文档库 最新最全的文档下载
当前位置:文档库 › 活性炭吸附法测定煤气含苯量公式的修正

活性炭吸附法测定煤气含苯量公式的修正

活性炭吸附法测定煤气含苯量公式的修正
活性炭吸附法测定煤气含苯量公式的修正

煤气含苯量测定方法存在问题的探讨

管锡艳(质检中心)

【摘要】煤气含苯分析是测定洗苯塔前、洗苯塔后煤气的含苯量,用于指导粗苯的回收工艺和监督洗苯塔的洗涤效果。为了更好的指导生产,质检中心分析导致实验不准确的原因,采取了有效措施,并对计算公式进行了合理修正,提高煤气含苯分析的准确度。

【关键词】煤气含苯活性炭吸附

1.问题的提出

活性炭吸附法测定煤气含苯量因测定方法易学、设备简单和费用低等优点广泛用于测定煤气中的粗苯。但是实验条件中活性炭的选择以及吸收管的补正实验操作上的差异都将给结果带来较大误差。为了提高测定方法的准确性,对以下实验条件进行摸索。

2.实验条件的摸索

2.1活性炭的选择

活性炭的选择主要依据其吸收率指标,方法要求其吸收率应不低于22%。据此我们选择了几种规格的活性炭进行试验,根据其吸收率指标和实验效果,选择(3#)活性炭进行试验。见表1。

2.2蒸馏时间的选择

方法中介绍全部蒸馏时间为40~50分钟,但由于质检中心使用的自制的蒸汽发生炉,选材较厚,传热较慢,室内煤气量较小等原因,蒸馏40分钟不能将苯全部蒸出,重复性差。据此,将蒸馏时间延长至90分钟,经试验,重复性较好。见表2。

3.计算公式的修正

在《中小型焦化厂分析检验》书中规定,用活性炭吸附法测定煤气中粗苯时,当吸附粗苯的活性炭达到饱和后,再用直接蒸汽将粗苯从活性炭中蒸馏提取出来,再按下式计算煤气中的粗苯含量

C =

式中的A 为蒸馏所得粗苯量,mL ;B 为吸收管补正值,mL ;0.88为粗苯相对密度;V 0为换算为标准状态的取样体积,L 。

依照实验方法要求连接好洗涤吸收装置后,煤气进入装有活性炭的吸收管,当达到规定的取样体积后,将吸收管取下进行蒸馏,以与煤气流向相反的方向通入过热蒸汽,加热到310—330℃后粗苯可完全蒸出,接收器收集粗苯A 。 3.1测定吸收管补正值

将粗苯(塔前10mL ,塔后2mL )放入装满活性炭的吸收管内,连接蒸馏装置,通入直接蒸汽解吸蒸馏所得粗苯,与放入吸收管的粗苯(体积)之差即为吸收管补正值。试验应5次,取其中3次的平均值。按上述方法多次测定活性炭吸收管补正值的结果是:塔前蒸出的粗苯量平均为8.1mL ,塔后为1.5mL ,则

0.88(A+B )

V 0

×1000 g/m 3

相应的补正值为B前=1.9mL,B后=0.5mL。

3.2误差分析

根据活性炭的性能,在粗苯吸收达到饱和前,吸收、蒸出和残留在活性炭中的粗苯量是同步增减的。以测定活性炭吸收管的塔前补正值为例,加入10mL 粗苯时,残留量为1.9mL,若加入量<10mL,残留量必<1.9ml,但加入量必须小于饱和吸收量。所以,吸收管补正值B不是固定值,只有当被吸收的粗苯为10mL 时,吸收管的补正值B才等于1.9。如果不论吸收多少粗苯,均用固定的B值,就会给测定结果带来较大误差。同样,塔前含苯测定中的B值也不应是固定值。

3.3引入补正系数K

3.4计算公式的修正

实验表明,应以吸收管的吸收效率为基础,对于测定的补正结果进行线性回归,补正系数K 值为1.2944。设测定煤气含苯实验中蒸出的的粗苯量为XmL ,则实际可能的粗苯量Y 按下式计算:

则粗苯含量的计算公式就可修正为: C =

表4中列出了修正前后两种公式计算出的煤气含苯量。

3

0.88×Y

Y=1.2944X

V 0

×1000 g/m 3

由图表直观地对比修正前后两种公式计算得出的结果,当蒸出的粗苯体积与活性炭吸收管补正值测定中蒸出的粗苯体积相等时,修正前后公式计算的结果相吻合,若不相等时计算结果相差就较大。尤其对于塔前含苯量的计算两种公式计算结果差异较大,因此以吸收管的效率为基础,对于测定的吸收管补正结果进行线性回归,引入吸收管补正系数K值后,可使计算结果更准确。

活性炭吸附塔_计算书

科文环境科技有限公司 计算书 工程名称: 活性炭吸附塔 2016 年 5 月13 日

活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s 。 2、参数设计要求: ①管道风速:V1=10~20m/s, ②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V2=0.8~1.2m/s , ③过滤风速:V3=0.2~0.6m/s , ④过滤停留时间:T1=0.2~2s , ⑤碳层厚度:h=0.2~0.5m , ⑥碳层间距:0.3~0.5m 。活性炭颗粒性质: 平均直径d p =0.003m,表观密度ρs =670kg/ m3,堆积密度ρ B =470 kg/ m3 孔隙率0.5~0.75 ,取0.75 3、(1)管道直径d取0.8m,则管道截面积A1=0.50m2 则管道流速 V1=5.56÷0.50=11.12m/s ,满足设计要求。 (2)取炭体宽度B=2.2m,塔体高度H=2.5m, 则空塔风速V2=5.56÷2.2 ÷2.5=1.01m/s ,满足设计要求。 (3)炭层长度L1取4.3 m,2 层炭体, 则过滤风速V3=5.56÷2.2÷4.3÷2÷0.75=0.392m/s ,满足设计要求4)取炭层厚度为0.35m,炭层间距取0.5m, 则过滤停留时间T1=0.35 ÷0.392=0.89s ,满足设计要求 5)塔体进出口与炭层距离取0.1m,则塔体主体长度L'=4.3+0.2=4.5m 则塔体长度L=4.5+0.73 ×2=5.96m 4 、考虑安装的实际情况:塔体尺寸L×B×H=6m×2.2m×2.5m =0.73m 两端缩口长0.8 2

活性炭吸附实验报告

活性炭吸附实验报告 实验 3 3 活性炭吸附实验报告 一、 研究背景: 1.1、、吸附法吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附质)以去除或回收废水中的有害物质,同时净化了废水。 活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。将活性炭作为重要的净化剂,越来越受到人们的重视。

1.2 、影响吸附效果的主要因素在吸附过程中,活性炭比表面积起着主要作用。同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。 1.3 、研究意义在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。 二、实验目的 本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。希望达到下述目的: (1)加深理解吸附的基本原理。 (2)掌握活性炭吸附公式中常数的确定方法。 (3)掌握用间歇式静态吸附法确定活性炭等温吸附式的方法。 (4)利用绘制的吸附等温曲线确定吸附系数:K、1/n。K 为直线的截距,1/n 为直线的斜率三、主要仪器与试剂 本实验间歇性吸附采用三角烧瓶内装人活性炭和水样进行振荡方法。

矿石中金的测定(碘量法)

矿石中金的测定 ——碘量法(活性炭吸附) 一、方法原理: 此法基于用王水溶解试样中的金,以活性炭富集,然后用碘量法完成测定。 1、对试样要求: 金在试样中一般呈单质状态,分布极不均匀,故欲得准确分析结果,试样必须有足够的细度和均匀性,以增加其代表性。本法要求一般的矿的试样必须通过180网目。 2、测定原理: 试样中的金溶于王水后生成三氯化金,它再与NaCl作用生成易离解的氯金酸盐: Au+3HCl+HNO3== AuCl3+2H2O+NO↑ AuCl3+NaCl==Na AuCl4或AuCl3 +HCl== HAuCl4 Na AuCl4== Na++ AuCl4— 氯金酸根络离子经活性炭吸附后达到了富集金并使金与多数金属离子分离的目的。活性炭经过灰化灼烧AuCl3又被还原为单质金。 2 AuCl3+3C+ 3 H2O==2 Au+6 HCl+3CO↑ 三氯化合物又能够氧化碘化钾而析出等当量的碘。 AuCl3+3KI==AuI+I2+3KCl 最后用Na2S2O3标液滴定析出的碘,间接计算出Au的含量。 3、干扰与分离: 活性炭富集Au后,虽使Au与大多数金属元素和残渣已经分离,但少量的硅酸及部分的Cu、Pb、Fe也被吸附并对测定有影响。硅酸、Fe、Pb可用NH4HF2洗脱。残余的Fe和Cu、Pb可分别与I-及EDTA络合而消除其影响。 Fe3++6F-==FeF63- Cu2++H2Y2-==Cu Y2-+2H + Pb2++H2Y2-==Pb Y2-+2H + 4、适用范围: 经过方法考查和生产实践检验,本法对本地矿的地质样试样和选矿各种产品适用。测

定范围为可测定含金在0.3g/t以上的试样。 二、试剂的配制与标定: 1、HCl(分析纯)比重1.19 2、HNO3(分析纯)比重1.42 3、正王水(1∶1) HCl∶HNO3∶H2O=3∶1∶4 4、反王水(1∶1) HCl∶HNO3∶H2O=1∶3∶4 王水(1∶1) HCl∶HNO3 =3∶1 5、NaCl 分析纯固体及饱和溶液 6、KI 分析纯固体 7、稀醋酸(7%) 93ml H2O加7 ml冰醋酸 8、氟化氢氨分析纯固体及5%的水溶液 9、1%淀粉指示剂 1 g可溶性淀粉溶于100 ml H2O中,煮沸至透明,冷却后即可。 10、KF或NaF 分析纯固体 11、EDTA的提纯1%EDTA溶液的配制: ⑴将10 gEDTA溶于100 ml的H2O中,加热至60—80℃,加1∶1的H2SO480 ml,立即 加4%的KMnO4溶液30—40 ml,冷却后EDTA结晶析出,打开真空泵,将清液逐渐倒入布氏漏斗中,以倾析法用水洗烧杯中的结晶物数次,将结晶物全部倒入漏斗中,以水洗至白色,在100—102℃的干燥箱中烘干备用。 ⑵将提纯后的EDTA称取1g于烧杯中,加H2O100ml,加热至60—80℃,用10%的NaOH 使EDTA恰好溶解为止。 12、活性炭分析纯粉状无灰,对购买的活性炭要进行提纯,方法:在400ml的塑料瓶 中加入5%氟化氢氨400ml,加活性炭调至稀糊状,浸泡二天以上,抽滤,用温热的5%HCl 洗柱内活性炭8—10次,再用温热的水洗8—10次,停止抽气将活性炭转入塑料瓶中加盖备用。 13、滤纸浆:将滤纸撕烂用热水浸泡,捣碎备用。 14、NaCO3分析纯固体 15、金标准溶液:称取99.99%金属金0.5000g于100ml瓷坩埚中,加王水10ml,在水溶液中 溶解后,立刻加入1gNaCl,在水浴上蒸至无酸味,再加浓盐酸2ml,蒸干后以水溶解,倒入1000ml容量瓶中,加浓盐酸9ml,用水稀释至刻度,摇匀,置阴凉处保存备用,此溶液1ml含500μgAu。取上述溶液100ml于500ml容量瓶中,用1N的HCl准确稀释至刻度,摇匀备用,此溶液1ml含100μgAu。

活性炭吸附塔-计算书

精心整理 活性炭吸附塔计算书 活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s。 2、参数设计要求: ①管道风速:V1=10~20m/s, ②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V2=0.8~1.2m/s, 3、(1 (2 (3 (4 (5 ? ? ?? 则塔体长度L=4.5+0.73×2=5.96m 4、考虑安装的实际情况:塔体尺寸L×B×H=6m×2.2m×2.5m 活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s。 2、参数设计要求: ①管道风速:V1=10~20m/s,

②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V 2=0.8~1.2m/s , ③过滤风速:V 3=0.2~0.6m/s , ④过滤停留时间:T 1=0.2~2s , ⑤碳层厚度:h =0.2~0.5m , ⑥碳层间距:0.3~0.5m 。 活性炭颗粒性质: 平均直径d p =0.003m ,表观密度ρs =670kg/3m ,堆积密度ρB =470kg/3m 3、(12 (2(3 X=aSLρb a S L V=Wd CQt 式中:C―Q―t―W―V=sp v =1000 =20m 污染物每小时的排放量:(取污染物100mg/m 3) ρ0=100×20000×106-=2.0kg/h 假设吸附塔吸附效率为90%,则达标排放时需要吸附总的污染物的量为: 2.0×90%=1.8kg/h t =CQ VWd ×109-=910200001008.0%1020????=800h 则在吸附作用时间内的吸附量:

X=1.8×800=1440㎏ 根据X=aSL b ρ得: L = b aS X ρ 根据活性炭的吸附能力,设静活度为16kg 甲苯/100kg 活性炭 所以,L =470 5.51 6.01440??=3.48m 吸附剂的用量M : M=LSρb V V '1、2、L (1ρd 为风管直径,m 。 (2)摩擦阻力系数λ,按下式计算: 式中:K 为风管内壁的绝对粗糙度,m ,取0.15×10-3m 。 Re 为雷诺数,νVd Re =,ν为运动黏度,m 2/s ,取ν=15.06×10-6m 2/s 。 (下列近似公式适用于内壁绝对粗糙度K=0.15×10-3m 的钢板风管: λ=0.0175d -0.21V -0.075 m p ?=1.05×10-2d -1.21V 1.925)

活性炭吸附实验报告

《环工综合实验(1)》(活性炭吸附实验) 实验报告 专业环境工程(卓越班) 班级 姓名 指导教师 成绩 东华大学环境科学与工程学院实验中心 二0一六年 11月

附剂的比表面积、孔结构、及其表面化学性质等有关。 吸附等温线(Adsorption Isotherm): 指一定温度条件下吸附平衡时单位质量吸附剂的吸附量 q 与吸附质在流体相中的分压 p (气相吸附)或浓度 c (液相吸附)之间的关系曲线。 水中苯酚在树脂上的吸附等温线

水中苯酚在活性炭上的吸附等温线 吸附机理和吸附速率 吸附机理: 吸附质被吸附剂吸附的过程一般分为三步:(1)外扩散 (2)内扩散 (3)吸附 ①外扩散:吸附质从流体主体通过扩散传递到吸附剂颗粒的外表面。因为流体与固体接触时,在紧贴固体表面处有一层滞流膜,所以这一步的速率主要取决于吸附质以分子扩散通过这一滞流膜的传递速率。 ②内扩散:吸附质从吸附剂颗粒的外表面通过颗粒上微孔扩散进入颗粒内部,到达颗粒的内部表面。 ③吸附:吸附质被吸附剂吸附在内表面上。 对于物理吸附,第三步通常是瞬间完成的,所以吸附过程的速率由前二步决定。

?活性炭具有良好的吸附性能和化学稳定性,是目前国内外应用较广泛的一种非极性的吸附剂。 ?由于活性炭为非极性分子,因而溶解度小的非极性物质容易被吸附,而不能使其自由能降低的污染物既溶解度大的极性物质不易被吸附。活性炭的吸附能力以吸附容量q e表示: ?qe=X/M=V(Co-C)/M ?在一定的温度条件下,当存在于溶液中的被吸附物质的浓度与固体表面的被吸附物质的浓度处于动态平衡时,吸附就达到平衡。 1、吸附剂的比表面积越大,其吸附容量和吸附效果就越好吗?为什么? 答:比表面积越大,不一定吸附容量就越好。吸附剂的比表面积越大,只能说明其吸附能力较大,并不代表吸附容量就越大。吸附容量的大小还与脱吸速度有关,如果脱吸速度很快,就算吸附能力再大,吸附容量也还是没多大提升。吸附容量是一个动态平衡的过程。? 吸附剂的良好吸附性能是由于它具有密集的细孔构造,与吸附有关的物理性能有:a.孔容(VP):吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g);b.比表面积:即单位重量吸附剂所具有的表面积,常用单位是m2/g;c.孔径

金的测定

獨嶺倚雲‰寒本空间文章均来自于网络或书籍,只用于传阅、学习、参考,“不确保其实用性”。如侵犯了你的权益请告之,我会尽快删除!如你在浏览过程中发现错误或不足之处,请在评论框中标明,谢谢! 主页博客相册|个人档案|好友|i贴吧查看文章 金矿金品位测定的实用方法简谈测定金矿品位的方:2.湿法—酸溶解法试金法简谈:2011-01-03 17:36本文转自:https://www.wendangku.net/doc/b413626520.html,/?32716 金矿金品位测定的实用方法简谈 (二)测定金矿品位的方法简谈: 2.湿法—酸溶解法试金 (一)金和银在自然界的分布及存在形式、金和银的矿石工业品位、金银用途、金和银主要的物理性质和化学性质及提炼方法: 金和银在自然界含量极少金在地壳中含量为5310-7%,银多些也只有1310-5%,但分布极广,金在各种岩石或矿石中金约含6310-7%~10-7%银6310-6%~10-7%不等。海水中含金浓度平均0.000004mg/L含银浓度平均0.0003mg/L。海水中的金和银是以卤化物的形式存在金为AuCl43+银为AgCl2-、AgCl32-的形式。所以有人在海边用泡沫塑料吸附提取海水里的金。和海水不同地壳中各种岩石、矿石或沙砾中的金绝大多数是单质金形式存在,它常常与各种矿物或矿石伴生,既是以金为主的矿石也常常伴生着银、铜、铅、锌、锑、钼、铋、铁、锰、砷、碲、硫和钇等。在沙矿床中常伴生着有金红石、钛铁矿、磁铁矿、镜铁矿、白钨矿、独居石、刚玉等重矿物。 金矿的工业要求:原生金矿边界品位1310-6(1g/t),沙矿边界品位0。07g/m3。银亦有单质形式存在的,但量很少,绝大多数以氯化物及硫化物形式存在,银矿大多和铜矿、铜铅锌多金属矿、铜镍矿、或金矿伴生。单独存在的银矿少见例辉银矿(Ag2S)等成大矿的少见。银边界品位50310-6(50g/t),综合利用为5310-6(5 g/t)。 金、银的主要用途是制造货币和装饰品,电子工业中做高导电材料,做实验室有特殊用途的容器,高纯度金银很软、少有单独使用的。常用的金银试剂几乎不含结晶水,银盐除AgF、AgClO4、、AgNO3外,都不溶于水,银盐还广泛用于感光材料中,金、银还可以用于装饰性电镀或电子工业中印刷电路电镀金、银增加导电性和改善焊接质量。银可做高级反光镜及热水瓶的胆内膜。 铜金银是人类历史中是最早发现的三种元素,很久以前就被用于制造钱币和(首饰)装饰品,所以俗称货币金属或将金银称贵金属,例: 合金名称银币(英) 银币(美) 金币(美) 18K黄金14K黄金18K白金 质量组成(%) 92.5Ag 90.0Ag 90.0Au 75Au 58Au 75Au 7.5Cu 10Cu 10Cu 12.5Ag 14~28Ag 3.5Cu,5Zn 12.5Cu 14~28Cu 16.5Ni

活性炭过滤器的滤料高度和整个罐体的高度如何计算

活性炭过滤器的滤料高度和整个罐体的高度如何计算? 活性炭过滤器的滤料层900~1200的甚至1600的都有,要看想去除什么及滤速。下布水孔板水帽布水的,罐体高就是直边高加上下封头高。直边高为滤料高乘2,活性炭在反洗时,反洗膨胀高度是100%。如果漏斗上布水,还要加漏斗、弯管高,这种结构采用的越来 越少了。下布水穹型板加级配石英砂垫层的,基本差不多,按垫层总高与下封头高之差调整 一下。整个罐体的高度就是罐高加支腿高。支腿三条的高些,四条的可矮些。 活性炭过滤器有什么作用?运行时要注意些什么? (1)利用活性炭的活性表面除去水中的游离氯,以避免化学水处理系统中的离子交换树 脂,特别是阳离子交换树脂受到游离氯的氧化作用。 (2)除去水中的有机物,如腐殖酸等,以减轻有机物对强碱性阴离子交换树脂的污染。据统计,通示活性炭过滤器,可以除去水中60%~80%的胶体物质:50%左右的铁和50%~60%的有机物等。 活性炭过滤器在实际运行中,主要考虑入床水浑浊度,反洗周期,反洗强度等关系。 (1)入床水浑浊度。入床水浑浊度高,会带给活性炭滤层过多的杂质,这些杂质被截留在 活性炭滤层中,并堵塞滤池间隙及活性炭表面,阻碍其吸附效果的发挥。长期运行下去,截 留物就停留在活性炭滤层间,形成冲不掉的泥膜,造成活性炭老化失效。所以进入活性炭过滤器的水,最好把浑浊度控制在5mg/L以下,以保证其正常的运行。 (2)反洗周期。反洗周期的长短是关系到滤池效果好坏的主要因素。反洗周期过短,浪费 反洗水;反洗周期过长则影响活性炭吸附效果:一般讲,当入床水浑浊度在5mg/L以下时,应4~5天反洗一次。

(3)反洗强度。活性炭过滤器在反洗中,滤层膨胀率对滤层冲洗是否彻底,影响较大。滤 层膨胀率过小,下层的活性炭悬浮不起来,其表面冲洗不干净;当膨胀率过大,容易跑“炭”。在运行中一般控制其膨胀率为40%~50%。(4)反洗时间。一般当滤层膨胀率为40%~50%,反洗强度为13~15L/(m2?s)时,活性炭过滤器的反洗时间为8~10min。 活性炭过滤器和多介质过滤器工作过程的区别? 多介质过滤器主要去除水中悬浮物和大颗粒物质,而活性炭具有吸附功能,主要吸附水中的 有机物等。活性炭的机械强度没有石英砂的高,当活性炭通入气后,容易使活性炭粉碎。活 性炭一般在多介质之后起吸附作用,活性炭不能用气洗,其实反洗也用处不大;再生才是办法。 活性碳过滤器一般放在多介质过滤器后面,主要降低水中有机物含量和氧化性物质。加气洗的意义不大,反而会造成活性炭破碎。因为多介质已经把大颗粒性物质截留了,所以,活性炭就不用气体擦洗了。活性炭要反洗,但不用气体擦洗。当活性炭吸附达到饱和状态,就 需要再生,但比较麻烦,成本较高,一般建议更换新的活性炭。在电力规范上说活性炭可以 加气反洗,但是在实际运行中,我没有见过一家用气的,因为两个原因:一、活性炭在多介 质后,进水水质相对较好,主要以过滤吸附胶体和细小的杂质。所以反洗起来相对容易,滤 料不易板结。二、活性炭机械强度低,反洗过强易碎。 多介质过滤器及活性炭过滤器设计探讨? 多介质过滤器7种滤料级配的计算是怎样的,还有炭滤又该如何计算? 有关各种滤料的级配问题,主要与以下因素有关: 1 罐体直径大小;

活性炭吸附脱附及附属设备选型详细计算

目录 1. 绪论 (1) 1.1概述 (1) 1.1.1有机废气的来源 (1) 1.1.2有机物对大气的破坏和对人类的危害 (1) 1.2有机废气治理技术现状及进展 (2) 1.2.1 各种净化方法的分析比较 (3) 2 设计任务说明 (4) 2.1设计任务 (4) 2.2设计进气指标 (4) 2.3设计出气指标 (4) 2.4设计目标 (4) 3 工艺流程说明 (6) 3.1工艺选择 (6) 3.2工艺流程 (6) 4 设计与计算 (8) 4.1基本原理 (8) 4.1.1吸附原理 (8) 4.1.2 吸附机理 (9) 4.1.3 吸附等温线与吸附等温方程式 (9) 4.1.4 吸附量 (12) 4.1.5 吸附速率 (12) 4.2吸附器选择的设计计算 (13) 4.2.1 吸附器的确定 (13) 4.2.2 吸附剂的选择 (14) 4.2.3 空塔气速和横截面积的确定 (16)

4.2.4 固定床吸附层高度的计算 (17) 4.2.5吸附剂(活性炭)用量的计算 (18) 4.2.6 床层压降的计算]15[ (19) 4.2.7 活性炭再生的计算 (19) 4.3集气罩的设计计算 (21) 4.3.1集气罩气流的流动特性 (21) 4.3.2集气罩的分类及设计原则 (21) 4.3.3集气罩的选型 (22) 4.4吸附前的预处理 (24) 4.5管道系统设计计算 (24) 4.5.1 管道系统的配置 (25) 4.5.2 管道内流体流速的选择 (26) 4.5.3管道直径的确定 (26) 4.5.4管道内流体的压力损失 (27) 4.5.5风机和电机的选择 (27) 5 工程核算 (30) 5.1工程造价 (30) 5.2运行费用核算 (31) 5.2.1价格标准 (31) 5.2.2运行费用 (31) 6 结论与建议 (32) 6.1结论 (32) 6.2建议 (32) 参考文献 (34) 致谢 (35)

实验6活性炭吸附实验.

实验6 活性炭吸附实验 1.实验目的 了解活性炭吸附工艺,掌握测定吸附等温线的操作过程。 2.实验原理 活性炭吸附是利用活性炭固体表面对水中一种或几种物质的吸附作用,达到净化水质的目的。 活性炭对水中所含杂质的吸附既有物理吸附也有化学吸附。 当活性炭对水中所含物质吸附时,水中的溶解性物质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中,即同时发生解吸现象。当吸附和解吸处于动态平衡状态时,称为吸附平衡。而此时被吸附物质在溶液中的浓度称为平衡浓度C。活性炭的吸附能力以吸附量表示,用m克活性炭吸附溶液中的溶质,被吸附的溶质 为毫克,则吸附量可按下式计算: (1 式中,q e为平衡吸附量(mg/g;C0与C e分别为吸附质的初始浓度与平衡浓度(mg/L;V 为溶液的体积(L;m为所用的活性炭的质量(g。 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH值有关。一般说来,当被吸附的物质不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,值就比较大。 由吸附量和平衡浓度C的关系所绘出的曲线称为吸附等温线,表示吸附等温线的公式称为吸附等温式,比较常用的吸附等温式有有Langmuir、BET和Fruendlich吸附等温式。 在水和废水处理中通常用Fruendlich吸附等温式来比较不同温度和不同溶液浓度时的活性炭的 吸附容量,即 (2

式中:——吸附容量(mg/g; K——与吸附比表面积、温度有关的系数; n——与温度有关的常数,n>1; C——吸附平衡时的溶液浓度(mg/L。 这是一个经验公式,通常用图解方法求出K,n的值.为了方便易解,往往将式(2变换成线性 对数关系式 (3 式中:C0——水中被吸附物质原始浓度(mg/L; C——被吸附物质的平衡浓度(mg/L; m——活性炭投加量(g/L。 3.实验设备与试剂 (1)间歇式活性炭吸附装置,间歇式吸附采用三角烧瓶,在烧瓶内放入活性炭和水样进行振荡。 (2)振荡箱 (3)天平 (4)烘箱 (5)分光光度计 (6)注射器、塑料滤头、滤膜等 (7)活性炭 4.实验方法 (1)标准曲线的绘制

活性炭吸附塔-计算书

科文环境科技有限公司计算书 工程名称: 活性炭吸附塔 : 工程代号 艺业: 工专 : 算计 : 对校 : 审核

2016年5月13日 活性炭吸附塔33 /s5.56m1、设计风量:Q=20000m。/h=2、参数设计要求:V =10~20m/s,①管道风速:1,=0.8~1.2m/sV②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:2,=0.2~0.6m/s③过滤风速:V3,=0.2~2s④过滤停留时间:T1,=0.2~0.5m⑤碳层厚度:h 。⑥碳层间距:0.3~0.5m 活性炭颗粒性质:33mm,堆积密度ρ=470 kg/ 平均直径d=0.003m,表观密度ρ=670kg/ B s p 0.75 0.5~0.75,取孔隙率2 0.8m)管道直径d取,则管道截面积A=0.50m3、(11,满足设计要求。则管道流速V=5.56÷0.50=11.12m/s 1,2)取炭体宽度 B=2.2m,塔体高度H=2.5m (V=5.56÷2.2÷2.5=1.01m/s,满足设计要求。 则空塔风速2 m,2层炭体,3 ()炭层长度L取4.31,满足设计要求。2÷0.75=0.392m/s则过滤风速V=5.56÷2.2÷4.3÷3 0.5m,,炭层间距取(4)取炭层厚度为0.35m 0.392=0.89s,满足设计要求。则过滤停留时间T=0.35÷1 L'=4.3+0.2=4.5m (5)塔体进出口与炭层距离取0.1m,则塔体主体长度????22223d3H2.25?2.B0.8?????= 两端缩口长L”= =0.73m -- ????323222????则塔体长度L=4.5+0.73×2=5.96m 4、考虑安装的实际情况:塔体尺寸L×B×H=6m×2.2m×2.5m 活性炭吸附塔 33/s。5.56m20000m /h=1、设计风量:Q=2、参数设计要求: ①管道风速:V=10~20m/s,1②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V=0.8~1.2m/s,2③过滤风速:V=0.2~0.6m/s,3④过滤停留时间:T=0.2~2s,1⑤碳层厚度:h=0.2~0.5m, ⑥碳层间距:0.3~0.5m。 活性炭颗粒性质: 33mm,堆积密度d=0.003m,表观密度ρ=670kg/ρ=470 kg/平均直径p B s 2 =0.50m0.8m,则管道截面积A、(1)管道直径d取31则管道流速V=5.56

活性炭吸附碘量法测定金

活性炭吸附碘量法测定金 一、方法提要 试样用王水分解,在稀王水介质中用活性炭富集Au,活性炭灰化灼烧后用王水复溶,加HCI蒸干,在乙酸介质中以NH4HF2、EDTA掩蔽少量的Fe、Cu等干扰元素,加入KI将Au3+还原为Au+,同时析出游离I2,以淀粉为指示剂,用硫代硫酸钠标准溶液滴定。本法适用于一般矿石中ω(Au)/10-6>0.5的测定。 二、试剂配制 活性炭-纸浆:首先处理活性炭。将粒径为0.074mm的活性炭在20g/L NH4HF2溶液中浸泡3d,过滤,用HCl (2+98)及热水各洗涤7~8次。将处理后的活性炭与纸浆以干时的质量比按1+2混匀。 金标准溶液:称取0. 0500g纯金(99.99%以上)于100mL瓷坩埚中,加l0mL王水,盖表面皿,在60~70℃水浴上加热溶解后立即加入8~10滴250g/L NaCl溶液,再在沸水浴上加热蒸干,取下,加1mL HCI,继续在沸水浴上蒸干。取下加少量水,微热使盐类全溶,取下冷至室温,移入盛有5mL HCI的500mL容量瓶中,用水稀释至刻度,混匀。此溶液含100μg/mLAu。 硫代硫酸钠标准溶液:称取25. 2g硫代硫酸钠(Na2S2O3·5H2O)溶于新煮沸后冷却的蒸馏水中,加0. 1g Na2CO3,用水稀释至1L(溶液pH7.2~7.5),此溶液1mL相当于l0mg Au.分别取30mL和100mL上述溶液于l0L下口瓶内,各加入1g无水Na2CO3和l0mL氯仿,用冷却的新蒸馏水稀释至10L,摇匀,放置一周后,进行标定:取30μg或100μg Au于50mL 瓷坩埚中,加3~5滴250g/L NaCl溶液,加2~3mL王水,水浴蒸干,加3~4滴HCI,蒸干,重复两次。然后用两种硫代硫酸钠标准溶液按碘量法滴定。求出其1mL溶液相当Au的质量(1mL分别相当30μg和l00μg),μg/mL。 三、分析手续 称取10-30g(精确至0. 01g)试样于瓷方舟中,在高温炉中于600℃灼烧40min,取出放冷,将试样转入400mL烧杯中,用少量水润湿,加100mL王水(1+1),加热微沸30~60min,中间摇动数次,取下趁热加l0mL l0g/L动物胶溶液,搅拌,用温水稀释至100~120mL,将溶液注入连接在装有活性炭-纸浆吸附柱的布氏漏斗中,用热HCl (2+98)洗涤烧杯2次、残渣7~8次。取下布氏漏斗,用热的20g/L NH4HF2溶液洗涤活性炭3~4次,再用热HCI(2+98)洗3~4次,量后用温水洗3~4次,抽干.取出活性炭-纸浆吸附饼,放入50mL瓷坩埚中,放在电炉盘上低温烘干,并升温炭化,再移入650~700℃高温炉内灼烧至无炭粒存在,取出冷却。在瓷坩埚内加入5滴250g/L NaCl溶液,沿坩埚壁加入2-3mL王水,放在沸水浴上蒸干,滴加3~5滴HCI,继续蒸干,重复两次,最后蒸至无酸味。取下坩埚,加3~5mL乙酸(7+93),搅动使可溶性盐类全部溶解,冷至室温。加入0.1g NH4HF2,搅匀。滴加数滴25g/L EDTA溶液后,立即加入0.5g KI,用硫代硫酸钠标准溶液滴定至淡黄色,加入3~5滴l0g/L淀粉溶液,继续滴定至蓝色消失即为终点。 四、分析结果的计算

活性炭更换周期和吸附量的计算

活性炭更换周期和吸附量的计算案例: 活性炭的吸附量以及使用时间活性炭对不同的有机气体其吸附能力(用S表示)是不一样的,有以下表(参考《工业通风》,孙一坚主编第四版): 按一个排污企业150mg/m3,风量在50000m3/h,一天工作时长15小时算,活性炭的平衡保持量取30%,1t活性炭达到饱合的时间为: T(d)=m*S/C*10-6(kg/mg)*F*t(15h/d) m:活性炭的质量,kg; S:平衡保持量,%; C:VOCs总浓度,mg/m3; F:风量,m3/h。 则T=1000*0.3/150*10-6*50000*15=2.67d 也就是1t的活性炭在上述条件下,2.67天就达到饱合了。 实例 方法一: 蜂窝活性炭比重:0.45g/cm3 1克/立方厘米=1000千克/立方米 参数:单套设备排风量:25000m3/h,废气总浓度为119.5mg/m3,运行8h/d 所采用蜂窝活性炭吸附的平衡保持量取75%计。 一块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg 单套设备需要蜂窝活性炭量为:0.8×1.31×1.33÷0.001=1400块×0.45=630kg 根据活性炭更换周期计算公式: T=m×S÷C×10-6×Q×t

式中: T—周期,单位天 M—活性炭的质量,单位kg S—平衡保持量,% 10-6—系数 Q—风量,单位m3/h T—运行时间,单位h/d T1=630×0.75÷119.5×10-6×25000×8=7.91天 所以单套设备蜂窝炭更换周期为约8天 方法二: 蜂窝炭1g能吸附600mg的有机废气 一块蜂窝活性炭质量:0.1×0.1×0.1×450kg/m3=0.45kg 单套设备蜂窝炭重量 0.8×1.31×1.33÷0.001=1400块×0.45=630kg 设备蜂窝炭的吸附能力为: 630kg=630000g 总过滤量为25000m3/h×119.5mg/m3=2987500mg/h 吸附满周期T2 每天工作8小时算 T2=126.52h÷8=15.81天 因为T2>T1所以本项目活性炭更换周期为8—15天、建议10天一换

碘量法测定金

金测定 ——碘量法(活性炭吸附) 一、方法原理: 此法基于用王水溶解试样中的金,以活性炭富集,然后用碘量法完成测定。 1、对试样要求: 金在试样中一般呈单质状态,分布极不均匀,故欲得准确分析结果,试样必须有足够的细度和均匀性,以增加其代表性。本法要求一般的矿的试样必须通过180网目。 2、测定原理: 试样中的金溶于王水后生成三氯化金,它再与NaCl作用生成易离解的氯金酸盐: Au+3HCl+HNO3== AuCl3+2H2O+NO↑ AuCl3+NaCl==Na AuCl4或AuCl3 +HCl== HAuCl4 Na AuCl4== Na++ AuCl4— 氯金酸根络离子经活性炭吸附后达到了富集金并使金与多数金属离子分离的目的。活性炭经过灰化灼烧AuCl3又被还原为单质金。 2 AuCl3+3C+ 3 H2O==2 Au+6 HCl+3CO↑ 三氯化合物又能够氧化碘化钾而析出等当量的碘。 AuCl3+3KI==AuI+I2+3KCl 最后用Na2S2O3标液滴定析出的碘,间接计算出Au的含量。 3、干扰与分离: 活性炭富集Au后,虽使Au与大多数金属元素和残渣已经分离,但少量的硅酸及部分的Cu、Pb、Fe也被吸附并对测定有影响。硅酸、Fe、Pb可用NH4HF2洗脱。残余的Fe和Cu、Pb可分别与I-及EDTA络合而消除其影响。 Fe3++6F-==FeF63- Cu2++H2Y2-==Cu Y2-+2H + Pb2++H2Y2-==Pb Y2-+2H + 4、适用范围: 经过方法考查和生产实践检验,本法对本地矿的地质样试样和选矿各种产品适用。测

定范围为可测定含金在0.3g/t以上的试样。 二、试剂的配制与标定: 1、HCl(分析纯)比重1.19 2、HNO3(分析纯)比重1.42 3、正王水(1∶1) HCl∶HNO3∶H2O=3∶1∶4 4、反王水(1∶1) HCl∶HNO3∶H2O=1∶3∶4 王水(1∶1) HCl∶HNO3 =3∶1 5、NaCl 分析纯固体及饱和溶液 6、KI 分析纯固体 7、稀醋酸(7%) 93ml H2O加7 ml冰醋酸 8、氟化氢氨分析纯固体及5%的水溶液 9、1%淀粉指示剂 1 g可溶性淀粉溶于100 ml H2O中,煮沸至透明,冷却后即可。 10、KF或NaF 分析纯固体 11、EDTA的提纯1%EDTA溶液的配制: ⑴将10 gEDTA溶于100 ml的H2O中,加热至60—80℃,加1∶1的H2SO480 ml,立即 加4%的KMnO4溶液30—40 ml,冷却后EDTA结晶析出,打开真空泵,将清液逐渐倒入布氏漏斗中,以倾析法用水洗烧杯中的结晶物数次,将结晶物全部倒入漏斗中,以水洗至白色,在100—102℃的干燥箱中烘干备用。 ⑵将提纯后的EDTA称取1g于烧杯中,加H2O100ml,加热至60—80℃,用10%的NaOH 使EDTA恰好溶解为止。 12、活性炭分析纯粉状无灰,对购买的活性炭要进行提纯,方法:在400ml的塑料瓶 中加入5%氟化氢氨400ml,加活性炭调至稀糊状,浸泡二天以上,抽滤,用温热的5%HCl 洗柱内活性炭8—10次,再用温热的水洗8—10次,停止抽气将活性炭转入塑料瓶中加盖备用。 13、滤纸浆:将滤纸撕烂用热水浸泡,捣碎备用。 14、NaCO3分析纯固体 15、金标准溶液:称取99.99%金属金0.5000g于100ml瓷坩埚中,加王水10ml,在水溶液中 溶解后,立刻加入1gNaCl,在水浴上蒸至无酸味,再加浓盐酸2ml,蒸干后以水溶解,倒入1000ml容量瓶中,加浓盐酸9ml,用水稀释至刻度,摇匀,置阴凉处保存备用,此溶液1ml含500μgAu。取上述溶液100ml于500ml容量瓶中,用1N的HCl准确稀释至刻度,摇匀备用,此溶液1ml含100μgAu。

活性炭碘吸附值的测定

[]E c V Vv c V m ?+-?=)(90.126311 活性炭碘吸附值的测定 活性炭的碘吸附值从0到1200mg/g,那么活性炭的碘吸附值如何测定能? 衡量活性炭在液相吸附中的应用好坏,主要看碘吸附值、亚甲蓝吸附值和焦糖脱色率的三项指标,所谓“三把尺”。若水中主要含有小分子,那就需要采用碘吸附值高的活性炭;若水中主要成分为较大分子,那就要采用亚甲蓝吸附值高的活性炭;若水中成分为大分子,就必须采用焦糖脱色率高的活性炭。 碘吸附值高的活性炭在水中脱除小分子化合物的性能较高,因此,碘吸附值是衡量净水炭的一项重要指标。测量碘吸附值具体做法是:称取不同质量的三份制备好的试样,精确至0.0004g 并将试样分别放入容量为250mL 干燥的磨口锥形瓶中,用移液管取10.0mL 盐酸加入每个锥形瓶中,塞好玻璃塞摇动使活性炭浸润;接着拔去塞子加热至沸,微拂30s ,除去干扰的硫,冷却至室温;再用移液管取100.0mL 的碘标准溶液依次加入上述各锥形瓶(碘标准溶液使用前现标定),立即塞好玻璃塞,置于振荡器上震荡15min ,静置5min 后用激淋机,静置15min 后用离心机分离。各取50.0mL 澄清液分别放入250mL 的锥形瓶中,用硫代硫酸钠标准溶液进行滴定。当溶液呈现黄色时,加入2mL 淀粉指示液,并继续滴定至蓝色消失为止。分别记下消耗的硫代硫酸钠标准溶液体积。 测定结果处理如下:对试样剂量计算见式: 式中 m ——试样使用剂量,g ; V 1 ——加入点标准溶液体积,mL ; c 1——碘标准溶液浓度,mol/L ; V 3——加入盐酸(5%)体积,mL ; c ——澄清液的浓度,mol/L ; E ——碘吸附值,mg/g. 澄清液浓度计算,见式 V v c c 22= 式中 c —— 澄清液的浓度,mol/L ; c 2—— 硫代硫酸钠标准溶液浓度,mol/L ; V 2——消耗硫代硫酸钠标准溶液体积,mL; V ——澄清液体积,mL. 活性炭的吸附量和被吸附物质的浓度有关,为了获取吸附剩余碘浓度 0.02mol/L 时的碘吸附值,澄清液浓度应在0.008~0.040mol/L 范围内,否则应调整试样质量m 。 吸附碘量按式(2-3)计算: X=126.9×V 1×c 1-[(V 1+V 3)/V]×126.9×c 2×V 2 (2-3) 式中 X ——吸附碘量,mg; V 1——加入碘标准溶液体积,mL; c 1——碘标准溶液浓度,mol/L; V 3——加入盐酸体积,mL; c 2——硫代硫酸钠标准溶液浓度,mol/L; V 2——消耗硫代硫酸钠标准溶液体积,mL;

活性炭吸附实验讲义

活性炭吸附实验 一、实验目的 (1)了解活性炭吸附的工作原理和特点。 (2) 观察活性炭对色度较高工业废水(如:印染废水)和生活污水的色度的去除过程。 (3) 掌握活性炭吸附饱和后的再生方法。 二、实验原理 吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回到液相或气相中去,这种现象称为解吸或脱附。在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称吸附剂。 活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。 活性炭吸附的作用产生于两个方面:一方面是由于活性炭内部分子在各个方面都受着同等大小力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由于活性炭与被吸附物质之间的化学作用,此过程为化学吸附。活性炭的吸附是上述两种吸附综合作用的结果。当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡,此时的动态平衡称为活性炭吸附平衡。 三、实验设备与试剂 (1) 活性炭吸附实验装置:1套 (如下图)。 (2) 50mL比色管:6个 (3) 500mL烧杯:2个

(4) 色度较高工业废水(如:印染废水,可自配):5L (5) 生活污水: 5L 四、实验步骤 1、配制实验废水(染料废水) 采用两种染料配置实验用废水。一是生物染料,二是化工染料。分别称取1g质量的染料配置成5L的染料废水进行实验。 另从生活污水管道采集生活污水5L,待用。 2、实验装置运行 (1)连接好活性炭吸附实验装置。 (2)分别用生物染料废水、化工染料废水和生活污水按10L/h左右的进水流量进入活性炭吸附柱进行吸附实验。 (3)吸附完成后对出水水样测其色度。 (4)观察和分析活性炭是否达到饱和,如果饱和,则对其进行再生。 3、水样的测定 对原废水和吸附后废水分别采用“目测比色法”测定其色度。 五、实验数据记录与处理 参考表1记录实验数据。 表1 实验数据记录和处理 六、注意事项 (1) 实验前必须首先计算活性炭容积。 (2) 实验时要注意稳定流量。 七、思考题 (1) 活性炭吸附达到饱和后能否再次利用? (2) 活性炭饱和后如何再生?

活性炭吸附碘量法测金化验步骤

载金碳碘量法化验步骤 1.称样,灰化 载金碳样称0.5g左右,置于高温炉中600-800℃灰化。 2.溶样 试样取出冷却至室温,移入400ml烧杯中,润湿,加10ml 浓硝酸,预处理(在电热板上微热),待无红棕色气体产生后,加入120ml1:1王水,在电加热板上,微沸50min,待体积剩余50-60ml时取下冷却。 3.活性炭吸附柱 活性炭吸附柱分三层,依次为白纸浆作底层,中间层活性炭纸浆层和白纸浆顶层。白纸浆厚度3mm,活性炭纸浆层厚度8-9mm。4.活性炭吸附 漏斗中铺一张定性滤纸将冷却好的试样依次倒入布氏漏斗中,进行抽滤,烧杯洗涤3次。用温热的5%HCl溶液洗布氏漏斗内的残渣7-8次,取下漏斗,再依次分别用温热的(50℃):6%氟化氢铵(NH4HF2)溶液、5%HCl溶液洗涤吸附柱7-8次,最后用温水清洗活性炭吸附层7-8次后抽干。 5.活性炭层高温灰化 将活性炭层取下放入50ml瓷坩埚中,在电热板上低温灰化,40min后,观察无明火,随后放入650℃高温炉中高温灰化,20min 后观察无火星,灰化完全,取出冷却至室温。 6.水浴蒸酸

向瓷坩埚中加入2-3滴25%NaCl溶液,润湿,再加1ml王水,水浴,待坩埚底部蒸干至湿盐状,加2ml浓盐酸继续水浴蒸干,加浓盐酸重复两次,待蒸至无酸味,取下冷却。 7.碘量法测金 向坩埚中加入3-5ml 7%醋酸溶液和1ml NH4HF2,2ml 1%EDTA溶液和0.1gKI,迅速滴定至淡黄色,加淀粉指示剂,滴定至无色,记下消耗硫代硫酸钠标准溶液体积V。 8.计算 含量(g/t)=T*V/m T—硫代硫酸钠对金的滴定度,单位:ug/ml V—消耗硫代硫酸钠体积,单位:ml m—称样量,单位:g 9.试剂配制 ①活性炭纸浆:首先处理活性炭。将粒径为0.074的活性炭在20g/l的NH4HF2溶液中浸泡3天,过滤,用HCl(2+98)及热水各洗涤7-8次,将处理后的活性炭与纸浆按干时的质量比1:2混匀。 ②金标液:称取0.0500g纯金(99.99%纯度以上)于100ml瓷坩埚中,加10ml王水,盖表面皿,在60-70℃水浴上加热溶解后立即加入8-10滴250g/L的NaCl溶液,再在水浴上加热蒸干,取下,加1mlHCl,继续在沸水浴上蒸干。取下加少量水,微热使可溶性盐类溶解,取下冷却至室温,移入盛有5ml HCl的500ml容量瓶中,用水稀释至刻度,混匀,此时金标准溶液100ug/ml。

实验五 活性炭吸附

实验五活性炭吸附 一、实验目的 1.了解活性炭吸附装置及其工艺流程,掌握操作方法; 2. 测定吸附等温线; 3. 加深对吸附理论的理解。 二、实验原理 活性炭是用含炭为主的物质(如木材、煤)作原料。与其他吸附剂相比,活性炭具有巨大的比表面积和特别发达的微孔。通常活性炭的比表面积高达500~1700m2/g,这是活性炭吸附能力强、吸附容量大的主要原因,其吸附作用是物理吸附和化学吸附综合作用的结果。 当活性炭在溶液中的吸附速度和解析速度相等时,达到动态平衡,此时被吸附物质的浓度不再发生变化,称为平衡浓度。 运行方式由间歇式静态吸附和连续式动态吸附两种,在工程中多采用动态吸附,本实验采用静态吸附方式。 三、实验设备及仪器 1.6个500mL三角烧瓶; 2.振荡器。 四、实验耗材 1.水样采用自配苯酚溶液,浓度100mg/L。 2.吸附剂采用5#、8# 活性炭,经磨细(一般采用通过0.1mm筛孔以下的粒径)并水洗后,在110℃下干燥(烘干1小时)后备用。 五、实验步骤 1. 在6个500mL的三角烧瓶中分别投加0、15、30、80、150、300mg 的吸附剂,然后分别加入250mL实验水样,测定水样;在振荡器上振荡30分钟(已接近吸附平衡),用滤纸滤出吸附剂; 2.测定原水及滤出液中酚的浓度; 3.求出各吸附剂的吸附等温线,并以弗兰德利希方程求出其吸附方程式; 4. 如要求含酚溶液浓度去除99%,试选一种吸附剂,并对该吸附剂(用原状颗粒)作动态实验,求平均吸附量A;或作静态实验,求平衡浓度下的单位吸附量A,并作比较。 (因时间关系,第4步可不

做)。 六、实验数据记录与分析 1.数据记录表 表5-1 活性炭吸附实验数据记录表 吸附剂投加量M/mg0153080150300 平衡浓度/(mg/L) 单位吸附量/(mg/g) 2.求出吸附方程式并绘制吸附等温线。 七、思考题 1.评价各种吸附剂对苯酚的吸附能力。 2.为什么要将吸附剂磨细?其吸附能力及吸附速度与原状吸附剂相同吗? 3.静态吸附与动态吸附有何不同?分别在什么情况下采用? 4.吸附等温线有何实际意义?

相关文档