表面积减少,④中毒。 镍一硅合金由于较硬,粉碎和溶解都较难,所以使用不普遍。通常,镍一铝合金是制备各种类型拉尼镍的基本原料。含镍一般在30~50%之间,其余为铝。使用上述组成的镍一铝合金,均能制得具有一定活性的拉尼镍,可根据需要加以选择。最常用的镍—铝合金是镍铝各占50﹪的微细颗粒体。其制备过程如下。在氧化铝或石棉坩埚内,按比例先把纯铝放入坩埚,在电炉上熔融。待温度达到 1000℃左右时,加入纯镍粉。这时由于有熔化热产生,使温度升到 1200~1300℃。用石墨棒不断搅动,保温 20~30分钟。然后倒入大容器中,缓缓冷却以保证合金具有规则的晶格结构。若冷的太快、

雷尼镍催化剂的制备

雷尼镍催化剂的制备 雷尼镍催化剂是一种十分重要的骨架镍催化剂,其发现和发展最早可以追述到1925年。现在由于其具有的高活性、高选择性以及生产使用成本低的优点,已被广泛应用于有机还原反应,如烯烃芳香环、醛、酮、硝基、腈基等的催化加氢及脱卤反应。本文将主要介绍W-6型拉尼镍催化剂的主要制备方法。 1.W-6型拉尼镍催化剂的制备原理 雷尼镍催化剂最先由Murray Raney(1885-1966)发现,并于1925年申请专利。制备时,先用NaOH溶液溶去镍铝合金中的Al,然后洗涤,残余物为类似海绵状的微粒,大小为25~150A0。催化剂主要含Ni,Al(1~8%),少量NiO 和AL2O3水合物(1~20%),总表面积为50~130m2/g。 Raney-Ni催化剂一般由合金制备,分为两步,即展开和洗涤。展开是指用碱(特别是NaOH)溶出合金中无催化活性的部分(铝),这一步称为展开操作,反应式如下: 2NaOH+2 Al+2H2O→2NaAlO2+3H2 研究表明合金粒度和温度对展开速度有较大的影响,温度越高,展开速度越快;粒度的增大,溶解速度则减小R.Choudary等人通过实验,得出一个展开模型:log(x/1-x)= αlog(tβ),其中α为常数,β为速率参数(单位为1m/s), t为展开时间,展开活化能为56.6Kj/mol。 洗涤展开后的Raney-Ni是类似海绵状的微粒,可用蒸馏水洗涤至中性,最后用乙醇洗涤。由于Raney-Ni是一种易燃的催化剂,故应保存在适当的溶剂中。2.W-6型拉尼镍催化剂的制备方法:固相分离浸取法 熔融,沥滤是制备骨架催化剂的一种方法。其制备主要分为三步:即合金的制备,合金的粉碎及合金的浸溶,其制备工艺流程及简介入下: NaOH溶液 镍┓↓ ┃→熔融→冷却→粉碎→浸溶→洗涤→成品 铝┛ 70年代发明的固相分离浸取法是对传统雷尼镍催化剂制备方法最近的一次突破。原理是向回体NaOH与合金粉的混合物中加水.使其均匀润湿但不形

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

纳米载体的限域效应对催化性能影响机制的研究进展

纳米载体的限域效应对催化性能影响机制的研 究进展 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

纳米载体的限域效应对催化性能影响机制的研究进展自上世纪末以来, 纳米科学和技术有了长足的进展,其中纳米材料的一个重要特性是,将体系的尺寸减小到一个特定的范围(如 1~100 nm)时,在不添加任何其他组分的情况下,纳米体系的电子结构会发生变化。量子力学已经证明,大量原子组成的固体材料的价电子为连续的“能带”,当这类体相材料在某一方向上被缩小,特别是缩小到纳米尺度时,电子在该方向的运动就受到空间的束缚和限域,这种限域效应将会改变电子运动特性、导致体系电子结构特别是价电子结构的改变,从而可能会产生量子突变。这种体系尺寸对电子特性的调变为催化剂的催化特性进行调控提供了一种很好的途径[1]。. 近几年,部分研究团队在利用纳米材料的限域效应对催化剂的改性以及催化过程的研究等方面开展了创新性的研究工作,并且大量具有影响力的研究报道和文章被发表出来,其中中国科学院大连化学物理所包信和院士团队在这方面的工作开展的较早也很突出。该团队在铂金属颗粒表面加载了过渡金属氧化物,制备出了具有界面限域效应的TMO/Pt非均相逆催化剂(Oxide-on-Metal Inverse Catalysts),利用界面限域效应对催化体系结构和电子特性的影响作用,改善了在催化过程(特别是在催化氧化反应)中传统非均相催化剂容易出现的催化活性中心的失活以及催化功能的失效等问题[2]。 图1两种金属催化体系的结构示意图 (A)传统的氧化物作为载体的金属催化体系(Oxide supported metal system) 和 (B)过渡金属纳米氧化物倒载型催化体系(oxide-on-metal system)

沉淀法

沉淀法、浸渍法制备催化剂 沉淀法(Deposition-precipitation,简称DP法)是将金属氧化物载体加入 到HAuCl4的水溶液中形成悬浮液,在充分搅拌的条件下,控制一定的温度和pH值,使之沉积在载体表面上,随后进行过滤、洗涤、干燥、焙烧等处理,得到负载金催化剂。对于制备高活性的纳米金催化剂,该方法是广泛使用并且比较有效的方法之一。该方法的关键是控制合适的pH值,从而可以得到活性组分均匀分散、粒度较小、活性较高的纳米金催化剂。通常认为,控制反应液浓度10mol/L,最佳pH值范围7~8,反应温度323~363K,氯金酸的水溶液就会选择性的以氢氧化金的形式沉积在载体表面,而尽可能少的在液相中沉淀。通常,采用DP法制备纳米金催化剂最合适的载体是等电点在6~9之间的氧化物,如TiO2 (IEP=6),CeO2 (IEP=6.75),ZrO2 (IEP=6.7),Fe2O3 (IEP=6.5~6.9)和Al2O3 (IEP=8~9)等。该法的优点在于活性组分全部保留在载体表面,提高了活性组分的利用率;得到的催化剂金颗粒尺寸分布比较均匀。该法对于制备低负载量金催化剂非常有效,但是要求载体有较高的比表面积(至少50m/g),而且不适用于等电点小于5的金属氧化物和活性炭载体。步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。具体可以分为共沉淀、均匀沉淀和分步沉淀等方法。借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、洗涤、干燥和焙烧成型或还原等。 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值以及其他条件必须同时满足各个组分一起沉淀的要求。 2.2、均匀沉淀法 它不是把沉淀剂直接加到待沉淀的溶液中,也不是加沉淀剂后立即产生沉淀反应,而是首先使沉淀的溶液与沉淀剂母体充分混合,造成一个均匀的体系,然后调节温度、逐渐提高PH值或在体系中逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀作用缓慢地进行。 例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90℃~100℃,溶液中由于尿素的分解而放出OH—离子,于是氢氧化铝就均匀地沉淀出来。 沉淀条件对催化剂性能的影响 1.沉淀剂的影响 2.溶液浓度的影响 3.沉淀温度的影响 4.沉淀PH值的影响 5.加料方式的影响 6.搅拌温度的影响 7.沉淀的陈化影响 8.沉淀洗涤的影响 9.干燥、焙烧、活化的影响

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

RaneyNi催化剂

雷尼镍是用镍铝合金用试剂将合金中的铝反应完后得到的,多孔,活性很高,能自燃。使用过程中务必氮气保护,防止发生火灾。镍粉的话由于无多孔结构,活性不如雷尼镍。氢化还原的话一般选择雷尼镍,没见过用镍粉的。一般还原的话用锌粉、铁粉的较多,比较安全。 雷尼镍又叫活性镍有活性的可以吸收大量的氢气一般的颗粒镍由于表面积没有雷尼镍大所以没有活性 Raney Ni就是将铝镍合金在氢氧化钠溶液中溶解掉铝,得到的具有多孔结构状的镍,因而具有高的吸附氢的活性,而普通的镍由于不具有这种结构,也就起不到催化还原的效果。 制取雷尼镍:镍铝合金,还原不能直接用,需要用氢氧化钠水溶液将铝洗掉,再将镍水洗中性,再用乙醇洗,还要试洗出的镍的活性,在空气中能自燃,活性较好。镍活性非常高在空气中能自燃,所以分散在水中或是溶剂中。 买了铝镍合金粉末,缓慢假如氢氧化钠溶液里,保持溶液强碱性,反应完,将碱液倾倒出,用无水乙醇洗涤几次,然后放入无水乙醇中备用就可以了。 1)如果是在实验室里面进行脱铝活化的话,要放在冰水里面,防止过热!反应刚开始就放在冰水里,温度上升是飞快的,如果不预先放入冰水中,等你反应过来就已经来不及了! 2)我是做雷尼钴催化剂的,刚开始反应是很剧烈,没必要放到

冰水里,我把合金粉末慢慢加到氢氧化钠溶液中就可以了,没有太大得危险,慢慢加入就可以。 关于Raney Ni加氢还原中脱氯的问题 这个反应中经GS-MS检测,有脱氯的副产物产生,但是不清楚为什么会脱氯(反应加压3 MPa),在改动Raney Ni的用量及DMSO 量的情况下,脱氯现象没有改善——芳卤尤其是Cl、Br、I在Pd/C、Raney Ni等氢化环境下容易被还原掉。我记得以前有看过文献说貌似用硫酸钡作载体就不会掉。压力跟温度调小点,脱氯在2%左右,再低的脱氯我也很纠结。 首先,在氮气氛围投料然后,氢气置换氮气后就可以反应了,记住,不要在氢气氛围投料,特别是投钯碳类的东西。 在大生产上必须用氮气置换2-3次,在实验室里做的话用一个玻璃三通,用真空泵抽真空后直接通氢就行。 1.雷尼镍是镍铝合金经氢氧化钠处理出去其中的铝而得到多孔结构的镍,其与镍粉的最大不同之处在于其单位质量比表面积大,用于催化氢化。 2.雷尼镍的催化活性比较高,还原硝基应该问题不大,可以自己购买镍铝合金在实验室自己做,也可以直接购买使用。 3.雷尼镍易燃,不知道你用的溶剂是什么,目前市售雷尼镍很多保存在水中,如果需要除水,要注意防火。

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

纳米金属催化剂的制备方法及其比较_宁慧森

纳米催化材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质[1 ̄2],在催化领域的应用为广大催化工作者开拓了一个广阔空间,国际上已把纳米粒子催化剂称为第四代催化剂,因此纳米材料在催化领域的应用日益受到重视。许多发达国家都相继投入大量人力、财力开展纳米粒子作为高性能催化剂的研究,如美国的Nano中心,日本的Nano ST均把纳米材料催化剂的研究列为重点开发项目。我国对纳米材料的研究也给以高度重视,国家“863”计划、“973”计划大力支持纳米材料及纳米催化剂的研究,已取得了可喜成果[3 ̄5]。目前,国内外纳米催化剂的制备和应用逐步拓展到催化加氢[6]、脱氢[7 ̄9]、聚合、酯化、化学能源[10]、污水处理[11]等方面。纳米金属催化剂制备方法分为化学法及物理法:化学法包括溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法包括气相凝聚法、溅射法和机械研磨法等。 1 化学法制备金属纳米催化剂 1.1 溶胶-凝胶法 该法一般是以金属盐或半金属盐作前驱体,将适当的烷氧化物如四甲氧基硅烷与水、酸性或碱性催化剂与共熔剂,在搅拌超声下进行水解和缩聚反应形成SiO2三维网络结构。在成胶过程中引入的金属组分包埋在三维网络结构中,再进行凝胶老化过程,即将凝胶浸于液体中,继续聚合反应,凝胶强度增加。最后通过干燥,将溶剂从相互关联的多孔网格中蒸发掉,即可得到纳米尺寸的网格结构。溶胶-凝胶技术已成为实现化学剪裁合成纳米材料的主要手段[12 ̄13]。但该法使用的原料价格较昂贵;通常整个溶胶-凝胶过程所需时间较长,有时长达几天或几周;而且凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩。溶胶-凝胶法还被用来制备复合纳米金属催化剂,如Keiji Hashimoto等人[14]利用溶胶-凝胶工艺制备了K+[Zn3(SiO3Al)10(OH)2]-纳米粒子用于醇脱氢反应。李永丹等人[15]还利用溶胶-凝胶法制备了镍基催化剂,并对其进行了甲烷分解制备碳纳米管的研究,所制备的纳米管直径为10 ̄20nm。雷翠月[12]也利用此法,直接制备出了高比表面积、低堆积密度的纤维状纳米级负载型CuO-Al2O3 超细粒子,活性组分以远低于纳米级的微晶粒子簇状态均匀地分散在纳米级氧化铝载体表面,在500℃内具有较高的稳定性,晶粒未聚集长大,在十二醇催化胺化反应中表现出了较高的催化活性。陈立功等人[16]在醇催化胺化反应研究中开发了一种改进的溶胶-凝胶法,利用这种方法制备的铜基纳米催化剂的活性和稳定性都有了显著提高。 1.2 沉淀法 沉淀法是指包括1种或多种离子的可溶性盐溶液,加入沉淀剂(如OH-、C2O42-等)于一定温度下使溶液水解,形成不溶性的氢氧化物、水合氧化物或盐类而从溶液中析出,将溶剂和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化物粉料。此法是传统制备氧化物方法之一[17],主要包括以下4种。 1.2.1 共沉淀法 将过量的沉淀剂加入混合后的金属盐溶液中, 纳米金属催化剂的制备方法及其比较 宁慧森,白国义 (河北大学化学与环境科学学院,河北保定 071002) 摘 要:纳米金属催化剂的制备方法包括化学法和物理法。化学法中主要有溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法主要有气相凝聚法、溅射法和机械研磨法等。其中化学法 中的溶胶-凝胶法及沉淀法应用最广。对纳米金属催化剂的制备方法进行了比较,并简要论述了制备及应 用过程中存在的主要问题。 关键词:纳米催化剂;催化;制备 中图分类号: TQ426.8 文献标识码: A 文章编号: 1672-2191(2007)03-0015-04 收稿日期:2007-03-25 基金项目:河北大学博士基金资助项目(2005046) 作者简介:宁慧森(1976-),男,河北保定人,在读硕士研究生,研究方向为精细化工和催化领域。 电子信箱:nhs-lyq@163.com 2007年第5卷第3期 Chemical Propellants & Polymeric Materials · 15 ·

雷尼镍催化剂使用方法和注意事项

雷尼镍加氢催化剂的使用方法及注意事项 一、物料名称:雷尼镍(兰尼镍) 危险特性:其粉体化学活性较高,暴露在空气中会发生氧化反应,甚至自燃。 遇强酸反应,放出氢气;粉尘可燃,能与空气形成爆炸性混合物。 储存与运输条件:贮存于阴凉、通风仓间内。远离火种、热源,防止阳光直射。 包装要求密封,不可与空气接触。应与氧化剂、酸类分开存放。 RaneCAT-1000 型高活性雷尼镍加氢催化剂 二、一般用途与使用方法 1、使用前的准备工作 a、相关操作人员必须佩戴劳保用品,使用前必须接受有针对性的培训。

b、操作现场应配备灭火器(干粉)和消防沙。 c、清理操作现场易燃易爆等危化品。 d、检查内外包装是否完好、无破损,若有破损现象,应停止使用,并立即上报至仓库管理员。 2、使用过程的操作 a、因雷尼镍活性较高,通常用水对其进行保护,称量时,需尽量去除水分,确保数量满足工艺需求。使用后剩余量应按原包装进行封口退库。 b、若氢化反应对水分要求较高,需用反应所使用溶剂进行带水处理,具体措施为:称量时,取用水保护的雷尼镍催化剂(尽量去除水分)至装有适量溶剂的烧杯中,称量数量应略超过实际使用数量,缓慢搅拌均匀(应防止催化剂暴露于空气中),静置分层,倾倒大部分上层清液(留小部分上层清液保护催化剂,下同),下层加入适量溶剂,缓慢搅拌均匀,静置分层,倾倒大部分上层清液,重复此操作步骤2-3次,完毕后,用适量溶剂保护催化剂。 c、若氢化反应对水分不敏感,称量时,取用水保护的雷尼镍催化剂(尽量去除水分)至装有适量溶剂的烧杯中,称量数量应略超过实际使用数量,缓慢搅拌均匀(防止有固体暴露于空气中),静置分层,倾倒大部分上层清液(留小部分上层清液保护催化剂),即可。 d、20L及以下的反应釜雷尼镍投料:打开釜盖向反应釜中加入适量溶剂,通入氮气15min以上;将用溶剂保护的雷尼镍催化剂通过加料管(加料管下端伸入反应釜溶剂液面以下)缓慢加入反应釜,加料过程需缓慢搅拌催化剂,使其悬浮于溶剂中随溶剂一起流入加料管中,投料完毕后用溶剂淋洗加料管内壁。检查工器具是否有雷尼镍残留,若有残留收集至容器中用水液封。 e、50L及以上的反应釜雷尼镍投料:先将反应釜抽真空至0.08MPa,通氮气排空置换空气,连续三次置换操作;再将反应釜抽真空,通过加料管道(反应釜内不的加料管应通入反应釜底部)将雷尼镍抽入反应釜中,控制抽料管在溶剂液面一下,不断补加溶剂防止空气进入;投料完毕后用溶剂淋洗加料管。检查工器具是否有雷尼镍残留,若有残留收集至容器中用水液封。

纳米催化剂及其应用(可编辑修改word版)

纳米催化剂及其应用 四川农业大学化学系应用化学201401 徐静20142672 摘要:近年来,纳米科学与技术的发展已广泛地渗透到催化研究领域,其中最典型的实例就是纳米催化剂(nanocatalysts——NCS)的出现及与其相关研究的蓬 勃发展。纳米材料具有独特的晶体结构及表面特性,其催化活性和选择性大大高于传统催化剂,目前已经被国内外作为第 4 代催化剂进行研究和开发。本文简要 介绍了纳米催化剂的基本性质、独特的催化活性等;并较详细地介绍了纳米催 化剂分类以及常见的制备方法;最后对其研究动态进行了分析,预测了其可能 的发展方向。 关键词:纳米催化剂材料制备催化活性应用 Nano - catalyst and its application Abstract: In recent years, the development of nano-science and technology has been widely penetrated into the field of catalysis research. The most typical example is the emergence of nanocatalysts (NCS) and the flourishing of related research. Nanomaterials have unique crystal structure and surface characteristics, and their catalytic activity and selectivity are much higher than those of traditional catalysts. At present, they have been researched and developed as the 4th generation catalyst at home and abroad. In this paper, the basic properties of nanocatalysts and their unique catalytic activity are briefly introduced. The classification of nanocatalysts and their preparation methods are introduced in detail. At the end of this paper, the research trends are analyzed and the possible development trends are predicted. Key words: nanocatalyst material preparation catalytic activity application 催化剂又称触媒,其主要作用是降低化学反应的活化能,加速反应速率, 因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动 这些行业发展的最有效的动力之一。一种新型催化材料或新型催化剂工业的问世,往往引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913 年,

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经

洗涤、干燥和活化后即可使用。 (8)离子交换法 NaY 制HY (9)滚涂法和喷涂法 (10)均相络合催化剂的固载化 (11)金属还原法 (12)微波法 (13)燃烧法(高温自蔓延合成法) 常用尿素作为燃烧机 (14)共沸蒸馏法 通过醇和水的共沸,改变沉淀的形貌、孔结构。 2、催化剂制备新技术 (1)溶胶-凝胶法(水溶液Sol-gel 法和醇盐Sol-gel 法) 金属醇盐 醇 水水解聚合胶溶剂解胶陈化溶胶 a 胶体凝胶法(胶溶法) 胶体凝胶法是通过金属盐或醇盐完全水解后产生无机水合金属氧化物,水解产物与胶溶剂(酸或碱)作用形成溶胶,这种溶胶转化成凝胶是胶粒聚集在一起构成网络,胶粒间的相互作用力是静电力(包括氢键)和范德华力。 b 聚合凝胶法(分子聚合法) 聚合凝胶法通过金属醇盐控制水解,在金属上引入OH 基,这些溶胶转化成凝胶时,在介质中继续缩合,靠化学键形成氧化物网络。 两种方法的区别在于加入水量的不同, 注意事项:1)水的加入量;2)醇的加入量;3)水解温度;4)胶溶剂加入量 (2)超临界技术 a 气凝胶催化剂的制备(超临界干燥) b 超临界条件下的催化反应 能够改进反应的传质、传热性能,改进产物的分离过程 c 用于因结焦、积垢和中毒而失活催化剂的再生。 具有温度低、不发生局部过热现象的特性,从而有效地防止催化剂的烧结失活。 (3)纳米技术 a 固相合成法 1)物理粉碎法(又称为机械研磨法或机械合金化法) 采用超细磨制备超微粒,很难使粒径小于100 nm 。

纳米催化剂简介

纳米催化剂简介 摘要 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,例如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。纳米粒子作为催化剂必须满足上述的条件。近年来科学工作者在纳米微粒催化剂的研究方面已取得一些结果,显示了纳米粒子催化剂的优越性。 纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。最近,关于纳米微粒表面形态的研究指出,随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了化学反应的接触面。有人预计超微粒子催化剂在下一世纪很可能成为催化反应的主要角色。尽管纳米级的催化剂还主要处于实验室阶段,尚未在工业上得到广泛的应用,但是它的应用前途方兴未艾。 关键词:性质,制备,典型催化剂,表征技术,应用,

目录 绪论-----------------------------------------------------------1 1. 纳米催化剂性质----------------------------------------------1 1.1 纳米催化剂的表面效应-------------------------------------1 1.2 体积效应-------------------------------------------------1 1.3 量子尺寸效应---------------------------------------------1 2. 纳米催化剂的制备--------------------------------------------2 2.1 溶胶凝胶法-----------------------------------------------2 2.2 浸渍法---------------------------------------------------2 2.3 沉淀法---------------------------------------------------3 2.4 微乳液法-------------------------------------------------3 2.5 离子交换法-----------------------------------------------3 2.6 水解法---------------------------------------------------3 2.7 等离子体法----------------------------------------------3 2.8 微波合成法-----------------------------------------------4 2.9 纳米材料制备耦合技术-------------------------------------4 3. 几种典型催化剂----------------------------------------------4 3.1 纳米金属粒子催化剂---------------------------------------4 3.2 纳米金属氧化物催化剂-------------------------------------5 3.3 纳米半导体粒子的光催化-----------------------------------5 3.4 纳米固载杂多酸盐催化剂-----------------------------------5 3.5 纳米固体超强酸催化剂-------------------------------------6 3.6 纳米复合固体超强酸催化剂---------------------------------6 3.7 磁性纳米固体酸催化剂-------------------------------------6 3.8 碳纳米管催化剂-------------------------------------------7 3.9 其它纳米催化剂-------------------------------------------7 4. 纳米催化剂表征技术------------------------------------------7

纳米材料及纳米催化剂的制备

纳米材料及纳米催化剂的制备 纳米技术是一门崭新的综合性科学技术,当物质被“粉碎”到纳米级并制成纳米材料时,不仅光、电、热、磁等性能发生变化,而且具有辐射、吸收、催化、吸附等许多新特性,可较大地改变目前的产业结构[1],纳米技术有着广阔的发展前景。 1纳米材料科学的基本原理 200年来,人们对宏观物体与微观基本粒子进行了深入的研究,发现它们虽然化学组成相同,但理化性质却相差很大,因此想象,处于宏观物质与微观粒子之间应该有一个过度状态,物质处于这个颗粒尺寸为0~100nm的过度状态即为纳米微粒(NanoParticles)和纳米团族(NanoClusters)。随着显微技术发展到扫描隧道显微镜(STM)和原子显微镜(AMF),使观察、制备、表征纳米材料成为可能,又由于处于纳米过度状态的物质与处于宏观状态的物质,在电子性质、表面性质等方面异差非常大,一门新的学科—纳米科学技术随即问世。 1.1纳米材料 纳米材料包括纳米颗粒、纳米薄膜、纳米晶体、纳米非晶体、纳米纤维、纳米块体等。纳米颗粒尺寸大于原子族,小于超细微粒,在1至100nm之间。纳米颗粒沿一维方向的排布则形成纳米丝;沿二维方向排布则形成纳米膜;沿三维方向排布则形成纳米块体。由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒经的减小,表面光滑程度较差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。这些性质恰恰满足了纳米催化材料和助剂材料所要求的其颗粒大小、表面积大小、电子性质、吸附性能和催化反应性能等。 1.2纳米材料的制备方法 1.2.1超声波震荡法制备纳米材料 例如将材料A和材料B一起加热至全部熔化,保持熔融状态,用超声波震荡粉碎,直到材料A的纳米液分散在材料B中,然后固化成纳米固体颗粒和纳米复合材料,这是一种易于人为控制、简便的制备纳米材料的方法。 1.2.2固相化学反应制备纳米材料 例如制备过渡金属超细微粒就是用这种方法。它是用固态的金属氯化物和固态的硼氢化钾(钠)一起研磨,然后在氮气气氛下200~450℃下焙烧,再经水洗得到非晶态的超细微粒。 1.2.3熔胶—凝胶法制备纳米级α-AL2O3颗粒 此方法是采用一般铝盐为材料,加入一定的添加剂形成溶胶,在溶胶中加入高氯物单体、关联剂或引发剂,在高温下经溶胶—凝胶过程形成高聚凝胶,再经1200℃热处理得到10~50nm尺寸的α-AL2O3颗粒。1.2.4沉淀法制备纳米结构的氧化物和氢氧化物[6]。此方法是使反应剂溶液喷雾雾化进入前体溶液中,以形成纳米结构的氧化物或氢化物沉淀溶液,然后对该沉淀物进行热处理,接着是声处理;或者是先声处理,接着再热处理。可得到掺杂和未掺杂的氢氧化镍、二氧化锰以及氧化钇稳定的氧化锆。可得到不寻常形态的超细结构,包括完好的圆柱体或纳米棒状物,以及氢氧化镍和二氧化锰的新结构,包括纳米结构纤维的组合、纳米结构纤维和纳米结构粒子的附聚物以及纳米结构纤维和纳米结构粒子的组合。这些纳米材料具有高渗透速率和高密度的活性部位,特别适合于作催化剂。 2纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而上文中介绍的纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例

相关文档