文档库 最新最全的文档下载
当前位置:文档库 › 实验五集成运放电路仿真及滤波器的设计

实验五集成运放电路仿真及滤波器的设计

实验五集成运放电路仿真及滤波器的设计
实验五集成运放电路仿真及滤波器的设计

实验五:集成运算放大电路测试及滤波器的测试

一、实验目的:

1、 进一步熟悉Muitisim 仿真软件电路原理图的创建过程。

2、 掌握利用转移函数分析法测量直接耦合放大电路的放大倍数、输入阻抗和输出阻抗

方法。

二、实验内容: (1)、

1、 由函数信号发生器产生频率1KHZ ,峰峰值为20uV 的两路正弦信号,测量输出端电压,

计算电路放大倍数。

课程名称 电子线路仿真 实验成绩 指导教师

实 验 报 告

院系 信息工程学院 班级 学号 姓名 日期

2、 利用转移函数分析法完成对电路放大倍数、输入电阻和输出电阻的测试。

(2)设计一个一阶低通有源滤波器:要求截至频率为10KHZ,电容选用1nF,Au=2。提示:运放采用uA147。并仿真验证之。

三、实验总结:

福州大学集成电路应用实验一

《集成电路应用》课程实验实验一 4053门电路综合实验 学院:物理与信息工程学院 专业: 电子信息工程 年级: 2015级 姓名:张桢 学号: 指导老师:许志猛

实验一 4053门电路综合实验 一、实验目的: 1.掌握当前广泛使用的74/HC/HCT系列CMOS集成电路、包括门电路、反相 器、施密特触发器与非门等电路在振荡、整形、逻辑等方向的应用。 2.掌握4053的逻辑功能,并学会如何用4053设计门电路。 3.掌握多谐振荡器的设计原理,设计和实现一个多谐振荡器,学会选取和 计算元件参数。 二、元件和仪器: 1.CD4053三2通道数字控制模拟开关 2.万用表 3.示波器 4.电阻、电容 三、实验原理: 1.CD4053三2通道数字控制模拟开关 CD4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH输入,具有低导通阻抗和低的截止漏电流。幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。CD4053的管脚图和功能表如下所示 4053引脚图

4053的8种逻辑功能 CD4053真值表 根据CD4053的逻辑功能,可以由CD4053由4053电路构成如下图所示8种逻辑门(反相器与非门或非门、反相器、三态门、RS 触发器、——RS 触发器、异或门等)。 输入状态 接通通道

]) 2)(()(ln[ T DD T DD T DD T V V V V V V V RC T -+--=2.多谐振荡器的设计 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 可以利用反相器设计出如下图所示的多谐振荡器 这样的多谐振荡器输出的信号周期计算公式为: 当R S ≈2R 时,若:VT=0.5VDD ,对于HC 和HCU 型器件,有 T ≈2.2RC 对于HCT 型器件,有 T ≈2.4RC 四、实验内容: 1. 验证CD4053的逻辑功能,用4053设计门电路,并验证其逻辑功能: (1)根据实验原理设计如下的反相器电路图: CD4053构成反相器电路

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

电路仿真实验报告

单片机原理及接口技术电路仿真实验报告 实验一:独立式键盘与LED显示示例 例4—17: 功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。 Keil编程: 电路图: 初始状态时:

3 秒后:程序: TEMP EQU 30H ORG 0000H JMP START ORG 0100H START:MOV SP,#5FH MOV P0,#8CH MOV P3,#0FFH NOKEY:MOV A,P3 CPL A JZ NOKEY MOV TEMP,P3 CALL D10ms MOV A,P3 CJNE A,TEMP,NOKEY MOV R7,#16 MOV R2,#0 LOOP:MOV A,R2 MOV DPTR,#CODE_P0 MOVC A,@A+DPTR MOV P0,A INC R2 SETB RS0 CALL D_1S CLR RS0 DJNZ R7,LOOP JMP START D_1S:MOV R6,#100 D10:CALL D10ms DJNZ R6,D10 RET D10ms:MOV R5,#10 D1ms:MOV R4,#249 DL:NOP NOP DJNZ R4,DL DJNZ R5,D1ms RET CODE_P0:DB 0C0H,0F9H,0A4H,0B0H,99H, 92H,82H,0F8H DB 80H,90H,88H,83H,0C6H,0A1 H,86H,8EH END 例4—18: 功能:执行程序时,先显示“P” 1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值; 2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值; 3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

3.2模拟集成电路设计-差分放大器版图

集成电路设计实习Integrated Circuits Design Labs I t t d Ci it D i L b 单元实验三(第二次课) 模拟电路单元实验-差分放大器版图设计 2007-2008 Institute of Microelectronics Peking University

实验内容、实验目的、时间安排 z实验内容: z完成差分放大器的版图 z完成验证:DRC、LVS、后仿真 z目的: z掌握模拟集成电路单元模块的版图设计方法 z时间安排: z一次课完成差分放大器的版图与验证 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page1

实验步骤 1.完成上节课设计放大器对应的版图 对版图进行、检查 2.DRC LVS 3.创建后仿真电路 44.后仿真(进度慢的同学可只选做部分分析) z DC分析:直流功耗等 z AC分析:增益、GBW、PM z Tran分析:建立时间、瞬态功耗等 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page2

Display Option z Layout->Options ->Display z请按左图操作 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page3

由Schematic创建Layout z Schematic->Tools->Design Synthesis->Layout XL->弹出窗口 ->Create New->OK >选择Create New>OK z Virtuoso XL->Design->Gen From Source->弹出窗口 z选择所有Pin z设置Pin的Layer z Update Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page4

电子科技大学集成电路原理实验CMOS模拟集成电路设计与仿真王向展

实验报告 课程名称:集成电路原理 实验名称: CMOS模拟集成电路设计与仿真 小组成员: 实验地点:科技实验大楼606 实验时间: 2017年6月12日 2017年6月12日 微电子与固体电子学院

一、实验名称:CMOS模拟集成电路设计与仿真 二、实验学时:4 三、实验原理 1、转换速率(SR):也称压摆率,单位是V/μs。运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。 2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。 3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。 4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。 5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。 6、输出电压摆幅:一般指输出电压最大值和最小值的差。 图 1两级共源CMOS运放电路图 实验所用原理图如图1所示。图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。M6、M7为二级放大电路,Cc为引入的米勒补偿电容。 其中主要技术指标与电路的电气参数及几何尺寸的关系:

转换速率:SR=I5 I I 第一级增益:I I1=?I I2 I II2+I II4=?2I I1 I5(I2+I3) 第二级增益:I I2=?I I6 I II6+I II7=?2I I6 I6(I6+I7) 单位增益带宽:GB=I I2 I I 输出级极点:I2=?I I6 I I 零点:I1=I I6 I I 正CMR:I II,III=I II?√5 I3 ?|I II3|(III)+I II1,III 负CMR:I II,III=√I5 I1+I II5,饱和 +I II1,III+I II 饱和电压:I II,饱和=√2I II I 功耗:I IIII=(I8+I5+I7)(I II+I II) 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。 五、实验内容 1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。 2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。 3、电路性能的优化与器件参数调试,要求达到预定的技术指标。

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

集成电路系统设计实验

实验一集成电路系统EDA软件使用简介 (基础性实验) 一实验目的 1、了解利用Quartus II 8.0 软件开发数字电路的基本流程以及掌握Quartus II软件 的详细操作。 2、了解使用VHDL原理图设计进行集成电路系统设计的实现方法。 3、掌握Quartus II 8.0 软件开发数字电路的基本设计思路,软件环境参数配置,时 序仿真,管脚分配,并且利用JTAG接口进行下载的常规设计流程。 二实验前的准备 1、将红色的MODUL_SEL拨码开关组合的1、 2、8拨上, 3、 4、 5、 6、7拨下,使数码 管显示当前模式为:C1. 2、检查JTAG TO USB转换接口和USB连接线的连接,并且将JTAG线连接到核心板上的 JTAG接口(核心板的第二个十针的插口)处。 三实验要求 学习使用Quartus II 8.0软件,掌握VHDL文本描述和原理图描述的RTL级描述方法。 四实验内容 (一)了解门电路元件库 1、新建原理图设计文件,并在原理图设计文件的基础上插入各种基本门电路元件,包 括与门、或门、非门、异或门等。 2、利用原理图图形编辑窗,将基本门电路元件进行连接,形成布线。 3、为连接好的门电路组合电路添加输入和输出端口。 (二)了解逻辑电路的仿真 1、保存原理图设计文件,新建时序仿真文件。 2、将各端口的信号标出,并对其实施功能仿真或时序仿真。并将仿真波形写入实验报 告。 (三)了解原理图文件的综合和下载 1、对原理图文件进行综合和引脚连结。 2、将对应FPGA端口连接至原理图电路端口中,并将原理图文件综合后的网表文件下载 到FPGA中,进行功能验证。 3、将硬件功能情况描述记录于实验报告中。

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

低通滤波器电路设计与实现

低通滤波器电路设计与实现 摘要 滤波器是一种二端口网络。它具有选择频率的特性,即可以让某些频率顺利通过,而对其它频率则加以阻拦。目前由于在雷达、微波、通讯等部门,多频率工作越来越普遍,对分隔频率的要求也相应提高,所以需用大量的滤波器。再则,微波固体器件的应用对滤波器的发展也有推动作用,像参数放大器、微波固体倍频器、微波固体混频器等一类器件都是多频率工作的,都需用相应的滤波器。低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用有源二阶巴特沃斯低通滤波器可达到本次设计要求的指标,可调增益部分通过电压跟随器和反相放大器来实现可调增益。 关键词:低通滤波器,巴特沃斯滤波器,频率响应

Low-pass filter circuit design and Achieve Author: Shang Shiwei Tutor: Song Jiayou Abstract Filter is a kind of two-port network. It has the characteristics of frequency choice, that can make some frequency pass, but to other frequency is to stop, because now in radar, microwave, communication, and other departments, more work frequency is becoming more and more common, the requirements of the frequency of space also increase; So need a lot of filter. Moreover, the application of microwave solid device for the development of the filter can boost, as parameters amplifiers, microwave solid times frequency device, microwave solid mixers, kind of device is working frequency, need corresponding filter. Low pass filter is a through the low frequency signal and attenuation or inhibit the high frequency signal components. Ideal filter circuit frequency response in bandpass should have certain amplitude and linear phase shift, and in which the amplitude with inner resistance should be zero. Active filter is to point to by amplifying circuit and network structure of RC filter circuit, it is actually a particular frequency response of the amplifier. The order number of filter, the higher amplitude frequency characteristics of the attenuation rate faster, but RC network's day, more component parameters are calculated the more detailed, the more difficult the commissioning of the circuit. According to the index, the design choose active second order bart wo low-pass filter can achieve the design requirements of the index, adjustable gain through the voltage of follow and reversed-phase amplifier to achieve adjustable gain. Key words:Low-pass filter,Butterworth filter,Frequency response

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

低通滤波器设计整理

1、低通滤波器(LPF) 低通滤波器是用来通过低频信号,衰减或抑制高频信号。 如图13-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图13-2(a)二阶低通滤波器电路图 图13-2(b)二阶低通滤波器电路仿真图 电路性能参数: 二阶低通滤波器的通带增益

截止频率,它是二阶低通滤波器通带与阻带的界限频率。 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图13-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图13-3所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH分析方法,不难求得HPF的幅频特性。 图13-3 二阶高通滤波器电路图 电路性能参数A uf、f0、Q各量的函义同二阶低通滤波器 3、带通滤波器(BPF)

图13-4 二阶带通滤波器 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图13-4所示。 电路性能参数: 通带增益中心频率 通带宽度选择性 的比例就可改变频宽而不影响中心频率。 此电路的优点是改变R f和R 4 4、带阻滤波器(BEF) 如图13-5所示,这种电路的性能和带通滤波器相反,即在规定的频带内,信号不能通过(或受到很大衰减或抑制),而在其余频率范围,信号则能顺利通过。

模拟集成电路设计经典教材

1、 CMOS analog circuit design by P.E.ALLEN 评定:理论性90 实用性70 编写 100 精彩内容:运放的设计流程、比较器、 开关电容 这本书在国内非常流行,中文版也 翻译的很好,是很多人的入门教材。 建议大家读影印版,因为ic 领域 的绝大部分文献是以英文写成的。 如果你只能读中文版,你的学习资料 将非常有限。笔者对这本书的评价 并不高,认为该书理论有余,实用性 不足,在内容的安排上也有不妥的地 方,比如没有安排专门的章节讲述反 馈,在小信号的计算方面也没有巧方法。本书最精彩的部分应该就是运放的设计流程了。这是领域里非常重要的问题,像Allen 教授这样将设计流程一步一步表述出来在其他书里是没有的。这正体现了Allen 教授的治学风格:苛求理论的完整性系统性。但是,作为一项工程技术,最关键的是要解决问题,是能够拿出一套实用的经济的保险的方案。所以,读者会发现,看完最后一章关于ADC/DAC 的内容,似乎是面面俱到,几种结构的ADC 都提到了,但是当读者想要根据需求选择并设计一种ADC/DAC 时,却无从下手。书中关于比较器的内容也很精彩,也体现了Allen 教授求全的风格。不过,正好其它教科书里对比较器的系统讲述较少,该书正好弥补了这一缺陷。Allen 教授是开关电容电路和滤波器电路的专家。书中的相关章节很适合作为开关电容电路的入门教材。该书的排版、图表等书籍编写方面的工作也做的很好。像Allen 这样的理论派教授不管在那所大学里,大概都会很快的获得晋升吧。另外,Allen 教授的学生Rincon Moca 教授写的关于LDO 的书非常详尽,值得一读。 2、 CMOS Circuit Design Layout and Simulation CMOS Mixed-Signal Circuit Design by R.J.Baker 评定:理论性80 实用性100 编写80 精彩内容:数据转换器的建模和测量、hspice 网表这本书的风格和Allen 的书刚好相反: 理论的系统性不强,但是极为实用,甚至给出 大量的电路仿真网表和hspice 仿真图线。 这本书的中文版翻译的也很好。最近出了第二 版,翻译人员换了,不知道翻译的水平如何。 不过,第二版好贵啊~~ Baker 教授在工业界 的实战经验丰富,曾经参加过多年的军方项目 的研发,接收器,锁相环,数据转换器,DRAM 等曾设计过。所以,书中的内容几乎了包含 了数字、模拟的所有重要电路,Baker 教授

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

RC低通滤波器设计

RC低通滤波器 1、电路的组成 所谓的低通滤波器就是允许低频信号通过,而将高频信号衰减的电路,RC低通滤波器电路的组成如图3-17所示。 2、电压放大倍数 在电子技术中,将电路输出电压与输入电压的比定义为电路的电压放大倍数,或称为传递函数,用符号A u来表示,在这里A u为复数,即 令,则 (3-19) 的模和幅角为 (3-20)

(3-21) 式3-19称为RC低通电路的频响特性,式3-20称为RC低通电路的幅频特性,式3-21称为RC低通电路的相频特性。在电子电路中,描述电路幅频特性和相频特性的单位通常用对数传输单位分贝。 3、对数传输单位分贝(dB)的定义 在电信号的传输过程中,为了估计线路对信号传输的有效性,经常要计算的值。式中的P0和P i 分别为线路输出端和输入端信号的功率。当多级线路相串联时,总的的值为: 对上式取对数可简化计算,利用对数来描述的,被定义为对数传输单位贝尔(B)。即 (3-22) 贝尔的单位太大了,在实际上通常用贝尔的十分之一为计量单位,称为分贝(dB)。即,1B=10dB。 因为,所以,对于等电阻的一段网络,贝尔也可用输出电压和输入电压的比来定义。即 (3-23) 当电压放大倍数用dB做单位来计量时,常称为增益。根据增益的概念,我们通常将对信号电压的放大作用是100倍的电路,说成电路的增益是40dB,电压放大作用是1000倍的电路,说成电路的增益是6 0dB,当输出电压小于输入电压时,电路增益的分贝数是负值。例-20dB说明输入信号被电路衰减了10倍。 4.低通滤波器的波特图 利用对数传输单位,可将低通滤波器的幅频特性写成

模拟集成电路设计期末试卷..

《模拟集成电路设计原理》期末考试 一.填空题(每空1分,共14分) 1、与其它类型的晶体管相比,MOS器件的尺寸很容易按____比例____缩小,CMOS电路被证明具有_ 较低__的制造成本。 2、放大应用时,通常使MOS管工作在_ 饱和_区,电流受栅源过驱动电压控制,我们定义_跨导_来 表示电压转换电流的能力。 3、λ为沟长调制效应系数,对于较长的沟道,λ值____较小___(较大、较小)。 4、源跟随器主要应用是起到___电压缓冲器___的作用。 5、共源共栅放大器结构的一个重要特性就是_输出阻抗_很高,因此可以做成___恒定电流源_。 6、由于_尾电流源输出阻抗为有限值_或_电路不完全对称_等因素,共模输入电平的变化会引起差动输 出的改变。 7、理想情况下,_电流镜_结构可以精确地复制电流而不受工艺和温度的影响,实际应用中,为了抑制 沟长调制效应带来的误差,可以进一步将其改进为__共源共栅电流镜__结构。 8、为方便求解,在一定条件下可用___极点—结点关联_法估算系统的极点频率。 9、与差动对结合使用的有源电流镜结构如下图所示,电路的输入电容C in为__ C F(1-A)__。 10、λ为沟长调制效应系数,λ值与沟道长度成___反比__(正比、反比)。 二.名词解释(每题3分,共15分) 1、阱 解:在CMOS工艺中,PMOS管与NMOS管必须做在同一衬底上,其中某一类器件要做在一个“局部衬底”上,这块与衬底掺杂类型相反的“局部衬底”叫做阱。 2、亚阈值导电效应 解:实际上,V GS=V TH时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当V GS

相关文档
相关文档 最新文档