文档库 最新最全的文档下载
当前位置:文档库 › 催化分馏塔塔顶结盐原因分析_关晓珍

催化分馏塔塔顶结盐原因分析_关晓珍

催化分馏塔塔顶结盐原因分析_关晓珍
催化分馏塔塔顶结盐原因分析_关晓珍

催化分馏塔塔顶结盐原因分析

关晓珍 张广清

锦州石化公司设备研究所(辽宁省锦州市 121001)

摘要:根据重油催化裂化分馏塔塔顶出现结盐这一情况,阐述了出现结盐的原因,是由于二次加工原料重质化,氯、硫、氮等杂质含量增加而引起的。加强“一脱三注”工艺管理、开发新型催化剂和完善腐蚀监控措施可防止结盐发生。

关键词:催化裂化 结盐 采取 措施

近时期,随着原油的变重,各种腐蚀介质含量愈来愈高,随之而来的装置设备腐蚀、结盐、结垢等问题严重影响着各装置的设备长周期安全运行,特别是重油深度加工装置,它直接关系到炼油厂的综合经济效益。下文对二催化分馏塔塔顶结盐情况加以介绍。

1 分馏塔塔顶结盐情况

二套催化裂化装置于1990年10月投入运行,采用同高并列式提升管催化裂化工艺。其原料为焦化蜡油、常压渣油,有时常渣比例多达一半以上。从装置多年运行情况看腐蚀较重,这与原料组成好坏有直接关系。1997年1月二套催化裂化反应系统分馏塔出现异常,塔顶12层塔盘的压降是正常值的3倍,塔顶温度难以控制。采样分析,水中氯离子、氨离子含量很高。迹象表明,分馏塔顶出现结盐。

2 结盐原因

二套催化裂化分馏塔塔顶馏分含盐高,是塔顶结盐的主要原因。盐中的主要成分是氯离子(水样分析含氯离子5198mg/L)、铵离子(2243mg/L)、其次还有一些杂质。经过三个多小时的水洗,水中氯离子降至63mg/L,铵离子降至129mg/L。

2.1结盐介质的来源及组成

结盐介质主要来自原油中的无机盐,虽然其含量因原油产地不同而不同,但它们在加工过程中受热而水解,形成各种活性腐蚀结盐介质,如氯化物、氰化物、硫化物、氧化物等。设备的结盐和腐蚀常常同时发生。

结盐的组成一般包括无机物、腐蚀产物和有机聚合物等。各成分含量不一,相差很大。结盐中无机物绝大多数是氯化钠(NaCl)、氯化钙(Ca Cl2)和氯化镁(MgCl2)。原油加工时,虽然氯化钠不水解,但氯化镁和氯化钙却易受热水解生成强烈的腐蚀介质氯化氢:

MgCl2+2H2O Mg(OH)2+2HCl

CaCl2+2H2O Ca(OH)2+2HCl

随着温度的上升,水解率迅速增加,在343℃左右时氯化镁水解率达92%,氯化钙的水解率约10%。由此可以看出,装置的腐蚀介质氯化氢(HCl)主要来自原油中镁盐的水解。

一般来说,原油中盐类水解生成氯化氢量的多少与下列因素有关:

(1)钙镁盐的含量 由于公司目前炼制的属多地区性原油,钙镁盐含量相差很大,其中钙镁盐含量高的原油产生的氯化氢量也越大。

(2)盐水的浓度 根据盐的水解率与盐浓度的关系可知,盐含量越低,转化为氯化氢的百分比则越大。

(3)原油的酸值 原油中的有机酸能促进氯化物的水解。不同原油其酸值是不同的,酸值高的原油发生水解的几率更高。1997年一季度原油酸值为2.33KOHmg/g,这势必加速了原油中盐的水解。

(4)原油中的杂质 结垢中还存在着铁、铜等重金属盐,它们常以灰分的形式留在渣油中,而这些渣油作为催化的原料给盐的水解增添了某种催化促进作用。而氨的主要来源是催化原料中的氮。据资料介绍,大约5%的原料氮在蒸气气化过程中被释放出来。作为裂化的结果,约3%的原料氮以氨的形式存在。公司1997年一季度原油中的氮含量为4142.6mg/kg。随着原油的深度加工,原油中的氮化物得到了更多的水解,在催化裂化原料中,氮含量的范围大约从0.05%~0.35%,大多数的氮

装置·设备 石油化工腐蚀与防护

2001,18(5)·24·

可以预料其不是存在于油浆中,就是存在于催化剂的焦炭上,而从分馏塔塔顶结盐可以分析出油浆中氮含量占据的量是很大的。而原料中45%的氮进入到液相产品中,大约10%或更少一些存在于气体和轻质产品气体中。从1997年一季度原油性质与1996年四季度相比,基本上没有变化,只是航煤碱性氮增大,各馏分油总氮也增大,这充分说明了原油中的大部分氮化物仍保留在催化裂化的各馏分中,且氮含量随馏分沸点升高而增大。

2.2结盐原因分析

随着炼油工业二次加工原料的重质化,使得原料中的氯、硫、氮等其它杂质含量不断增加,这些物质或者他们之间的反应产物就成为二次加工装置的主要腐蚀结盐性物质,尤其是二催化分馏塔中大量的氯离子、氨离子在适宜的腐蚀环境中形成了大量的氯化铵,堵塞了塔盘。加之其它杂质形成的盐垢,这是分馏塔塔顶结盐的主要原因。

来自设备的金属腐蚀产物,包括硫化铁、氧化铁或其它金属的硫化物或氧化物等,这些腐蚀产物能加速结盐的生成。分馏塔在运行中由于设备材质与水及水蒸气直接反应:

3Fe+4H2O Fe3O4+4H2←

上述反应产生的疏松结垢层,比在空气中的垢层富于孔隙更容易脱落。这一反应尽管速度慢,但分馏塔经过开车前的蒸汽吹扫及一年多的运行,加之结盐介质的不断增加,Fe3O4的含量则逐日增多。另外,系统中尽管存在着少量的氧,在一定温度条件下,可发生如下反应:

4Fe+3O22Fe2O3

生产过程中的锈蚀垢物反应:

3FeS+2O2Fe3O4+3S

4FeS+O2+4H2O2Fe2O3+4H2S

在分馏塔内发生一系列上述反应,使金属塔壁进一步受到不同程度的腐蚀破坏。同时由于锈垢层不断变得疏松,随之脱落,沉积在分馏塔塔盘上,其中的硫化铁也大部分转变成为氧化铁垢。

1997年一季度原油氮含量4142.6mg/kg,经外厂大量实践证明,大约有45%的原料氮进入液相产品,而一半以上存在于塔底渣油中。公司二套催化裂化原料中渣油的掺炼比正逐年提高(从1992年10%增加到1996年的40.8%),由此说明氮含量也在逐年增加。这些原料在催化裂化反应中,氮化合物除分解为氨外,还产生相当数量的腐蚀极强的氰化物(CN-),尤其是提升管裂化中氮及氰化物的发生量则更大。这些氨与氯发生反应生成大量的氯化铵,构成固体氯化铵垢下腐蚀:

HCl+NH3NH4Cl

在分馏塔塔顶结盐时,对1997年1月份分馏塔塔顶馏出的含硫污水进行了分析,结果见表1。

表1 含硫污水分析(1997年)mg/L 日期Cl-Fe2+S2-NH4-

01-953.12.55451.1-

01-1653.15.88140.01260

01-23413.13.65002.93640

01-30533.02299.5-

从表1看出,1月23日氯离子含量比以往高出约7.8倍,氨氮含量3640mg/L,也比1月16日高两倍多,硫含量也很高。说明氯与氨生成了大量的氯化铵,加之氰化物和氯离子对锈层有强烈的渗透和破坏作用,使垢层疏松和剥落并大量堆积在塔内堵塞塔盘。

3 存在的问题及防护措施

结盐和腐蚀一样都严重地损害着设备。在很多情况下,设备结盐是决定装置运转周期长短的主要制约因素。设备结盐还会引起垢下腐蚀,如点蚀和应力腐蚀开裂等。由此看出,分馏塔的结盐不仅影响产品质量,而且容易使自身及后序设备发生垢下腐蚀。

3.1“一脱四注”存在的问题

从常减压“一脱四注”脱后含盐含水情况看并不理想。目前平均脱前含盐11.4mg/L,脱后含盐6.7mg/L,脱盐率41.2%,未达到总公司要求的小于3mg/L。由此可见,当务之急是做好“一脱四注”工作,以找出最佳破乳剂型号和最佳操作条件,以使原油脱后含盐控制在3mg/L以下,以避免分馏塔结盐和腐蚀。

3.2渣油掺炼带来的问题

公司二套催化裂化装置掺炼渣油的比例逐年增加,而且原油质量不断变重,在没有改进装置的情况下,增加渣油的掺炼比具有一定的困难,因此应改用新型催化剂,其目的是在常规的催化裂化装置中比较有效地处理渣油以及提高装置产品质量。目前在日本已研究开发一种新的超稳Y型(USY)沸石和一种新的含CHZ的催化裂化催化剂,它有助于改善渣油裂化能力,减少气体和焦炭的生成,并且能提高催化汽油的质量。不妨做一些这方面的探讨,以使常规催化裂化装置能有效地处理渣

·

25

·

 第5期 关晓珍等.催化分馏塔塔顶结盐原因分析

油。

3.3腐蚀监控

催化分馏塔塔顶结盐,在其他炼油厂也曾出现过,应吸取其经验,随时注意进行现场监控。现场工艺条件的变化、操作不稳定等偶然因素或者控制腐蚀的工艺失调都会使设备受到严重腐蚀或结盐。结盐发生的条件和范围甚广,如在38~530℃馏分,操作温度130~480℃,金属壁温204~538℃的范围内,都可能有不同程度的结盐发生。因此应注意观察分馏塔各种成分的化学分析,随时掌握现场设备的腐蚀结盐情况,以便及时制定出经济有效的控制方案。

催化裂化装置运行的好坏对企业提高深度加工水平、增加经济效益起着重要的作用。由于设备腐蚀和结盐及其它不利因素的影响,每年约报废三分之一左右的相应钢材,数量相当惊人。如何防止设备的腐蚀与结盐,找出一条提高催化裂化装置经济效益的新途径,是摆在人们面前的迫切任务。

(收稿日期:2001-01-20)

(上接第23页)

(1)低温H2S-CO2-H2O的腐蚀延迟焦化装置产生的硫化氢、二氧化碳和氨,形成H2S-C O2-H2O腐蚀体系。碳钢设备在该体系中会发生应力腐蚀开裂。如焦化的贫富液换热器(E302)的壳体,材质为16MnR,在焊缝和本体上多次发生开裂。

(2)高温H2S腐蚀稳定塔底重沸器等处于高温硫腐蚀环境中,碳钢设备发生高温硫腐蚀。

2.2防护措施

(1)合理选材 稳定塔底重沸器、稳定塔顶后冷器、解吸气冷却器管束选用18-8,一些腐蚀严重管道采用Cr5Mo。吸收稳定三塔的塔内件选用奥氏体不锈钢,容器内壁(稳定塔顶回流罐)进行喷铝处理。

(2)水洗 有效的水洗会稀释和洗涤腐蚀性物质,如H2S、氯化物和氰化物。注水点可选在富气压缩机后出空冷进水冷却器前的管线上。在生产过程中采用气压机出口注入洗涤水的办法来脱除硫化氢和氰化物,达到减轻腐蚀的目的。

(3)停工保护停工期间对闲置设备及时采取充氮气和加入气相缓蚀剂的保护措施。

(4)控制应力水平在设备制造、安装过程中尽量降低应力水平,对塔体、管道焊后进行热处理。

(5)定点定期测厚做好设备、管道定点测厚工作,对焊缝进行定期检查。

3 硫磺回收装置

3.1高温硫腐蚀

硫磺反应炉燃烧后的高温含硫过程气,组成为H2S、SO2、硫蒸气、CO2、水蒸气等,这些介质常以复合形式产生腐蚀。当碳钢设备处于310℃以上高温时,碳钢就会发生高温硫化腐蚀。腐蚀部位主要在反应燃烧炉的内构件(如反应气的壳体、酸性气烧嘴、燃料气烧嘴),反应炉废热锅炉进口管箱与传热管前端等处。

3.2低温电化学腐蚀

燃烧炉和冷凝器耐热衬里损坏后,过程气窜入衬里内造成设备腐蚀。装置停工后,当大量空气进入系统后,由于在露点以下,系统内会产生凝结水并吸附在设备上或衬里上,与残留在系统中的SO2生成H2SO3,其腐蚀较装置运行期间要严重得多。

3.3大气腐蚀

该装置排放的硫化物、氮化物、C O、CO2等废气以及固体尘粒(如碳和碳化物、硅酸盐粉尘等)不仅污染环境,而且对金属产生大气腐蚀。影响大气腐蚀的因素很多,主要是大气的成分、湿度、温度等。它会造成装置设备、框架结构的防腐蚀涂层过早损坏脱落,保温铁皮腐蚀穿孔,雨水漏入保温层内造成设备和管道的腐蚀。

3.4硫磺回收装置的防护

(1)采用耐蚀材料反应器内件丝网格栅用316L,贫富液换热器采用316L等;隔热采用轻质氧化铝浇注料和高铝浇注料;反应炉燃烧器烧嘴采用310S;地下液硫池采用混凝土结构。

(2)工艺控制为防止反应器壳体高温硫化物腐蚀和低温酸性气露点腐蚀,需控制壳体的壁温在150~325℃,外壁采用保温层;SCOT炉内燃料气和空气在计量配风下燃烧,既产生热量又产生还原气,对燃烧气和空气的配比有十分严格的要求。尤其在燃料气组分发生变化的情况下,既要防止不足空气燃烧产生碳黑,又要防止过量空气燃烧使催化剂和溶剂失活,避免造成急冷塔腐蚀和堵塞。

(收稿日期:2001-04-16)

·

26

·

石油化工腐蚀与防护 第18卷 

Corrosion Protection Technologies for the Process Units Pro-cessing Imported High-sulfur C rudes

Jia Penglin

In processing high-sulfur crudes,such problems as wet low -temperature H2S corrosion,high-temperature sulfur corrosion, polythionic acid corrosion and dew point corrosion of sulfuric acid, etc often occur.The practical measures for corrosion protection in process ing high-sulfur crudes were discussed and several aspects demanding attention in the technology develop ment were present-ed.

Keywords high-sulfur crude,corrosion,protection mea-sure,technology development

Corrosion Protection Coating and Ni-P Plating for Heat Ex-changers in Petrochemical Services and Technology Develop-ment

Yu Cunye

The application techniques and process of organic coatings and Ni-P plating for anti-corrosion and anti-fouling of Petro-chemical heat exchangers were reviewed.The development trend of corrosion resistant heat exchangers using composite plating and coating was introduced.

Keywords heat exchanger,erosion protectio n,organic coat-ing,Ni-P plating,application,plating

Polymer Type Anti-fouling Inhibitor for Cooling Water and Research Development

Yu Xiangu o,Li G uoxi,Li Qingsong

The types,characteristics and the research develop ment of polymer type anti-fouling inhibitors were introduced in detail. The major polymer type anti-fouling inhibitors were natural high polymers,CA,PCA,sulfonic based copolymers and environmen-tally friendl y copol ymers etc.Environmental protection demanded that great efforts s hould be put into the development and applica-tion of biologically degradable non-phosphorus n on-nitrogen and environ mentall y friendly new anti-fouling inhibitors. Keywords polymers,anti-fouling inhi bitor,cooling w ater Corrosion of Crude Distillatio n Unit in C hang ling Refinery

G ong Desheng,Chen Xuebin

The variation trend of crude oil properties and variation laws of acid value and sulfur content in distillates in Changling Refinery were described.The equipment corrosion and corrosion patterns in the distillation unit were sum marized.It was concluded that the se-lection of16MnR+316L composite steel plate,18-8stainless steel and A3+316L composite plate for could reduce the corrosion in corrosive low-temperature light oil and high-temperature heavy oil service.

Keywords distillation unit,material selection

Corrosion of Crude Distillation Unit Processing High-acid-value C rude and High-sulfur C rude

An Hui,Zhaoyan

The corros ion environ ment,corros ion status,corrosion mech-anisms and corrosion protection measures for the crude distillation unit processin g Liaohe high-acid-value crude and high-sulfur imported crudes in Jinxi Petrochemical Company were introduced. One overhaul in two years could be realized by upgrading materi-als,selecting alu minum diffused steels,applying high-tempera-ture corrosion inhibitors and strengthening”one removal and three injections”.

Keywords Liaohe crude,high acid value,corrosion,alu-m inum diffused steel,GX-195high-temperature corrosion inhibitor,”one removal and three injections

Corrosion of the Delayed C oker in Maoming Petrochemical Company and Protection

Liu Xiaohui

The coker dru m,furnace,vessels and piping of the delayed coking unit in Maomin g Petrochemical Company suffered corrosion of different degrees.The30years old unit is now operating very s moothl y and reliably after spray of aluminu m on the internal wall of the coker drum,replacement of carbon steel high-temperature piping with Cr-Mo one,application of alu minum diffused furnace tubes and strengthened monitorin g of corrosion.

Keywords coking,corrosion,material selection,monitoring Corrosion of FCC U,Delayed Coker and Sulfur Recovery Unit and Protection

Yuan Jungu o

As the high-sulfur crude oil accounted to half of the total crude oil processed by Zhenhai Refining&Refining Company,the fluid catalytic crackin g unit,delayed coking unit and s ulfur recov-ery unit were corroded in different degrees.The material selection, process corrosion protection meas ures and precautions in eq uipment fabrication for the corrosive section of above units were described. Keywords high-sulfur crude,corrosion,m aterial selection, process measure

Cause Analysis of Overhead Salt Deposit of FCC Main Frac-tionator

Guan Xiao zhen,Zhang G uangqing

The analysis of the salt depositing on the overhead of heavy oil FCC main fractionator concluded that the heavier feedstocks of the upgradin g units and increase of the impurities like chloride, sulfur and nitrogen etc were the culprits.The salt depositing could be prevented by strengthening”one removal and three injections”, applying new catalyst and improving the corrosion monitoring. Keywords fluid catalytic cracking,salt depositing,measure Cause Analysis of C orrosion Blocking of Crude Oil Stabilizer and Countermeasures

Z hao Q ingping,Yan W eiyou

The analysis of the corrosion blocking of the crude oil stabi-lizer has found that the corrosion and blocking were mainly caused by HCl,H2S,NH3,H2O and O2etc.The corrosion blocking could be eliminated by improving”one removal and two injec-tions”,injecting amine instead of ammonia and enhancing s ulfur removal rate,etc.

Keywords blocking,,corrosion,fouling HS-2000neutraliz-ing corrosion inhibitor

Corrosion of Piping in Wet Hydrogen Sulfide Environment and Protection

Liu Haibin,M o Shao ming

The corrosion of the outlet piping of high-pressure air cooler of the hydrotreating unit and the outlet piping of the overhead air cooler of amine regenerator of the low-pressure acid gas desulfur-izer of the heavy oil hydroprocessing unit was analyzed.It was concluded that H2S content,fluid velocity,temperature and con-struction of material were the major factors for the corros ion.The corrosion could be prevented by controlling the flow velocity within 0.40.61m/s,selecting proper materials,injecting corrosion in-hibitors and strengthening corrosion monitoring.

Keywords hydroprocessing unit,wet hydrogen sulfide envi-

ABSTRACTS Petrochemical Corrosion and Protection

Bimonthly,Volume18,No.5October,2001

浅谈催化裂化装置中分馏塔塔顶压力

浅谈催化裂化装置中分馏塔塔顶压力 的影响因素 炼油一车间 赵强

浅谈催化裂化装置中分馏塔塔顶压力 的影响因素 赵强 (乌石化炼油厂一车间) 前言:催化裂化分馏塔的主要任务是将来自反应系统的高温油气脱过热后,根据各组分沸点的不同切割为富气、汽油、柴油、回炼油和油浆等,通过温度,压力,回流量等工艺因素控制,保证各馏分质量合格。 关键词:催化裂化,分馏塔,压力,汽油,柴油,回炼油,油浆 一 基本情况介绍: 蜡油催化裂化装置近期在生产过程中,分馏塔顶压力一直不好控制,从原来的115kPa 下降到113kPa 在到现在的110kPa ,如图(一), 分馏塔顶压力月平均 111 111.5112112.5113113.5114114.5115115.5 1月份 2月份 3月份 4月份 5月份 6月份 图1 2008年1月份到6月份 在我装置生产过程中,分馏塔顶压力要控制在105kPa 到135kPa 之间,从上述据上看分馏塔的压力都在正常控制压力之内,但是在近期的观察中,发现分馏塔顶压力一直在降低。在催化裂化装置中分馏塔顶压力是控制 各侧线流出产品质量的重要参数,分流塔顶压力的过高或过低都会使产品的质量受到很大影响,当分馏塔顶压力过低时,粗汽油的干点就会升高,而柴油的终馏点却会降低;当分馏塔塔顶压力过高则反之。而汽油

的干点说明了汽油在发动机 中蒸发完全的程度,这个温度过高,说明重 质成分过多,其结果是降低发动机的功率和 经济性,因此我们要控制好分馏塔的压力。 二原因分析: 影响分馏塔顶压力的主要原因有以下几点:原料的性质,反应温度,反应压力,催化剂的活性,分馏塔顶的温度,分馏塔的中部温度,塔底的气相温度,分馏塔的顶部及各中部回流量,气压机的转速,塔顶的安全阀,以及Dg400,Dg200阀的开度等因素,下面从原料性质,分馏塔中部温度,分馏塔底汽相温度3个方面来分析分馏塔顶压力。2.1 在催化裂化装置中,分馏塔顶的压力来源于原料裂解之后经过分馏塔的各中段回流和塔顶回流之后的不凝气体,这些气体是通过高温催化剂和原料的相互接触使原料裂解而生成的,所以分馏塔的压力和原料的性质,催化剂的活性,反应温度都有关系,下面就是6月15日到6月17日之间原料性质和反应温度的变化情况; 原料性质变化情况 罐位初馏点℃5% 10% 50% 90% 终馏点℃残碳密度 5号285 320 340 420 505 555 0.17 881.6 6号277 344 360 435 521 --- 0.21 882.9 7号270 325 345 430 515 570 0.12 881.7 反应温度变化情况 6月15日6月16日6月17日 反应温度塔顶压力反应温度塔顶压力反应温度塔顶压力1点485113485113489111 3点485113485113489110 5点485113484113487110 7点485114484113487109 9点485113484113487110 11点484113483112488111 13点484113483113487108 15点484112487114481109 17点482114488113481109 19点483113489113482111 21点484113489111482110 23点486113489111480110平均值484.3333113.0833485.8333112.6667485109.8333

重油催化裂化

对重油催化裂化分馏塔结盐原因分析及对策 王春海 内容摘要 分析了重油催化裂化装置发生分馏塔结盐现象的原因,并提出了相应的对策。分馏塔结盐是由于催化原料中的有机、无机氯化物和氮化物在提升管反应器中发生反应生成HCl和NH3 ,二者溶于水形成NH4Cl溶液所致。可采取尽可能降低催化原料中的含盐量、对分馏塔进行在线水洗、利用塔顶循环油脱水技术等措施,预防和应对分馏塔结盐现象的发生。 关键词: 重油催化裂化分馏塔结盐氯化铵水洗循环油脱水

目前,催化裂化装置( FCCU)普遍通过掺炼渣油及焦化蜡油进行挖潜增效,但由于渣油中的氯含量和焦化蜡油中的氮含量均较高,势必导致FCCU 分馏塔发生严重的结盐现象。另外,近年来国内市场柴油消费量迅速增长,尽管其生产量增长也很快,但仍不能满足市场的需求。因此许多FCCU 采用降低分馏塔塔顶温度(以下简称顶温)的操作来增产柴油,但顶温低致使分馏塔顶部水蒸气凝结成水,水与氨(NH3)和盐酸(HCl)一起形成氯化铵(NH4Cl)溶液,从而加速分馏塔结盐。随着分馏塔内盐层的加厚,沉积在塔盘上的盐层会影响传质传热效果,致使顶温失控而造成冲塔;沉积在降液管底部的盐层致使降液管底部高度缩短,塔内阻力增加,最终导致淹塔.。可见,如何避免和应对分馏塔结盐现象的发生,是FCCU 急需解决的生产难题。 一、分馏塔结盐原因及现象分析 (一)原因 随着FCCU所用原料的重质化,其中的氯和氮含量增高。在高温临氢催化裂化的反应条件下,有机、无机氯化物和氮化物在提升管反应器中发生反应生成HCl和NH3 ,其反应机理可用下式表示: : 催化裂化反应生成的气体产物将HCl和NH3从提升管反应器中带入分馏塔,在分馏塔内NH3 和HCl与混有少量蒸汽的油气在上升过程中温度逐渐降低,当温度达到此环境下水蒸气的露点时,就会有冷凝水产生,这时NH3和HCl溶于水形成NH4Cl溶液。NH4Cl溶液沸点远高于水的沸点,其随塔内回流液体在下流过程中逐渐提浓,当盐的浓度超过其在此温度下的饱和浓度时,就会结盐析出,沉积在塔盘及降液管底部。 (二)现象 1.由于塔顶部冷凝水的存在,形成塔内水相内回流 ,致使塔顶温度难以控制 ,顶部循环泵易抽空,顶部循环回流携带水。 2.由于沉积在塔盘上的盐层影响传热效果,在中段回流量、顶部循环回流量发生变化时,塔内中部、顶部温度变化缓慢且严重偏离正常值。 3.由于沉积在塔盘上的盐层影响传质效果,导致汽油、轻柴油馏程发生重叠,轻柴油凝

洗涤塔水压试验方案

目录 1.0工程概况 (2) 1.1洗涤塔主要参数 (2) 2.0 施工特点 (2) 3.0 编制依据 (2) 4.0 施工工序 (3) 5.0 施工方法 (3) 5.1 施工准备 (3) 5.2 设备封孔及管线连接 (5) 5.3 设备充水和沉降观测 (5) 5.4 设备试压 (6) 5.5 检查确认 (8) 5.6 设备排水 (8) 6.0质量保证体系 (8) 7.0 HSE管理措施 (9) 7.1 安全管理目的 (9) 7.2 编制依据及引用标准 (9) 7.3 安全管理措施 (10) 8.0 人力计划 (12) 9.0 专用工具及手段用料 (13)

1.0工程概况 洗涤塔(T-2115)是扬子石油化工股份有限公司环氧乙烷系统改造工程EO装置反应与洗涤单元(100)中关键设备,属特大型设备;容器类别为Ⅲ类;建设地点:南京市六合区扬子石油化工股份有限公司烯烃厂乙二醇车间内。业主单位:扬子石油化工有限公司,由中国寰球工程公司设计,本方案仅针对洗涤塔水压试验。 1.1洗涤塔主要参数 2.0 施工特点 2.1 洗涤塔体直径大,吨位重,塔体高达89米,增加了塔充水的难度。该塔充水时需要利用消防栓或消防车加压充水,施工效率低。 2.2 该塔需要充水约1698吨,塔体和水的总重量约2200吨。 3.0 编制依据 中国寰球工程公司提供的初步设计图纸和相关设计技术文件5177-A01-35-ED0301-01~03(C0版)。

4.0 施工工序 5.0 施工方法 5.1 施工准备 5.1.1检查塔内固定件焊接是否结束、焊接质量是否合格;塔内固定件的安装位置是否正确。 5.1.2 检查设备的主焊道是否结束并无损检测合格。 5.1.3检查管口D、O设备内部2”内部连通口,确保都处于开启状态。 5.1.4准备设备人孔的试压垫片,其它设备接管的临时盲板和垫片。 5.1.5组织两台高压泵进入施工现场,通电检查高压泵,确定其完好及性能。 5.1.6试压管线准备:高压泵引入设备的试压管线选用φ25/φ32×4的无缝钢管,试压后的排水管选用φ89×4的无缝钢管。 5.1.7阀门准备:1//的高压阀门3个,3//的高压阀门4个。 5.1.8盲板准备:法兰管口现场制作盲板,背面用钢板加“#”字形立筋加固,加工好坡口,为全焊透焊接接头。盲板制作数量参见下表。焊接管口选用成品封头,现场焊接。(焊接管嘴留出余量)

蒸发浓缩精馏塔清洁标准操作规程

蒸发浓缩精馏塔清洁标准操作规程第 1 页共 3 页 DC/Shen guo.P.CO.,LTD/GMP 内部资料注意保密 1.目的:制定蒸发浓缩精馏塔清洁标准操作规程,保证工艺卫 生,防止污染及交叉污染。 2.范围:适用于蒸发浓缩精馏塔的清洁。 3.职责:生产部管理人员、提取车间主任、班长、提取液浓缩 岗位操作人员、设备维修人员、QA监督员对本标准的实施负责。 4.内容: 4.1 清洁频次和范围: 4.1.1 频次: ①每日生产结束; ②更换品种前或清洁合格证已过有效期,重新开工前;

③设备维修后; ④每星期生产结束,彻底清洁后,用消毒清洁剂擦拭。 4.1.2 范围:蒸发浓缩精馏塔和相关输液泵、管道的内腔表面、 外表面。 4.2 清洁工具:清洁布、长毛刷、板刷、清洁盆、橡胶手套。 4.3 清洁剂:1%NaOH溶液、0.2%HCl溶液、饮用水、纯化水(注射剂 蒸发浓缩精馏塔清洁标准操作规程第 2 页共 3 页 DC/Shen guo.P.CO.,LTD/GMP 内部资料 注意保密生产时清洗接触药品部位)。 4.4清洁方法: 4.4.1蒸发浓缩精馏塔、输液泵和管道内腔清洁: ①蒸发浓缩精馏塔的蒸发室清洗:待蒸发器内浓缩液放净后, 操作人员向蒸发器内加入适量饮用水(约100㎏),加热至60~80℃,浸泡10min,启动双效蒸发器,使热水在蒸发器内沸腾,循环冲洗内表面粘附的药物污垢,注意观察,待污垢洗净后,将蒸发器内水直接排入地漏或经浓缩液输送管道(清洗管道)排入地漏。 ②蒸发浓缩精馏塔的加热器清洗:打开加热器顶部快开盖,检 查各加热管内表面是否结垢。 a 若没有结垢,向蒸发浓缩精馏塔内加入适量饮用水(约100㎏),启动蒸发浓缩精馏塔,加热,使纯水在蒸发器内沸腾,循环冲洗内表面,至蒸发室内表面光亮洁净,将蒸发器内水直接排入地漏

换热器施工方案 (1)

换热器施工方案班级:安装1101班 姓名:段洪章 学号:21 1.编制依据 [1]《石油化工换热设备施工及验收规范》SH/T3532-2005 [2]《石油化工设备和管道涂料防腐蚀技术规范》SH3022-1999 [3]《管壳式换热器防腐涂层施工技术条件》70BJ013-2005 [4]《管壳式换热器》GB151-1999 [5]《石油化工施工安全技术规程》SH3505-1999 [6]《钢制卧式容器》JB/T4731-2005 2主要工程量一览表

3技术交底 施工前,技术员必须组织施工班组人员进行技术交底,未进行技术交底不准施工。技术交底必须做到交底到每个施工工人,使所有施工人员都了解施工技术和质量要求,清楚施工工艺 4施工准备 熟悉图纸,编写施工技术措施,对施工人员进行技术交底。

做好施工机具、量具、手段用料及消耗材料的准备工作。 5设备验收 1).到货设备应具备下列技术文件和资料: a.产品合格证书; b.产品技术特性表,应包括设计压力、试验压力、设计温度、工作介质、试验介质、换热面积、设备重量、设备类别及特殊要求; c.产品质量证明书,应包括下列内容: (1)主要受压元件材料的化学成分、力学性能及标准规定的复验项目的复验值;(2)无损检测及焊接质量的检查报告(包括超过两次返修的记录) (3)通球记录; (4)奥氏体不锈钢设备的晶间腐蚀试验报告(设计有要求时) (5)设备热处理报告(包括时间——温度记录曲线); (6)外观及几何尺寸检查报告; (7)压力试验和致密性试验报告。 d.设备制造竣工图。 2).设备开箱检验应按照装箱单和竣工图清点验收下列各项:

催化裂化分馏塔动态机理模型与仿真研究

第43卷 第2期厦门大学学报(自然科学版)Vol.43 No.2 2004年3月Journal of Xiamen University(Natural Science)Mar.2004  文章编号:043820479(2004)022*******催化裂化分馏塔动态机理模型与仿真研究 收稿日期:2003204230 作者简介:周华(1976-),男,硕士. 周 华,江青茵,曹志凯 (厦门大学化学工程与生物工程系,福建厦门361005) 摘要:首先经严格的机理分析给出分馏塔逐板计算的模型,然后采用房室法、虚拟组分法将模型简化.最后对所建立的机理模型进行求解仿真,并给出了仿真结果,通过仿真验证了模型的准确性. 关键词:催化裂化;模型;仿真;分馏塔. 中图分类号:TQ015.9,TQ202文献标识码:A 复杂化工过程的优化与控制一直是研究热点. 采用机理方法建立过程的动态或稳态数学模型并进 行仿真模拟,可以了解过程的内在关系和不同因素 对过程的影响.由于化工过程大都非常复杂,过程动 态机理建模一直是难题[1]. 催化裂化装置是石油二次加工的重要装置,由 反应再生、分馏及稳定装置组成.在催化裂化反应- 再生建模与优化控制方面,本实验室已经做了大量 的研究工作[2,3],故本文只讨论分馏塔的建模和仿 真.催化裂化分馏塔所处理的是包含了无数沸点相 近、受反2再工况的反应深度影响的复杂混合物,进 入分馏塔的热量也由反2再工况决定.本文在借鉴 目前研究较为成熟的精馏塔及各种常减压分馏塔动 态模型[4~12]的基础上,结合催化裂化分馏塔的流程 特点,运用虚拟组分和房室法[13],对逐板计算模型 进行简化处理,全塔分成5个等效的塔段并假设有5 个虚拟组分,分别列出每段组分的质量和能量的连 续性方程.建立了以液相组分与塔段温度为主要状 态变量,塔段的液相滞留量为辅助变量,由若干微分 方程和代数方程组成的全塔模型,并对模型进行仿 真研究,从而分析验证模型的准确性. 1 工艺描述 催化裂化装置对一次加工后的重油(腊油、渣 油)进行裂化反应,反应油气进入分馏塔,在分馏塔 中经过脱过热段和循环回流取热后得到不同的成品 油产物.催化裂化分馏塔(见图1)是一个耦合严重、 非线性、不确定性强的复杂的工业装置,其控制水平 的高低直接影响产品的分布及质量;它具有以下工 艺特征[14]:1)分馏塔底设有脱过热段,处理物料为 复杂混合物;2)塔顶多采用循环回流,有侧线抽出; 3)大量采用中部循环回流来控制各段温度;4)从塔 底进料,进料为过热油气 .  图1 催化裂化分馏塔 12回炼油罐;22泵;32换热器;42分馏塔;52冷 却器;62粗汽油罐;72汽提塔  Fig.1 FCCU fractionator 2 分馏塔动态机理建模 在分离工程和物理化学等学科对分离过程的内 在机理、热力学计算、工艺参数计算等研究的基础 上,综合全塔的物料平衡、能量平衡、相平衡、组分平 衡等方程,可得出分馏塔的逐板计算的全塔动态模

喷淋塔废水方案说明

山东恒泰晟凯钢构 伸缩移动喷漆房 技 术 方 案 北京利锋志同环保科技发展有限公司 2018年08月12日

废气净化喷淋塔的工作原理 一、工作原理:废气净化喷淋塔主要的运作方式是不断酸雾废气由风管引入净化塔,经过填料层,废气与氢氧化钠吸收液进行气液两相充分接触吸收中和反应,酸雾废气经过净化后,再经除雾板脱水除雾后由风机排入大气。吸收液在塔底经水泵增压后在塔顶喷淋而下,最后回流至塔底循环使用。净化后的酸雾废气达到地方排放标准的排放要求,低于国家排放标准。

二、废气净化喷淋塔的结构 喷淋塔内填料层作为气液两相间接触构件的传质设备。填料塔底部装有填料支承板,填料以乱堆方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。喷淋塔喷淋液从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。当液体沿填料层向下流动时,有时会出现壁流现象,壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,喷淋塔内的填料层分为两段,中间设置再分布装置,经重新分布后喷淋到下层填料上。 三、有机废气喷淋塔概述 有机废气喷淋塔也称废气处理洗涤塔,酸雾洗涤塔,有机废气处理洗涤塔,又称酸雾净化塔、酸性气体净化塔、酸雾吸收塔、废气净化塔及玻璃钢酸雾净化塔,能够去除空气中有害气体。系统是利用风机组将收集到的废气吸入洗涤塔内,流经填充层段(气/液接触反应之介质),让废气与填充物表面流动的药液(洗涤液)充分接触,以吸附废气中所含的酸性或碱性污物。洗涤后,废液收集至集水槽中,再排放至废水系统处理。是结合世界先进的废气处理技术,对工业废气如酸雾废气处理、碱雾废气处理和油漆废气处理、喷漆废气处理、有机废气处理的吸收溶解、化学废气吸附、氧化还原、酸碱中和有明显功效,达到国家工业废

催化裂化装置水冲洗、水联运方案20160215

催化裂化装置水冲洗、水联运方案

审批表

第一章组织机构 (4) 1.1领导小组 (4) 1.2组长职责 (4) 1.3副组长职责 (4) 1.4成员职责 (4) 1.5水冲洗、水联运人员分工 (5) 第二章水冲洗、水联运原则 (5) 2.1目的 (5) 2.2原则 (5) 2.3水联运应具备的条件 (6) 2.4水联运的要求 (6) 2.5水联运的准备工作 (7) 2.6水联运注意事项 (7) 第三章水冲洗、水联运工艺流程图 (8) 3.1分馏系统引水 (8) 3.2分馏大循环水联运流程 (9) 3.3顶循水联运流程 (9) 3.4一中段回流水联运流程 (9) 3.5轻、重柴油水运流程 (9) 3.6粗汽油水联运流程 (9) 3.7酸性水水联运流程 (10) 3.8稳定大循环水联运流程 (10) 3.9吸收塔一、二、三、四中线水联运流程 (10) 3.10稳定汽油线水联运流程 (10) 3.11液化气线水联运流程 (10) 3.12再生烟气脱硫水联运流程 (10) 第四章退水操作步骤 (11) 4.1循环系统退水流程准备工作 (11) 4.2分馏系统退水 (11) 4.3稳定系统退水 (11) 4.4再生烟气脱硫系统退水 (11) 第五章附表 (13) 5.1水冲洗、联运人员分工记录表 (13) 5.2水冲洗、联运盲板记录表 (14)

第一章组织机构 1.1领导小组 组长: 副组长: 成员:车间技术员班组长各岗位人员 1.2组长职责 全权负责装置水冲洗、水试压、水联运过程中的各项事宜及工作进度。组织岗位人员进行岗位技术练兵和事故演习,使操作人员进一步熟悉流程和操作。 1.3副组长职责 在组长的领导下,编制好水冲洗、水试压、水联运方案及检查表。进一步督促对各系统进行详细的检查,并对出的问题进行确认和汇总工作。 1.4成员职责 通过水冲洗,使进一步熟悉工艺流程和设备,清除留在设备、管线内的铁锈、焊渣和泥沙等杂质,防止堵塞管道,卡坏阀门、孔板、机泵等设备,确保设备、管线畅通无阻。 考察水联运系统各测量仪表、控制仪表的冷态工作性能。较长时间地考察水联运系统各机泵的动态性能。

重油催化裂化基础知识

重油催化裂化基础知识 广州石化总厂炼油厂重油催化裂化车间编 一九八八年十二月

第一章概述 第一节催化裂化在炼油工业生产中的作用 催化裂化是炼油工业中使重质原料变成有价值产品的重要加工方法之一。它不仅能将廉价的重质原料变成高价、优质、市场需要的产品,而且现代化的催化裂化装置具有结构简单,原料广泛(从瓦斯油到常压重油),运转周期长、操作灵活(可按多产汽油、多产柴油,多产气体等多种生产方法操作),催化剂多种多样,(可按原料性质和产品需要选择合适的催化剂),操作简便和操作费用低等优点,因此,它在炼油工业中得到广泛的应用。 第二节催化裂化生产发展概况 早在1936年美国纽约美孚真空油公司(、)正式建立了工业规模的固定床催化裂化装置。由于所产汽油的产率与辛烷值均比热裂化高得多,因而一开始就受到人们的重视,并促进了汽车工业发展。如图所示,片状催化剂放在反应器内不动,反应和再生过程交替地在同一设备中进行、属于间歇式操作,为了使整个装置能连续生产,就需要用几个反应器轮流地进行反应和再生,而且再生时放出大量热量还要有复杂的取热设施。由于固定床催化裂化的设备结构复杂,钢材用量多、生产连续性差、产品收率与性质不稳定,后为移动床和流化床催化裂化所代替。 第一套移动床催化裂化装置和第一套流化床催化裂化(简称装置都是1942年在美国投产的。

固定床反应器 移动床催化裂化的优点是使反应连续化。它们的反应和再生过程分别在不同的两个设备中进行,催化裂化在反应器和再生器之间循环流动,实现了生产连续化。它使用直径约为3毫米的小球型催化剂。起初是用机械提升的方法在两器间运送催化剂,后来改为空气提升, 生产能力较固定床大为提高、 空气

精馏塔拆除方案

常州凯元化工有限公司精馏塔拆除项目精馏塔拆除方案 批准: 审核: 编制: 常州凯元化工有限公司 2016年12月

目录 第一章工程概况 第二章编制依据 第三章拆除前准备工作 第四章精馏塔吊车选型 第五章精馏塔拆除 第六章安全技术措施 第七章吊车性能表 第八章机具计划及措施用料 第九章劳动力计划 第十章危险源预测 第十一章预测事故紧急施救方案 第十二章项目领导小组成员及架构、制度第十三章项目参加人员安全责任会签

第一章工程概况 1.1项目简介 工程名称:常州凯元化工有限公司精馏塔拆除项目 单元名称: 工作内容:精馏塔拆除 工作地点:合成车间外侧 计划拆除时间: 1.2本方案任务简介 第二章编制依据 2.1《石油化工吊装手册》(上、下册) 2.2《石油化工工程起重施工规范》SH/T3536-2002 2.3 起重吊装常用数据手册(2002版) 2.4 50吨汽车吊工况表 2.5 25吨汽车吊工况表 2.6《大型设备吊装工程施工工艺标准》SH/T3515-2003

第三章拆除前的准备工作 3.1、在吊装前依据批准的方案及现场情况对所有参与人员进行交底;3.2、在拆除本设备前将其附属设备及其框架进行拆除; 3.3、考虑设备拆除后,需对精馏塔部分平台进行拆除(依据拆除时的情况而定); 3.4、拆除与精馏塔相连的全部管道(随塔管线保留)及地脚螺栓的拆除; 3.5、为防止在运输过程中设备摆动,除用导链进行加固,还需制作鞍座(制作3座),示意图如下: 3.6、在吊装前依据设备直径制作吊装平衡梁一个,制作标准依据SH/T3515-2003《大型设备吊装工程施工工艺标准》示意图如下:

重油催化裂化装置运行工程师考试题库

运行工程师考试题库 姓名: 一.填空 1.催化裂化工艺由(反应-再生系统、分馏系统、吸收稳定系统和能量回收)系统组成。 2. 固体粒子处于堆紧状态,颗粒静止不动的床层叫做(固定床)。 3.整个床层中颗粒形成悬浮状态的稀相,靠循环量也无法维持床层,已达到气力输送状态, 称为(输送床)。 4.喉管式喷嘴的雾化机理是利用高速喷射的(低压蒸汽)把液体冲击破碎,并使进料在 进入提升管时形成强烈的紊流脉动的喷射流,并与周围介质发生碰撞打击而破碎。 5.国内开发的进料喷嘴的类型有(LPC KH BWJ )。 6.金属钝化剂注入点应在所有加热器之(后),防止金属钝化剂的分解。 7.原料油管线里的流动状态为(湍流),保证金属钝化剂和原料油混合均匀。 8.盐类中(钙盐)是造成锅炉结垢的主要成分,影响锅炉安全运行。 9.当进入烧焦罐的催化剂量不变时,随着线速的增加,床层密度变化出现((B)高密度区 (C)低密度区(D)过渡区)。 10.催化剂堆积时,把微孔体积计算在内的密度叫做催化剂的(堆积密度)。 11.将进料转化为目的产品能力,称为催化剂的(选择性)。 12.催化剂活性越高,转化率越(高)。 13.在相同的原料转化率和温度下,原料油中硫含量上升,将会引起汽油辛烷值(下降)。14浆换热段由于温度较高,同时又有催化剂粉尘,所以一般采用(人字挡板) 15.液化石油气中烷烃与烯烃之比与(氢转移)反应有关。 16.汽油( 10%)馏出温度是为了保证汽油具有良好的启动性。 17.三旋转催化剂时,出口第一道阀门应该(C )。 (A)开一半(B)开2/3 (C)全开(D)没有要求 18. 剂油比是催化剂循环量与(总进料量)之比。 19.再生烟气氧含量的控制方法一般通过调节(主风量)来控制。 20.解吸塔底温度过低,解吸效果不好,会造成液态烃中( C2 )含量超标。 21.稳定塔进料位置采用上进口,液态烃中C5含量会(上升)。 22.原料油组分易裂解,会引起反应压力(上升)。 23.原料油带水会导致反应温度(降低)。 24.再生温度上升会导致反应温度(上升)。 25.原料油性质变轻会引起反应温度(上升) 26.催化裂化反应的反应深度以(转化率)表示。 27.转化率等于(气体+汽油+焦炭[T/] )除以100,再乘以100%。 28.总程转化率是指(新鲜进料)一次通过反应器的转化率。 29.分馏系统操作主要任务是在稳定状态下,把反应器过来的混合气,按(沸点)不同,分割成目的产品。 30.汽提塔液面控制(高),闪点会降低。 31.分馏塔一中段回流返塔量(增加),轻柴油凝固点降低。 32.分馏塔顶回流返塔温度(降低),粗汽油干点降低。 33.安全用火管理制度规定用火部位必须用盲板与其设备、管线隔绝,所用的盲板应用钢板制成,盲板的厚度视其管线大小而定,直径小于或等于150mm的盲板厚度不小于( 3 )mm。

洗涤塔设计

目录 (一) 设计任务 (1) (二) 设计简要 (2) 2.1 填料塔设计的一般原则 (2) 2.2 设计题目与要求 (2) 2.3 设计条件 (2) 2.4 工作原理 (2) (三) 设计方案 (2) 3.1 填料塔简介 (2) 3.2填料吸收塔的设计方案 (3) .设计方案的思考 (3) .设计方案的确定 (3) .设计方案的特点 (3) .工艺流程 (3) (四)填料的类型 (4) 4.1概述 (4) 4.2填料的性能参数 (4) 4.3填料的使用范围 (4) 4.4填料的应用 (5) 4.5填料的选择 (5) (五)填料吸收塔工艺尺寸的计算 (6) 5.1塔径的计算 (6) 5.2核算操作空塔气速u与泛点率 (7) 5.3液体喷淋密度的验算 (8) 5.4填料层高度的计算 (8) 5.5填料层的分段 (8) 5.6填料塔的附属高度 (9) 5.7液相进出塔管径的计算 (9) 5.8气相进出塔管径的计算 (9) (六)填料层压降的计算 (10) (七)填料吸收塔内件的类型与设计 (10) 7.1 填料吸收塔内件的类型 (10) 7.2 液体分布简要设计 (12) (八)设计一览表 (13) (九)对设计过程的评述 (13) (十)主要符号说明 (14) 参考文献 (17)

(二)设计简要 (1)填料塔设计的一般原则 填料塔设计一般遵循以下原则: ①:塔径与填料直径之比一般应大于15:1,至少大于8:1; ②:填料层的分段高度为:金属:6.0-7.5m,塑料:3.0-4.5; ③:5-10倍塔径的填料高度需要设置液体在分布装置,但不能高于6m; ④:液体分布装置的布点密度,Walas推荐95-130点/m2,Glitsh公司建议65-150点/m2 ⑤:填料塔操作气速在70%的液泛速度附近; ⑥:由于风载荷和设备基础的原因,填料塔的极限高度约为50米 (2)设计题目与要求 常温常压下,用20℃的清水吸收空气中混有的氨,已知混合气中含氨10%(摩尔分数,下同),混合气流量为3000m3/h,吸收剂用量为最小用量的1.3倍,气体总体积吸收系数为200kmol/m3.h,氨的回收率为95%。请设计填料吸收塔。 要求:综合运用《化工原理》和相关先修课程的知识,联系化工生产实际,完成吸收操作过程及设备设计。要求有详细的工艺计算过程(包括计算机辅助计算程序)、工艺尺寸设计、辅助设备选型、设计结果概要及工艺设备条件图。同时应考虑: ①:技术的先进性和可靠性 ②:过程的经济性 ③:过程的安全性 ④:清洁生产 ⑤:过程的可操作性和可控制性 (3)设计条件 ①:设计温度:常温(25℃) ②:设计压力:常压 (101.325 kPa) ③:吸收剂温度:20℃ (4)工作原理 气体混合物的分离,总是根据混合物中各组分间某种物理性质和化学性质的差异而进行的。吸收作为其中一种,它根据混合物各组分在某种溶剂中溶解度的不同而达到分离的目的。在物理吸附中,溶质和溶剂的结合力较弱,解析比较方便。 填料塔是一种应用很广泛的气液传质设备,它具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,操作时液体与气体经过填料时被填料打散,增大气液接触面积,从而有利于气体与液体之间的传热与传质,使得吸收效率增加。 (三)设计方案 (1)填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也

装置水联运方案

装置水联运方案 一、水联运的目的 水联运为进一步清洗管线及设备,清除杂物,考察在系统装水条件下的严密性及强度,以保证装置试运能顺利进行,鉴定阀门、法兰有无泄漏,贯通工艺流程;考察机泵、设备的性能及可靠性,考察仪表控制系统的控制性能,摸索仪表控制参数,检验流量、液位、压力等检测仪表的准确性,可进一步使岗位人员熟悉和掌握操作技术,提高操作水平。 二、水联运的原则 1、水冲洗时,不得将杂物冲入设备,必须在进设备前拆法兰,干净后再通过设备,与 临氢系统相连的管线,必须装好盲板加以隔离,水冲洗前孔板一律不装,待冲洗干净后再装好,参加水联运。 2、水联运前,必须确认设备、管线已经冲洗、吹扫及单机试运合格,各机泵润滑油已 更换,处于待用状态。公用工程系统已达到试运要求;确认参加水联运的所有机泵入口已安装好过滤器,安排好机、电、仪等保运人员,岗位人员熟悉水联运的流程和步骤。 三、装置水冲洗(待定) 1、系统水冲洗 2、水冲洗要求 (1)水冲洗需拆卸的法兰和调节阀,参见吹扫中的说明。 (2)水冲洗过程中应遵循先冲主线,后冲支线的原则。 (3)装水和冲洗时,放空阀必须打开。 (4)往塔、容器内装水后,应先在底部排水,先将脏物排净,待水质干净后,再将其液面装到70-80%,然后进行管线、设备的冲洗。 (5)水冲洗过程中,仪表孔板的上、下游引压点要反复开关排污阀,把管内脏物冲洗干净,其它仪表引压线也必须反复冲洗。 (6)水冲洗结束后,应装好拆除的所有法兰和调节阀。 (7)认真做好记录、发现问题及时处理。 3、准备工作 (1)联系有关部门,准备好冲洗用的新鲜水,消防水。 (2)将水引至装置的各个供水点。 (3)联系仪表、钳工、电修使各设备处于良好备用状态。检查流程,投用压力表,液位计、引线阀、安全阀,检查塔及各容器顶排空阀,底部排凝阀, 根据需要打开阀门。 4、水冲洗流程 水冲洗主要在原料分馏系统、汽提塔系统以及重整汽油稳定部分进行,临氢系统不参加水联运。 四、装置的水联运 1、水联运的注意事项 (1)水联运按流程进行,加好有关盲板,应防止水窜入其它不参加水联运的部位。 (2)水经冷却器、换热器和控制阀时,若有副线,应先走副线,待干净后再走换热器。 (3)水联运中发现过滤网堵塞或管线堵塞,应及时拆下过滤网进行清扫,或找

重油催化裂化装置安全基本常识

重油催化裂化装置安全基本常识 1.应急电话:火警:119;急救:120。 2.集团公司安全生产方针:安全第一、预防为主、全员动手、 综合治理。 3.三级安全教育:厂级安全教育、车间级安全教育、班组安 全教育。 4.三违:违章作业、违章指挥、违反劳动纪律。 5.三不伤害:不伤害自己、不伤害他人、不被他人伤害。 6.三不用火:没有经批准的用火作业许可证不用火、用火监 护人不在现场不用火、防火措施不落实不用火。 7.四不放过:事故原因分析不清不放过、事故责任者不受处 理不放过、事故责任者和群众没有受到教育不放过、防范措施不落实不放过。 8.三同时:一切新建、改建、扩建的工程项目,必须做到主 体工程与安全、环保、卫生技术措施和设施同时设计、同时施工、同时投用。

9.消防三懂、三会:懂火灾危险性、懂预防措施、懂扑救方 法;会报警、会使用灭火器材、会扑救初起火灾。 10.四全监督管理原则:全员、全过程、全方位、全天侯。 11.安全气分析: 1)可燃气体浓度:当爆炸下限大于4.0%时,指标为小于 0.5%;当爆炸下限小于4.0%时,指标为小于0.2%。 2)氧含量:19.5%~23.5%。 3)有毒有害物质不超过国家规定的“空气中有毒物质最 高容许浓度”的指标。 注:进入设备作业应保证以上三项同时合格,取样要有代表性、全面性。 12.生产装置、罐区的防火间距: 1)液态烃储罐、可燃气体储罐,防火间距为22.5米。(设 备边缘起)。 2)其它各类可燃气体储罐,防火间距为15米。 3)含可燃液体的敞口设备,如水池、隔油池等,防火间 距为22.5米。

13.石化集团公司HSE目标是:追求最大限度地不发生事故、 不损害人身健康、不破坏环境,创国际一流的HSE业绩。 14.济南分公司HSE方针:安全第一,预防为主;全员动手, 综合治理。 济南分公司HSE目标:层层落实HSE责任制,加大隐患治理力度,狠抓“三基”工作,严格事故责任追究,杜绝重大事故,减少人员伤亡和一般事故,争创HSE新业绩。15.每个职工应具备的HSE素质和能力: 1)对本职工作认真、负责,遵章守纪,有高度的责任感 和事业心; 2)在异常情况下,处置果断,有较强的生产处理和事故 应变能力; 3)业务精通、操作熟练,能正确分析解决生产操作和工 艺设备问题; 4)有较强的安全、环境与健康意识,能自觉做好HSE工 作; 5)能正确使用消防气防、救护器材,有较强的自救互救

焦化分馏塔

焦化分馏塔 摘要:文中介绍了焦化分馏塔的主要的特殊工艺要求,即要求所采用的塔盘具有抗焦粉和结盐沉积能力、好的操作弹性。结合介绍BJ浮阀的结构特点阐述了BJ浮阀抗焦粉和结盐沉积的机理。概括性的介绍了BJ塔板在焦化分馏塔中的工业应用情况和令人满意的效果。 关键词:焦化结焦塔板应用 1 前言 焦化分馏塔是延迟焦化装置中的关键设备之一,选择性能优良的、并得到优化设计的塔内件,对保证装置的长周期运转、保证产品质量和装置生产能力十分重要。 焦化分馏塔下部塔段结焦和上部塔段结盐是焦化分馏塔不可避免的问题。焦粉沉积和结盐将影响塔盘的分离效率和装置的处理能力,严重的结焦和结盐使得装置不得不停工检修,严重地制约了焦化分馏塔长周期运行。因此,近年来随着焦化装置的大量建设,都在致力于解决焦化分馏塔中的焦粉沉积和结盐问题,以保证装置的长周期运行。 中国石化工程建设公司在焦化分馏塔设计中积累了丰富的经验,在焦化装置的设计中推荐采用本公司开发的BJ塔盘。BJ塔板在焦化装置特别是焦化分馏塔中的应用证实了BJ塔板的优异性能和优势。BJ塔板在抗焦粉聚结、操作弹性、分离效果等方面与其它浮阀相比具有明显优势。 本文立足于介绍焦化分馏塔的主要的特殊工艺要求,即要求所采用的塔盘具有抗焦粉和结盐沉积能力、好的操作弹性。BJ塔盘能够很好的满足上述要求。本文在介绍BJ浮阀的结构特点基础上阐述了BJ浮阀抗焦粉和结盐沉积的机理。多套装置的工业应用效果令人满意。 2 焦化分馏塔的特殊工艺要求 焦化分馏塔有自身的工艺要求,只有充分认识到了所针对的工艺过程的特点,才可能有优化的塔内件设计,为焦化装置的长周期稳定运行夯实基础。焦化分馏塔的主要特殊工艺要求概括如下:

重油催化裂化实现长周期运行浅析

2010年第4期甘肃石油和化工2010年12月重油催化裂化实现长周期运行浅析 王伟庆1,罗杰英2 (1.大庆油田电力集团龙凤热电厂,黑龙江大庆163711; 2.大庆石化公司炼油厂,黑龙江大庆163714) 摘要:实现催化裂化长周期运行是一项复杂的系统工程,大庆石化公司炼油厂140万t/a重油催化裂化装置第四周期实现运行1152d。主要分析第四周期影响长周期的3个因素,即分馏塔顶结盐、系统生焦、待生斜管流化等问题,通过调整操作、技术攻关等手段实现了装置长周期运行。 关键词:催化裂化;生焦;结盐;流化;长周期 1前言 中国石油大庆石化分公司炼油厂140万t/a重油催化裂化装置主要由反应再生、分馏、吸收稳定、烟气回收机组、气压机、CO焚烧炉、产品精制等部分组成,以大庆减压渣油、减压蜡油、酮苯蜡膏、糠醛抽出油调和为原料,采用超稳分子筛催化剂。主要产品为液化气、汽油、轻柴油、油浆等。工艺路线采用超稳分子筛催化剂提升管反应,同轴、重叠式两段再生工艺,并配有烟气回收(包括烟气能量回收机组和CO焚烧炉)和外取热器。 装置气分部分于2000年4月28日倒开车成功,催化部分于2000年5月11日一次开车成功。截至目前装置共检修4次,最后一次检修时间为2008年7月25日至9月20日。 2装置概况 装置自2005年5月17日开工至2008年7月25日停工,累计运行1152d。140万t/a催化装置在长周期运行的3年多时间里,共加工原料油5217843t,连续4年掺渣为56.5%、62.59%、58.83%、59.93%,轻油收率为60.49%、59.88%、59.62%、63.07%,装置负荷率为98.83%、101.12%、99.43%、96.14%,创造了良好的经济效益并累积了长周期运行经验。 从装置第四周期运行看,影响装置长周期运行的主要因素为分馏塔顶结盐、系统结焦、反再系统流化不好及晃电、停水等公用工程问题,详见表1。 3分馏塔顶结盐问题及解决 自2006年2月24日起,分馏塔中部温度不稳定,分馏塔顶部间断出现冲塔迹象,汽油干点出现不合格,经过调整操作,加大中部回流量及降低中部回流温度,操作状态稍有好转。但到3月下旬,分馏塔操作波动较大,顶部频繁出现冲塔现象,分馏塔轻柴油抽出口温度变化范围较大,加大顶循回流量后,轻柴油量减少直到回零,贫吸收油泵抽空,分馏塔顶部温度变化不大,但汽油干点升高,最高达251℃,初步判断为分馏塔顶部结盐,导致塔盘堵塞,内回流不畅通,导致汽油干点不合格的主要原因应是顶部回流直接转入塔顶而引起的。 处理分馏塔结盐问题的惯例是停工吹扫,耗时一个星期左右,经济损失较大。为了避免停工处收稿日期:2010-11-08/通讯联系人:罗杰英。 作者简介:王伟庆(1975-),男,黑龙江五常人,工程师,主要从事设备管理工作。 34

化学洗涤塔方案

化学洗涤塔 一结构图 二原理 废气通过引风机的动力进入高效填料塔,在填料塔的上端喷头喷出吸收液均匀分布在填料上,废气与吸收液在填料表面上充分接触,由于填料的机械强度大、耐

腐蚀、空隙率高、表面大的特点,废气与吸收液在填料表面有较多的接触面积和反应时间。净化后的气体会饱含水份经过塔顶的除雾装置去除水份后直接排放大气中。酸雾处理塔的工作原理是将气体中的污染物质分离出来,转化为无害物质,以达到净化气体的目的。 它属于微分接触逆流式,塔体内的填料是气液两相接触的基本构件,塔体外部的气体进入塔体后,气体进入填料层,填料层上有来自于顶部喷淋液体及前面的喷淋液体,并在填料上形成一层液膜,气体流经填料空隙时,与填料液膜接触并进行吸收或综合反应,填料层能提供足够大的表面积,对气体流动又不致于造成过大的阻力,经吸收或综合后的气体经除雾器收集后,经出风口排出塔外。废水在化学洗涤塔循环池中经加药处理后循环使用,沉渣定期清捞、外运。 三材质 主体设备和管道材料为PP材料,通用设备选用不锈钢材料,能适应恶劣的工作环境;洗涤塔的PP设备从内到外衬防腐层、结构层、外表层三层组成,具有防火、防腐蚀、防紫外线的特点,其使用寿命大于15年。 四工艺流程 五运行操作 将电控箱内的工作方式打到“手动”状态(如右

图)。然后逐点启动除臭系统配套的动力设备(包括风机、水泵、搅拌泵),观察各动力设备的运行状态是否稳定,电机是否无噪音无发热状态,启动按钮是否与动力设备相匹配。 注意事项: 1、在启动药液泵前应先将其腔体及入口前端的管路灌满水。 2、在风机、喷淋药液泵首次启动前应先把相应的阀门开启,以免造成风机、药液泵等设备的损坏。 5.1 化学洗涤塔系统联动调试方案 在手动状态确定各动力设备的运行状态稳定,并与控制按钮相匹配的情况下,将工作状态打到“手动”状态,开始除臭系统的联动调试。 在自动运行状态时应对以下控制要求进行检查: (1)总体说明: 现场电控箱设手动工作方式。电控箱设各设备的运行、故障及电源指示,以及各设备的启/停操作按钮。 所有动力设备的手/自动(自动无作为)、运行、故障状态开关信号送往PLC 通讯站(无源触点)。 (2)运行状态: 洗涤装置配套的动力设备包括: 风机1:为备用风机,平时不运行。当主风机出现故障或需要维护时,替换主风机运行。 风机2:为主风机,24小时运行。 酸液洗涤塔:酸液洗涤塔,和风机同时开启运行。

水冲洗方案1

分馏稳定水冲洗方案 一、水冲洗准备 1、水冲洗条件 (1)三查四定及吹扫过程中发现的有关问题已经处理完毕。 (2)有关水冲洗的各塔、容器具备进水条件。 (3)吹扫中拆下的孔板、调节阀、计量表、过滤器及法兰此时仍未安装(冲洗后试压前安装)。 (4)联系引公用介质准备好冲洗用的新鲜水、循环水,调度备料。 (5)将新鲜水、循环水引入装置供水点。 (6)做好装水泵启动前的准备工作。 (7)准备好压力表,通知仪表、电工和维修配合水冲洗。 2、水冲洗、试压目的 (1)在蒸汽吹扫的基础上,进一步冲洗管线和设备内脏物,为水联运创造条件。 (2)检查设备、管线质量及安装情况。 3、水冲洗原则 (1)以炼油二部为主进行组织,施工单位保运配合。 (2)水冲洗时要由高及低、从上及下冲洗,逐项逐条进行冲洗。 (3)水冲洗的检查验收标准。按国标GBJ235-82规定,以出口的水色和透明度与入口处目测一致为合格。 (4)水冲洗时,不允许将脏物冲入塔、容器、换热器等设备,须在进设备前拆法兰,放水冲洗干净后再改流程使水通过设备。 (5)水冲洗前孔板一律拆除,冲洗干净后再装好。 (6)冲洗进出装置系统管线时需提前与调度及有关单位联系,如系统管线不需冲洗则在进出装置阀内侧拆法兰冲洗。 (7)水冲洗时应联系仪表冲洗引压点,确保引压点畅通。 4、要求 (1)水冲洗既要冲洗干净设备,又要节约用水。 (2)装水泵在装水前需完成吹扫和单机试运,装水泵在给塔及容器装水时要用泵出口卡量,防止泵超电流。在水冲洗期间,所有的备用泵均需切换开停1次。水冲洗合格后,应填写管段和设备冲洗记录。 (3)冲洗过程中先冲洗主线,后冲洗分支线。水冲洗过程中,孔板上下引压点阀门要反复开关,排污。仪表控制阀先走副线,再冲洗调节阀与上、下游手阀间的短节。冲洗过程中应注意保护密闭采样器。 (4)水冲洗完毕后应确保装好装置内所有拆除的法兰、调节阀、计量表、孔板,应建立检查表以确保以上行为实施。 (5)各容器装水先在塔底排水一到两次,排净后再装高。 (6)T201各侧线水冲洗时,先开最顶部人孔,防止装水过多进入塔顶油气线。由分馏塔粗汽油泵打水入塔,待分馏塔底见水有液位,则表明塔中段各集油箱装满,先上后下从顶循集油箱、柴油集油箱、一中集油箱处抽出水至各泵入口冲洗。冲洗净后装好法兰开泵冲后部管线。对于调节阀后返塔管线段的冲洗,当入塔壁法兰处见水后停泵,关调节阀副线阀,采用“蓄水倒冲法”,开大调节阀下游阀快速放水倒洗返塔管线段,如此反复直至冲净后,再连好塔壁法兰走正常流程引水入塔。 (7)T202装水后,再进行T202系统各管线冲洗,稳定各塔冲洗方法类似。进行冲洗时一定要保证后路畅通,注意观察液位防止憋压损坏设备。各塔器设备冲洗之后,要入塔检查并清扫出机械杂质。 (8)罐、塔顶破沫网(哪些有破沫网)要拆除,待水冲洗结束后再装上。 (9)认真做好记录,发现问题及时汇报处理,专人专线冲洗,分工明确。

相关文档