文档库 最新最全的文档下载
当前位置:文档库 › 边界元理论在复杂外边界油藏水平井渗流中的应用_张烈辉

边界元理论在复杂外边界油藏水平井渗流中的应用_张烈辉

边界元理论在复杂外边界油藏水平井渗流中的应用_张烈辉
边界元理论在复杂外边界油藏水平井渗流中的应用_张烈辉

收稿日期:2007-03-13;修改稿收到日期:2008-06-05.

基金项目:高等学校优秀青年教师教学科研奖励计划

(TROAPY ),教育部博士点基金课题(20040615004)

联合资助项目.

作者简介:张烈辉*(1967-),男,教授,博士生导师

(E -mail :zlhdyyzbn @https://www.wendangku.net/doc/b713436712.html, );

李成勇(1981-),男,博士,讲师.

第26卷第2期2009年4月

 计算力学学报 

C hinese Journal of C omputational Mechanics

V ol .26,N o .2

A pril 2009

文章编号:1007-4708(2009)02-0287-04

边界元理论在复杂外边界油藏水平井渗流中的应用

张烈辉*1, 李成勇2, 刘启国1, 李 允1

(1.西南石油大学油气藏地质及开发工程国家重点实验室,成都610500;2.成都理工大学能源学院,成都610500)摘 要:受构造作用的影响,实际油藏的外边界往往是复杂多样的。本文从渗流理论出发建立了复杂外边界油藏水平井渗流数学模型,并采用Lo rd Kelvin 点源解、贝塞尔函数积分和泊松叠加公式等方法求解了复杂外边界油藏水平井的边界元基本解,利用边界元的理论建立了复杂外边界油藏水平井井底压力响应数学模型。通过计算得到了无因次压力和压力导数双对数理论图版,并在其基础上分析了复杂外边界油藏水平井渗流特征及其影响因素。

关键词:边界元;复杂外边界;水平井;渗流;试井分析中图分类号:T E312 文献标识码:A

1 引言

水平井是快速、高效开发油气藏的一种有效手段。目前水平井开发技术已成为新油田开发、老油田挖潜、提高采收率的一个重要手段。储层在成藏过程中由于受多次地质构造运动的作用,造就了油藏外边界复杂多样性。由于研究手段的限制,目前国内外研究水平井渗流问题时都没有考虑实际复杂外边界的情形。因此本文的研究具有十分重要的意义。

2 渗流理论模型

考虑地层中的流体为单相弱可压缩,忽略地层中孔隙度、渗透率和其他物性的变化,利用运动方程、状态方程和物质平衡方程可以建立起复杂外边界油藏渗流微分方程:

1r D

r D r D

p D r D = p D t D (1)

利用Laplace 变换化简渗流微分方程得

图1 复杂外边界油藏水平井示意图

Fig .1 The s ketch of h orizontal w ell in complex b ou ndary reservoir

1r r r p -D

r

-up -

D =0

(2)

其中,无因次压力:

P D =

k i h

1.842×10-3q sc μB

ΔP

无因次时间: t D =3

.6k i t μC t r w 无因次半径: r D =r r w

3 边界积分方程

应用边界元理论求解渗流微分方程时,首先应将控制方程变为积分方程,根据基本解方程和渗流微分方程的表达式,通过数学变换,在研究区域内进行积分,得到区域积分公式:

Ψ

[P D (P ,u ) 2G (P ,Q ,u )-G (P ,Q ,u ) 2

P D (P ,u )+δ(P ,Q )P D (P ,u )-1

u ∑Nw i =1

q

Di

δ(x D -x Di ,y D -y Di )

G (P ,Q ,u )]d Ψ=0

(3)

式中G (P ,Q ,u )为复杂外边界油藏水平井的基本解。

利用δ函数的性质和第二格林公式,可以将区域积分公式进一步简化为边界积分方程:P D (Q k ,u )=

ΓG (P ,Q k ,u ) P D (P ′,u )

n

-P D (P ,u ) G (P ′,Q k ,u ) n

d Γ(P ′)+

1

u

∑Nw i =1

q

Di

G (P ,Q i ,u )(4)

将边界Γ分割成N b 个单元段,将单元的端点作为边界元的节点,假设单元内的点按线性规律分布,为避免单元段节点成为奇异点,把节点附近的边界看成以节点为中心的一段圆弧,则边界Γ分割后其边界积分方程可以表示为

θk P D (Q k ,u )=∑

N

b

i =1

Γ

i

G (P ′,Q k ,u ) P D (P ′,u )

n

-P D (P ′,u ) G (P ′,Q k ,u )

n d Γi (P ′)+

1

u

∑Nw i =1

q

Di

G (P ,Q i ,u )(5)

式中θ

k 是与边界节点处几何形状有关的常数,定义θi 为边界Γk -1与Γk 的内角。

θk =

1

域内问题θi =2π

0.5光滑边界θi =π

θi

非光滑边界

利用边界元内线性插值公式,边界积分公式可

以变形为

θk P D (Q k ,u )=∑N

b

i =1l

i

2

1

-1

G (P ′,Q k ,u ) 1(ξ)

P Di

n

+ 2(ξ)

P Di +1

n

-( 1(ξ)P Di +

2(ξ)P Di +1) G (P ′,Q k ,u )

n d ξ+

1

u

∑Nw i =1

q Di G (

P ′,Q i ,u )(6)

式中 1(ξ)和 2(ξ)分别为线性插值函数,l i 为线

性元Γi 的长度。

1(ξ)=1-ξ2, 2(ξ)=1+ξ

2

l i =(x i +1-x i )2

+(y i +1-y i )2

(-1<ξ<1)

4 边界元积分方程基本解

利用边界元方法求解复杂外边界油藏水平井

渗流问题的关键在于寻找它的基本解。根据边界元方法的性质和渗流微分方程,基本解应满足修正的H elmholtz 型算子:

1r r r G

r

-uG =-2πδ(M D ,M ′D )

(7)

利用Lo rd Kelvin 点源解、镜像叠加原理和Poisso n 叠加公式可以得到顶底封闭边界油藏水平井的格林边界元基本解为G (P ′,Q ,u )=1

2

∫1

-1

K O (

R

D

u )d α+∑n =∞n =1cos (n πz D

)cos (n πz w D )

1

-1

K 0

(x D -α)2

+y 2D u +n 2

π2

Z 2e D

d α

(8)

G (P ′,Q ,u ) n =-1

2

∫1

-1

uK 1

(

(r

D

-α)u )

r D

n d α-∑n =∞n =1co s (n πz D )co s (n πz w D )∫

1

-1u +n 2π2

Z 2

eD

K 1

(r D -α)u +n 2π2

Z 2e D

r D n d α(9)

式中

r D n =±|(x ξ-x )(y i -y i +1)-(y ξ-y )(x i -x i +1)

(x i -x i +1)2+(y i -y i +1)

2

|(x ξ-x i )2+(y ξ-y i )

2如果外法向向量n 与M P ′的方向位于边界元

Γi 的同侧,则 r D / n 值为正,否则为负。

5 积分方程的求解

对边界积分方程(6)进行移项合并处理得:

θk P D (Q k ,u )=

N

b

i =1

H ′k 1 P Di n +H ′k 2 P Di +1

n

+

H ′k 3P Di +H ′k 4P Di +1+

1

u

∑Nw i =1

q

Di

G (P ′,Q ,u )

(10)

式中H ′1=

l i

2

∫1-1

G (P ′,Q k

,u ) 1

(ξ)d ξ

H ′2

=l i

2∫1-1

G (P ′,Q k

,u ) 2

(ξ)d ξ

H ′3

=l i

2∫1

-1

- G (P ′,Q k

,u ) n

1

(ξ)d ξ

288

计算力学学报

 第26卷 

H ′4=

l i

2

1

-1

- G (P ′,Q k ,u )

n

2(ξ)d ξ

从边界积分方程上可以看出,未知变量为 P Di / n 和P Di ,由于边界Γ上有N b 个节点,因此可以建立N b 个方程组。而对于边界性质已知的情形下只有N b 个未知变量,因此方程组是有解的。方程组的矩阵表达式为

H 11H 12…H 1N

b H 21H 22…H 2N

b …………H N b 1

H Nb 2

H N b N b

x 1x 2…x N b

=

F 1

F 2…F Nb

(11)

式中x i 为 P Di / n 或P Di ,F i 为1

u ∑N w i =1

q

Di

G (P ′,Q ,

u )。

一旦未知的边界变量被计算出来,就可以利用边界积分方程(10)计算研究区域内任意一点的P D 值。

P D (Q ,u )=

N

b

i =1

H ′k 1 P Di n +H ′k 2 P Di +1 n

+H ′k 3P Di +H ′k 4P Di +1+

1

u

∑Nw

i =1

q

Di

G (P ′,Q ,u )(12)

6 贝塞尔积分项计算

贝塞尔函数是一个复杂的振荡函数,对于它的积分问题往往十分复杂。本文中的贝塞尔积分项由于表达式十分复杂,故应用常规的解析方法不能获得它的精确积分解。本文采用七点高斯积分公式对贝塞尔积分项进行计算,其具体表达式为

1

-1

f (ξ)d ξ=∑7i =1

ωi

f (

ξi

)(13)

7 动态特征分析

利用本文的研究成果,

编制计算程序可以求得任意形状外边界油藏水平井井底压力动态响应曲线。假设外边界为径向封闭边界,利用Ozken 等[1-3]提出的径向封闭外边界水平井井底压力响应解析解,通过理论计算后对比研究发现:解析解与边界元解获得的井底压力响应双对数曲线基本吻合如图2所示,而利用边界元获得的井底压力响应函数在边界反应阶段更加平滑,故更接近真实地层的压

图2 径向封闭外边界油藏水平井解析解与边界元解对比图

Fig .2 The com parison chart of analytical solutions an d boun dary element solutions in th e bottom h ole

p ressu re response of horizontal w ell in im perm eable reservoir

力响应。因此利用本文建立的方法求解井底压力动态响应是基本可行的。

8 结 论

(1)利用拉氏空间的Lo rd Kelvin 点源解、叠加原理和Poisson 叠加公式,可以得到均质油藏中水平井渗流的边界元基本解。

(2)利用边界元理论可以解决复杂外边界油藏水平井渗流问题,利用与规则外边界油藏水平井的典型图版对比研究,验证了该方法的正确性。

(3)利用数值积分方法可以解决复杂贝塞尔函数的积分问题。

符号说明:

r w 井径 m k 渗透率 μm 2 孔隙度小数 c 压缩系数 M Pa -1u 拉氏变量 h 油层厚度 m B 体积系数 q 地面产量 m 3

/d L h 水平井半长 m

μ流体粘度 mPa ·s

参考文献(References ):

[1] OZ K EN Z ,RAG H AV A N R .N ew solution fo r well

test analy sis pro blems :(Par t Ⅰ)[J ].Analy tical Con -siderration S PEFE ,1991:359-368.

[2] OZ K EN Z ,RAG H AV A N R .N ew solution fo r well

test analy sis pro blems :(Par t Ⅱ)[J ].Com putation Considerration SP EF E ,1991:369-377.

[3] OZ K EN Z ,RAG H AV A N R .N ew solution fo r well

test analy sis problems :(P ar t Ⅲ)[J ].Ad ditional Al -gorithms S PE 28424,1991:258-269.

[4] 张耀明,孙焕纯.直接边界元法中边界积分的解析处

理[J ].应用数学和力学,2001,22(6):593-601.(Z HA N G Yao -ming ,S U N Huan -chun .A na ly tical treatment o f bo unda ry integ rals in direct bo undary el -ement analy sis o f plan po tential and ela sticity pr ob -

289

 第2期

张烈辉,等:边界元理论在复杂外边界油藏水平井渗流中的应用

lems[J].Chinese J ournal o f App lied Mathematics

and Mechanic,2001,22(6):593-601.(in Chinese)) [5] 刘启国,李晓平,吴晓庆.用边界元法分析复杂形状油

藏不稳定压力动态.西南石油学院学报,2001,23(2):

40-43.(LIU Q i-g uo,LI Xiao-ping,W U Xiao-qing.

A na ly sis o f pressure transient behavio rs in ar bitrarily

shaped rese rvoir s by the bound-ary element method

[J].Chinese J ourna l o f Southwest Petroleum I nsti-

tute,2001,23(2):40-43.(in Chinese))

[6] 尹洪军,何应付.运用摄动边界元法研究非均质油藏

稳定渗流[J].特种油气藏,2004,11(1):37-40.(YIN

H ong-jun,HE Ying-fu.Study o n stable pe rcola tion

in heter ogeneous reservo ir by pe rturbatio n boundary

element method[J].S pecial Oil and Gas Reservoirs,

2004,11(1):37-40.(in Chinese))

[7] 候 健,王玉斗,陈月明.复杂边界条件下渗流场流线

分布研究[J].计算力学学报,2003,20(3):335-338.

(HO U Jian,W A NG Y u-dou,CHEN Yue-ming.Re-

search on streamline distributio n o f flow thro ug h-

por ous media with co mplex boundar y[J].Chinese

J ournal o f Computational Mechanics,2003,20(3): 335-338.(in Chine se))

[8] 何应付,尹洪军,刘 莉,等.复杂边界非均质渗流场

流线分布研究[J].计算力学学报,2007,24(5):708-

712.(H E Ying-fu,YIN Hong-jun,L IU Li,et al.

Re sear ch on streamline distribution o f flo w through

hetero geneous por ous media w ith com plex bounda ry

[J].Chinese J ournal of Computational Mechanics,

2007,24(5):708-712.(in Chine se))

[9] T HIEL E M R,BA T Y CK Y R P,BLU N T M J.A s-

tream lineba sed3D field-scale compositional reser-

v oir simulato r[A].SP E38889[C],1997:471-482. [10]P ED DIBH O T L A S,D A T T A-G UP T A A,XU E GP.

M ultipha se streamline mo deling in three dimen-sions: fur ther g ene raliza tions a nd a field applicatio n[A].

SP E38003[C],1997:265-279.

Application of boundary element method to fluid flow into

horizontal wells in complex boundary reservoirs

ZHA NG Lie-hui*1, LI Cheng-y ong2, LIU Qi-guo1, LI Yun1

(1.SW PU State K ey Labo ra to ry of Oil and Gas Reserv oir Geolog y and Exploitatio n,Chengdu610500,China;

2.Schoo l of Energ y Resour ces,Chengdu U niv ersity of Technolo gy,Cheng du610500,China)

A bstract:Reservoirs usually have complex bo undaries due to the tectonic effect.In this paper,a m ath-ematic m odel for description of flow into ho rizontal w ells has been constructed;Furtherm ore,basic so lu-tions of bo undary elem ents have been acquired by co mbinatio n o f Lo rd Kelvin point-source solution,the integral of Bessel functio n and Poisson superimpose fo rmula fo r reserv oirs w ith co mplex boundaries. Meanw hile,a m athematic fo r botoom-hole pressure response of ho rizontal w ells in reservoir w ith com-plex bounda ries has also been set up based o n the theo ry of bounda ry element.By solving this m odel, ty pe curves of dimensionless pressure and pressure derivative w ere created.The refore,flow characteris-tics of ho rizontal wells in com plex boundary reservoirs and relevant facto rs can be analyzed using the re-sults o f this paper.

Key words:bo undary element;complex bo undary;horizo ntal w ell;fluid flow through porous media;

well-test analy sis

290计算力学学报 第26卷 

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

什么是边界层

什么是边界层?广义讲:在流体介质中,受边界相对运动以及热量和物质交换影响最明显的那一层流体。具体到大气边界层,是指受地球表面摩擦以及热过程和蒸发显著影响的大气层。大气边界层厚度,一般白天约为1.0km,夜间大约在0.2km左右,地表提供的物质和能量主要消耗和扩散在大气边界层内。大气边界层是地球-大气之间物质和能量交换的桥梁。全球变化的区域响应以及地表变化和人类活动对气候的影响均是通过大气边界层过程来实现的。 什么是湍流?英文湍流为“turbulence”,日文为“乱流”,湍流简单定义:流体微团进行的有别于一般宏观运动的不规则的随机运动,从宏观上看,它没有稳定的运动方向,但它能够象分子运动一样通过其随机运动过程有规律地传递物质和能量。从1915年由Taylor[1]提出大气中的湍流现象到1959年Priestley[2]提出自由对流大气湍流理论,可以说,到20世纪50年代以前经典的湍流理论基本上已经形成。以后,湍流理论基本上再没有出现大的突破。1905年Ekman[3]从地球流体力学角度提出了著称于世的Ekman螺线,在此基础上形成了行星边界层的概念,他的基本观点仍沿用至今。1961年,Blackadar[4]引入混合长假定,用数值模式成功地得到了中性时大气边界层具体的风矢端的螺旋图象。行星边界层的提出使人们认识到了大气边界层在大气中的特殊性和一些奇妙的规律。从20世纪50年代开始,由于农业、航空、大气污染和军事科学的需要,掀起了大气边界层研究的高潮。1954年, Monin和Obukhov[5]提出了具有划时代意义的Monin—Obukhov相似性理论,建立了近地层湍流统计量和平均量之间的联系。1982年,Dyer[6]等利用1976年澳大利亚国际湍流对比实验ITCE对其进行完善使得该理论有了极大的应用价值。1971年Wyngaard[7]提出了局地自由对流近似,补充了近地面层相似理论在局地自由对流时的空白。从20世纪70年代开始,随着大气探测技术和研究方法的发展,特别是雷达技术,飞机机载观测, 系留气球和小球探空观测以及卫星遥感和数值模拟等手段的出现,大气边界层的研究开始从近地层向整个边界层发展。简洁地概括,对大气边界层物理结构研究贡献最突出的是两大野外实验和一个数值实验,即澳大利亚实验的Wanggara和美国的Min-nesota实验以及Deardorff的大涡模拟实验。相似性理论是大气边界层气象学中最主要的分析和研究手段之一,在建立了比较成熟的用于描述大气近地面层的Monin—Obukhov相似性理论以后,人们开始寻求类似的全边界层的相似性理论。国际上,除Neuwstadt[8]、Shao[9]等做了大量工作外,我国胡隐樵等以野外实验验证了局地相似性 理论,并建立了各种局地相似性理论之间的关系。张强等还对局地相似性理论在非均匀下垫面近地面层的适应性做了一些研究。自1895年雷诺平均方程建立以来,该方程组的湍流闭合问题是至今未解决的一个跨两个世纪的科学难题。人们发展湍流闭合理论,以达到能够数值求解大气运动方程,实现对大气的数值模拟。闭合理论有一阶局地闭合理论即K闭合。1990年HoIt-sIag[12]在1972年理论框架的基础上,用大涡模拟资料对K理论做了负梯度输送的重大修正。为更精确地求解大气运动方程,也为了满足中小尺度模式,特别是大气边界层模式刻画边界层湍流通量和其它高阶矩量的目的,高阶湍流闭合技术也开始被模式要求。由于大气边界层研究是以野外探测实验为基础的实验性很强的科学,我国以往由于经济落后,无法得到第一手的实验资料,研究相对落后,与国外相比,总体上差距在20a左右,但我国学者在大气边界层的研究中也有其特殊贡献:1940年周培源先生[13]提出的湍流应力方程模式理论,被认为是湍流模式理论开始的标志,这一工作奠定了他在国际湍流研究领域的崇高地位。苏从先等在上世纪50年代给出的近地面层通量廓线与当时国外同类研究同步,被国外学者称为“苏氏定律”,在上世纪80年代苏从先等首次发现了干旱区边界层的绿洲“冷岛效应”结构。上世纪70年代周秀骥[16]提出的湍流分子动力学理论也很有独特的见解。1981年周 明煜[17]提出的大气边界层湍流场团块结构是对湍流结构的新认识。上世纪80~90年代赵鸣[18]对边界层顶抽吸作用的研究是对Charney—Eiassen公式的很好发展。在20世纪90年代的“黑河实验”中,胡隐樵等和张强[19]首次发现了邻近绿洲的荒漠大气逆湿,并总结提出了绿洲与荒漠相互作用下热力内边界层的特征等等。国内外有关大气边界层和大气湍流的专著

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西方起源于收音机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书内容提供了有限元法的理论基础。美国的、 、 和等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,并说明了如何利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立方程,综合后作整体分析。 这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种方法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几何方程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{} e εδ=B {}ε为单元内任一点的应变列阵 (2) 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

第10章 湍流边界层

第10章 湍流边界层 10.1 壁面湍流特性和速度分布规律 当边界层内流体及管内流体处于层流流动状态时,流体受到壁面的限制仅仅表现在粘性切应力作用下,进行粘性旋涡的扩散;而当处于湍流流动状态时,流体受到壁面的限制则是在粘性切应力和湍流附加切应力的同时作用下,进行旋涡的扩散。 由于湍动旋涡的扩散速度远大于粘性旋涡扩散的速度,因此,在相同条件下,湍流速度边界层的厚度要比层流速度边界层厚。 但在高雷诺数的条件下,湍流速度边界层仍是贴近壁面的薄层,因此,建立湍流边界层方程的前提条件与层流时相同。 但是,由于两种切应力的作用,湍流速度边界层的结构要比层流速度边界层复杂得多。 因此,一定要先了解壁面湍流的分层结构和时均速度分布规律。 10.1.1 壁面湍流分层结构及其特性 在壁面湍流中,随着壁面距离的变化,粘性切应力和湍流附加切应力各自对流动的影响也发生变化。 以y 表示离开壁面的垂直距离,随着y 的增加,粘性切应力的影响逐渐减小,而湍流附加切应力的影响开始不断增大,而后逐渐减小。 这就形成了具有不同流动特征的区域。 壁面湍流速度边界层可以分为内层(壁面区),包括粘性底层、过度层(重叠层)和对数律层(完全湍流层);外层,包括尾迹律层和粘性顶层(间歇湍流层)。 定义 ()ρ τw x v v = =** (10.1.1) 因为*v 具有速度的量纲,故称为壁面切应力速度,它在湍流中是一个重要的特征速度。 以下对各层的划分做详细说明。 粘性底层:所在厚度约为* 5 0v y ν ≤≤,其内粘性切应力起主要作用,湍流附加切应力可以忽 略,流动接近于层流状态,因此在早期研究中称之为层流底层。 由于近期的实验研究,观察到该层内有微小旋涡及湍流猝发起源的现象,因此称为粘性底层。 过渡层:所在厚度约为* * 30 5 v y v ν ν ≤≤,其内粘性切应力和湍流附加切应力为同一数量级,流 动状态极为复杂。 由于其厚度不大,在工程计算中,有时将其并入对数律层的区域中。 对数律层:所在厚度约为()δν ν 2.01030 * 3 * ≈≤≤v y v ,其内流体受到的湍流附加切应力大于粘 性切应力,因而流动处于完全湍流状态。 由这三层组成的内层,称为三层结构模式,若将过度层归入对数律层,则称为两层结构模式。 外层中的尾迹律层和粘性顶层所在厚度分别约为δν 4.010* 3 ≤≤y v 和δδ≤≤y 4.0。 对于尾迹

流体力学常用英语词汇

流体动力学 fluid dynamics 连续介质力学 mechanics of continuous media 介质 medium 流体质点 fluid particle 无粘性流体 nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学 fluid kinematics 水静力学 hydrostatics 液体静力学 hydrostatics 支配方程 governing equation 分步法 fractional step method 伯努利定理 Bernonlli theorem 毕奥-萨伐尔定律 Biot-Savart law 欧拉方程 Euler equation 亥姆霍兹定理 Helmholtz theorem 开尔文定理 Kelvin theorem 涡片 vortex sheet 库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution 达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number 施特鲁哈尔数 Strouhal number 随体导数 material derivative 不可压缩流体 incompressible fluid 质量守恒 conservation of mass 动量守恒 conservation of momentum 能量守恒 conservation of energy 动量方程 momentum equation 能量方程 energy equation 控制体积 control volume 液体静压 hydrostatic pressure 涡量拟能 enstrophy 压差 differential pressure 流[动] flow 流线 stream line 流面 stream surface 流管 stream tube 迹线 path, path line 流场 flow field 流态 flow regime 流动参量 flow parameter 流量 flow rate, flow discharge 涡旋vortex 涡量 vorticity 涡丝 vortex filament 涡线 vortex line 涡面 vortex surface 涡层 vortex layer 涡环 vortex ring 涡对 vortex pair 涡管 vortex tube 涡街 vortex street 卡门涡街 Karman vortex street 马蹄涡 horseshoe vortex 对流涡胞 convective cell 卷筒涡胞 roll cell 涡 eddy 涡粘性 eddy viscosity 环流 circulation 环量 circulation 速度环量 velocity circulation 偶极子 doublet, dipole 驻点stagnation point 总压[力] total pressure 总压头 total head 静压头 static head 总焓 total enthalpy 能量输运 energy transport 速度剖面 velocity profile 库埃特流 Couette flow 单相流 single phase flow 单组份流 single-component flow 均匀流uniform flow 非均匀流 nonuniform flow 二维流 two-dimensional flow 三维流 three-dimensional flow 准定常流 quasi-steady flow 非定常流 unsteady flow, non-steady flow 暂态流 transient flow 周期流 periodic flow 振荡流 oscillatory flow 分层流 stratified flow 无旋流 irrotational flow 有旋流 rotational flow 轴对称流 axisymmetric flow 不可压缩性 incompressibility 不可压缩流[动] incompressible flow 浮体floating body 定倾中心 metacenter 阻力 drag, resistance

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

有限元分析的概念和理论

第五章有限元素方法

§5.1有限元素方法的基本思想 有限元素法是一套求解微分方程的系统化数值计算方法。它比传统解法具有理论完整可靠,物理意义直观明确,适应性强,形式单纯、规范,解题效能强等优点。 从数学上来说, 有限元素方法是基于变分原理。它不象差分法那样直接去解偏微分方程, 而是求解一个泛函取极小值的变分问题。有限元素法是在变分原理的基础上吸收差分格式的思想发展起来的。 采用有限元素法还能使物理特性基本上被保持, 计算精度和收敛性进一步得到保证。 有限元素法优点: - 降低实验所需成本 - 減少試验对象的变异困难 - 方便参数控制 - 可获得实验无法获得的信息

有限元素法基本概念: 元素(element),节点(node),连結元素 有限元素法的基本思想: ?实际的物理問題很难利用单一的微分方程式描述,更无法順利求其解析解. ?有限元素法是将复杂的几何外型結构的物体切割成许多简单的几何形状称之为元素. ?元素与与元素间以“节点”相连. ?由于元素是简单的几何形状,故可以順利地写出元素的物理方程式,並求得节点上的物理量. ?采用內插法求得元素內任意点的物理量.

§5.2二维场的有限元素方法 1. 场域划分的约定 三角形元素。三角形元素越小,场域的分割就越细,计算的精度就会越高。因而在实际应用中是按精度的要求来决定场域内各处三角形元素的大小。 一般规定每个三角形元素的三个边的边长尽量地接近,尽量避免三角形元素具有大的钝角,一般最长的一条边不得大于最短边的三倍。 在分割场域时要求各三角形元素之间只能以顶点相交,即两相邻的三角形元素有两个公共的顶点及一条等长的公共边。不能把一个三角形的顶点取在另一个三角形的边上。 划分时还应当注意要尽量地使由相邻边界节点之间的线段所近似构成的曲线足够光滑。 如果在场域D内有不同的介质,则需要将介质的交面线选为分割线。

有限元理论与技术-习题-弹性力学DOC

弹性力学 填空题: 1、连续体力学包括固体力学、流体力学、热力学和电磁场力学,非连续体力学包括量子力学。 2、弹性力学所研究的范围属于固体力学中弹性阶段。 3、弹性力学的基本假定为:连续性、完全弹性、均匀性和各向同性、变形很小、无初应力。 4、连续性假设是指:物体内部由连续介质组成,物体中应力、应变和位移分量为连续的,可用连续函数表示。 5、均匀性和各向同性假设是指:物体内各点和各方向的介质相同,即物理性质相同,物体的弹性常数杨氏模量和泊松比不随坐标和方向的变化而变化。 6、完全弹性假设是指:物体在外载荷作用下发生变形,在外载荷去除后,物体能够完全恢复原形,材料服从胡克定律,即应力与形变成正比。 7、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程为:平衡方程、几何方程和物理方程,三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。 8、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 9、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 10、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 11、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

12、建立平衡方程时,在正六面微分体的6个面上共有9个应力分量,分别为:,其中正应力为:,剪应力为:,这些应力分量与外载荷共同建立 3 个方程。 13、建立几何方程时,线应变为,角应变为,这些应变与位移共同建立6 个方程。 14、物理方程表示应力与应变的关系,即为胡克定律,其中弹性常数E和μ分别表示材料的杨氏模量和泊松比,物理方程组共包含 6 个方程。 15、平面问题分为平面应力问题和平面应变问题,两者所研究得对象分别为等厚度薄平板和等截面长柱体。 16、平面应力问题和平面应变问题基本方程中:平衡方程和几何方程相同,物理方程不相同。(相同或不相同) 17、表示应力分量与体力分量之间关系的方程为平衡微分方程。 15、边界条件表示边界上位移与约束,或应力与面力之间的关系式。 18、按应力求解平面问题时常采用逆解法和半逆解法。 19、弹性力学中边界条件通常可以分为:位移边界条件、应力边界条件和混合边界条件。 20、弹性力学问题的解法分为解析法、变分法和差分法,就解题方法而言,又分为如下两种方法:位移法和应力法。 21、将平面应力情况下的物理方程中的弹性模量E,泊松比 分别换成及就要得到平面应变情况下相应的物理方程。 22、位移法为物理方程与几何方程联立消除应变分量,得到应力与位移的函数方程式,再与平衡方程联立消除应力,得到载荷与位移的方程式。简答题: 1、在弹性力学中根据什么分别推导出平衡微分方程、几何方程、物理方程,这三个方程分别表示什么关系?

第8章湍流边界层中的动量传递

第八章湍流边界层中的动量传递 首先明确可用雷诺数表述层流与湍流的转折,以及该转折下的雷诺数的具体数值;其次,指出层流与湍流在微分方程的表述上的差异体现在湍流应力项,普朗特混合长度模型和Van Driest 模型均被用来解决湍流应力项;Couette 流动假设对于求解微分方程起了至关重要的作用;还讨论了有散逸和表面粗糙度的处理。 §8.1边界层流动现象的物理分析 流动:是成群的流体微团的运动。边界层内流动过程中的小扰动随机出现,由于小扰动的能量有限,因此仅仅会影响到个别流体微团的初始运动状况,但也因此而引发整体微团的流动状态。 层流:个体流体微团的流动方向,在整体上具有一致性的流动现象。个别流体微团因小扰动而引发的初始流动方向的改变,因为受到与相邻流体微团之间存在着的粘性力作用的影响,使得这种外界扰动的作用随着时间的推移而减小,最终使流动稳定。因此,层流流动的特点,很大程度上归因于流体微团之间存在着的粘性力,当层流受到外界扰动时,粘性力具有使层流恢复到初始未扰动状态的效应。 湍流:个体流体微团的流动方向,在整体上不具有一致性的流动现象。虽然小扰动影响的依然是个别流体微团,但此时微团之间的粘性力的作用,已经不足以消除小扰动造成的影响;反之,个别受扰动流体微团的不稳定流动,又将影响到周围流体微团,进而造成更大范围内的流体微团的不稳定流动。分析这种不稳定流动现象形成的因素,只能是因为流体微团的流动动能而引发,即所谓的流体的惯性力。因此,湍流流动的特点,在于流体微团自身的惯性力,它使得局部扰动扩大,造成整体流动的不稳定。 雷诺数:雷诺数就是惯性力与粘性力之比, μ ρux = = 粘性力惯性力Re 因此人们预料:层流流动的稳定性,在很大程度上和雷诺数的数值有关,稳定层流流动和低雷诺数值相联系。 流动沿程的定性结构: 由雷诺数的定义可知,边界层流动的初始前缘,必然是层流流动;以后,随着流动长度的增加,惯性力渐增,随机随处存在的小扰动而引发的个别微团的不稳定流动,也因此有逐渐扩大的可能性;当惯性力远大于粘性力后,湍流流动最终形成。在由层流最后扩展到完全湍流的过程中,必然存在一个过渡区,在这个区域内,惯性力和粘性力具有相同的数量级。 因此,流动沿程的定性结构为:首先是层流区,其次是过渡区,最后是湍流区。 临界雷诺数:因此,我们可以用雷诺数来描述流体流动的结构。于是必然存在某一临界雷诺数,该值确定了层流流动的上限或湍流流动的下限。现在通常讨论的是层流流动的上限。 临界雷诺数的一般性判据: 实验现象: ① 无压力梯度/光滑表面/简单层流:长度雷诺数=300,000—500,000时,发生过渡; ② 零压力梯度/层流:长度雷诺数<60,000时,仍保持稳定层流结构; ③ 管道中层流:水力直径雷诺数<2300时,层流流动仍然稳定。 上述临界雷诺数是在一定实验条件下获取的。希望建立与实验条件基本无关的关于临界雷诺数的一般性判据,假定过渡现象是局部的(小扰动随处存在,但只有在临界雷诺数出现的地方,才会出现过渡现象),则局部雷诺数判据具有一般性,这时我们已经忽略了平板流

第9章湍流边界层中的传热

第九章 湍流边界层中的传热 在层流边界层的处理中,只要粘性耗散项可以忽略不计,则能量方程就有着与动量方程相同的数学形式。这时,能量方程的解可直接引用动量方程的解。 在湍流边界层的处理中,我们已经有了动量方程的解。仿层流边界层中能量方程的解法,我们似乎也可以走直接引用湍流动量方程的解的解决途径。 与湍流动量方程一样,湍流能量方程中也有着类似的“封闭”问题。我们可以提出一种模型,以解决湍流能量方程存在着的“封闭”问题的过程中;我们也可以直接引用湍流动量方程解决封闭问题的结论,考察湍流能量方程的类似结论与湍流动量结论之间的关系。本章中的雷诺比拟就属于后一种处理方法。 §9.1湍流边界层能量方程的求解 §9.1.1动量-能量方程的比较 在定常、恒定自由流、全部流体物性处理成常数、忽略体积力和粘性耗散项可以忽略的情况下,湍流动量方程可以表为, 0''=???? ??-????-??+??v u y u y y u v x u u ρμ 湍流能量方程可以表为, 0''=??? ? ??-????-??+??v t y t c k y y t v x t u ρ 以上表示湍流边界层中的动量方程和能量方程在数学表述上具有类似的形式。 §9.1.2 雷诺比拟 在求解湍流动量方程“封闭”问题时,引入了普朗克混合长度理论,以计算' 'v u , y u l u ??='最大 和 y u kl v ??=' 最大 2 2' '''22 ??? ? ????=?= y u l k v u v u 最大 最大 混合长度定义式如下, 2 2''??? ? ????-=y u l v u 并且有, y l κ= 在求解湍流能量方程的“封闭”问题时,我们也可以引入一种计算' 'v t 的理论。 鉴于动量方程和能量方程在数学表述上具有相似性,我们还可以探索' 'v t 与' 'v u 之间是否存在着一种简单的关系,如果能够找到两者之间所存在的关系,就可以直接引用动量方程求解的结论。 ①因y 方向上脉动速度' v 的存在而引起的有效剪切应力和有效热通量的计算: 动量:() ()v u G G V G y x ++=?

边界层理论1

边界层(Boundary Layer)是高雷诺数绕流中紧贴物面的粘性力不可忽略的流动薄层,又称流动边界层、附面层。这个概念由近代流体力学的奠基人,德国人Ludwig Prandtl(普朗特)于1904年首先提出。从那时起,边界层研究就成为流体力学中的一个重要课题和领域。在边界层内,紧贴物面的流体由于分子引力的作用,完全粘附于物面上,与物体的相对速度为零。 边界层又称附面层,它是指流体流经固体表面时,靠近表面总会形成那么一个薄层,在此薄层中紧贴表面的流体流速为零,但在垂直固体表面的方向(法向)上速度增加的很快,即具有很大的速度梯度,甚至对粘性很小的流体,也不能忽略它表现出来的粘性力。而在此边界层外,流体的速度梯度很小,甚至对粘度很大的流体而言,其粘性力的影响也可以忽略,流体的流速与绕流固体表面前的流速V0一样。这样就可把边界层外流动的流体运动视为理想流体运动,不考虑粘性力的影响。边界层内、外区域间没有明显的分界面,而把边界层边缘上的流体流速V x视为V x=0.99 V0,因此从固体表面至V x=0.99 V0处的垂直距离视为边界层的厚度δ。这样大雷诺数下绕过固体的流动便简化为研究边界层中的流动问题。 边界层内的流动可以是层流,也可以是带有层流底层的紊流,还可以是层流、紊流混合的过渡流。 图1 边界层结构 综上所述,边界层的特征可归结为: (1)与固体长度相比,边界层厚度很小; (2)边界层内沿边界层厚度方向上的速度梯度很大; (3)边界层沿流动方向逐渐增厚; (4)由于边界层很薄,故可近似地认为,边界层截面上的压力等于同一截面上边界层外边界上的压力; (5)边界层内粘性力和惯性力士同一数量级的; (6)如在整个长度上边界层内都是层流,称层流边界层;仅在起始长度上的是层流,而在其他部分为紊流的称混合边界层。 以上定义的边界层为速度边界层,另外在其他学科领域中对于边界层的应用还是十分广泛的,主要有温度边界层和浓度边界层。 1.温度边界层 流体在平壁上流过时,流体和壁面间将进行换热,引起壁面法向方向上温度分布的变化,

有限元分析技术的应用

计算机辅助分析 题目:有限元分析技术的应用 学院:机电工程学院 专业:机械设计制造及其自动化 班级: 姓名: 学号: 年月日

有限元分析技术的应用 摘要 有限元单元法,简称有限元法,是伴随着电子计算机技术的进步而发展起来 的一种新兴数值分析方法,是力学、应用数学与现代计算技术相结合的产物。有 限元法是一种高效能、常用的计算方法。本文主要讲述了有限元的特点、作用、 基本思想、分析步骤,以及有限元的应用,除此之外,也对有限元的应用软件进 和有限元的发展趋势行了简单介绍。 关键词:有限元法,基本思想,应用软件,发展趋势 The application of finite element analysis technology Summary The finite element method, finite element method, is accompanied by advances in computer technology and the development of a new numerical analysis method, is a product of mechanics, applied mathematics and modern technology combine. The finite element method is an efficient computing method, commonly used. This paper mainly describes the characteristics, finite element function, basic thought, analysis steps, and the application of finite element method, in addition, also do a simple introduction on the application software of finite element and finite element development trend. Keywords: finite element method, the basic idea, application, development trend

有限元理论与方法讲

讲 授 内 容 备 注 第13讲(第13周) 4.1 结构动力学问题有限元方法 动力学问题在国民经济和科学技术的发展中有着广泛的应用领域。最经常遇到的是结构动力学问题,它有两类研究对象:一类是在运动状态下工作的机械或结构,例如高速旋转的电机、汽轮机、离心压缩机,往复运动的内燃机、冲压机床,以及高速运行的车辆、飞行器等,它们承受着本身惯性及与周围介质或结构相互作用的动力载荷。如何保证它们运行的平稳性及结构的安全性,是极为重要的研究课题。另一类是承受动力载荷作用的工程结构,例如建于地面的高层建筑和厂房,石化厂的反应塔和管道,核电站的安全壳和热交换器,近海工程的海洋石油平台等,它们可能承受强风、水流、地震以及波浪等各种动力载荷的作用。这些结构的破裂、倾覆和垮塌等破坏事故的发生,将给人民的生命财产造成巨大的损失。正确分析和设计这类结构,在理论和实际上也都是具有意义的课题。 动力学研究的另一重要领域是波在介质中的传播问题。它是研究短暂作用于介质边界或内部的载荷所引起的位移和速度的变化,如何在介质中向周围传播,以及在界面上如何反射、折射等的规律。它的研究在结构的抗震设计、人工地震勘探、无损探伤等领域都有广泛的应用背景,因此也是近20多年一直受到工程和科技界密切关注的课题。 现在应用有限单元法和高速电子计算机,已经可以比较正确地进行各种复杂结构的动力计算,本章阐明如何应用有限单元法进行动力分析。 4.1.1 运动方程 结构离散化以后,在运动状态中各节点的动力平衡方程如下 F i +F d +P (t )=F e (2-2-1) 式中:F i 、F d 、P (t )分别为惯性力、阻尼力和动力荷载,均为向量;F e 为弹性力。 弹性力向量可用节点位移δ和刚度矩阵K 表示如下 F e =K δ 式中:刚度矩阵K 的元素K ij 为节点j 的单位位移在节点i 引起的弹性力。 根据达朗贝尔原理,可利用质量矩阵M 和节点加速度22t ??δ 表示惯性力如下 22i t ??-=δ M F 式中:质量矩阵的元素M ij 为节点j 的单位加速度在节点i 引起的惯性力。 设结构具有粘滞阻尼,可用阻尼矩阵C 和节点速度 t ??δ 表示阻尼力如下 2d t ??-=δC F 式中:阻尼矩阵的元素C ij 为节点j 的单位速度在节点i 引起的阻尼力。 将各力代入式(2-2-1),得到运动方程如下 )(22t t t P K δδC δM =+??+?? (2-2-2)

最新有限元分析及其应用思考题附答案

有限元分析及其应用-2010 思考题: 有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 建立其受拉伸的微分方程及边界条件; 构造其泛函形式; 基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。 以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么? 答:强弱的区分在于是否完全满足物理模型的条件。所谓强形式,是指由于物理模型的复杂

相关文档