文档库 最新最全的文档下载
当前位置:文档库 › 材料现代表面分析技术常用方法及各自的用途

材料现代表面分析技术常用方法及各自的用途

材料现代表面分析技术常用方法及各自的用途
材料现代表面分析技术常用方法及各自的用途

一材料现代表面分析技术常用方法及各自的用途

二 X射线电子能谱的工作原理、适用范围及特点

1 X射线光电子能谱分析的基本原理:

X光电子能谱分析的基本原理:

一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示:hν=E k+E b+E r其中:hν:X光子的能量;E k:光电子的能量;E b:电子的结合能;E r:原子的反冲能量。其中E r很小,可以忽略。

对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能 E b,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能E k,

上式又可表示为: hν=E k+E b+Φ E b= hν-E k-Φ

仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能E k,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。

2 X射线光电子能谱法的应用

(1)元素定性分析

各种元素都有它的特征的电子结合能,因此在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除 H 和 He 以外的所有元素。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素。

(2)元素定量分折

X射线光电子能谱定量分析的依据是光电子谱线的强度(光电子蜂的面积)反映了原于的含量或相对浓度。在实际分析中,采用与标准样品相比较的方法来对元素进行定量分析,其分析精度达1%~2%。

(3)固体表面分析

固体表面是指最外层的1~10个原子层,其厚度大概是(0.1~1) nm 。人们早已认识到在固体表面存在有一个与团体内部的组成和性质不同的相。表面研究包括分析表面的元素组成和化学组成,原子价态,表面能态分布。测定表面原子的电子云分布和能级结构等。X射线。

光电子能谱是最常用的工具。在表面吸附、催化、金属的氧化和腐蚀、半导体、电极钝化、薄膜材料等方面都有应用。

(4)化合物结构签定

X射线光电子能谱法对于内壳层电子结合能化学位移的精确测量,能提供化学键和电荷分布方面的信息。

(5)分子生物学中的应用,利用XPS鉴定维生素B12中的少量的Co。

3 电子能谱法的特点

(1)固体样本用量小,不需要进行样品前处理,从而避免了引入或丢失元素所造成的损失。

(2)表面灵敏度高,一般信息深度<10nm。

(3)分析速度快,可多元素同时测定。

(4)可以给出原子序数3—92的元素信息,已获得元素的成分分析。

(5)可以给出元素化学态信息,近而可以分析出元素的化学态或官能团。

(6)样品不受导体、半导体、绝缘体的限制等。

(7)是非破坏性分析方法。结合离子溅射,可作深度剖析。

相关文档