文档库 最新最全的文档下载
当前位置:文档库 › 丙烷制环氧丙烷项目设计4- 创新性说明书

丙烷制环氧丙烷项目设计4- 创新性说明书

丙烷制环氧丙烷项目设计4- 创新性说明书
丙烷制环氧丙烷项目设计4- 创新性说明书

创新性说明

100kt/a丙烷制环氧丙烷生产项目——创新性说明书

一资源利用方案

精炼原油过程中,丙烷主要存在于液化气中。长期以来,液化气被束缚在燃料领域,其附加值较低。若只考虑PDH制丙烯,由于国内丙烷脱氢企业大多有不同比例的丙烯商品量投向市场,而原料则基本依靠进口,行业壁垒较低,培育核心竞争力难度较大,随着国内新增产能的密度释放,加之煤制烯烃等其他原料路线的竞争,国内丙烷脱氢行业发展可能面临拐点。对于企业而言,一是要优化原料供应渠道和模式,控制原料风险。二是要优化产品结构,包括合理挖掘副产物氢气提高效益,优化丙烯下游延伸发展方案等。

图1 资源利用方案流程图

因而本项目利用天津石化每年炼油副产的6万吨丙烷,加上每年6万吨进口的丙烷,首先采用PDH生产丙烯,再充分利用丙烯和副产的氢气以蒽醌法制H2O2和HPPO相结合的工艺年产10万吨环氧丙烷。此设计中充分挖掘了丙烷脱氢副产物氢气的利用效益,更实现了低附加值丙烷到高附加值环氧丙烷的原料路线。同时产品PO以及PGSE与天津石化进行充分集成,弥补天津石化聚氨酯的原料缺口。

二产品结构方案

产品结构设计如下图所示,在第一车间将Catofin工艺进行有效整合,丙烷脱氢与精制获得高纯丙烯,副产氢气通过变压吸附得到高纯氢气,为后续集成工艺提供原料接触。本工艺将氢蒽醌氧化与TS-1催化丙烯环氧化在同一反应器中进行,将烷基蒽醌溶解在芳烃、沸点150~350℃的极性有机物及甲醇组成的混合溶剂中,在加氢反应器中催化加氢使烷基蒽醌转化为烷基氢蒽醌。氢化液送入环氧化反应器,在该反应器中加入TS-1分子筛,并通入氧气与丙烯混合气体,使烷基氢蒽醌氧化为烷基蒽醌和过氧化氢的反应与TS-1催化的丙烯、过氧化氢环氧化反应同时进行。反应后的混合物经过产品分离过程,粗分塔顶气体冷凝液利

100kt/a 丙烷制环氧丙烷生产项目——创新性说明书

3

用萃取精馏进行产品精制,有机相在干燥活化后重复利用。水相通过渗透蒸发提取丙二醇单甲醚后将杂质排出体系。

图2 产品结构方案示意图

在整个工艺中原料为丙烷、氧气,产品为环氧丙烷、丙二醇单甲醚,循环过程辅助物料为三甲苯、甲醇,毒副作用小,不仅有较高的资源利用率,有利于清洁生产。

三 反应技术

丙烷脱氢

为实现丙烷脱氢制丙烯,同时获得高纯氢气,将当前较为成熟的Catofin 工艺融合在工艺的产品体系中。在对Catofin 工艺充分研究基础上,根据工艺对丙烯的产量和纯度要求,利用五台并联固定床反应器进行丙烷脱氢操作,并根据反应要求和丙烷脱氢反应动力学,设计了适宜本工艺的操作时间表。

0510152025R0101

R0102

R0103R0104R0105

时间/min 脱氢反应蒸汽吹扫催化剂再生抽真空

复原

图3 丙烷脱氢反应操作时间图

100kt/a丙烷制环氧丙烷生产项目——创新性说明书

利用计算机对反应器的进气阀和出气阀进行控制,保证在一个时间节点存在两个反应器正在进行脱氢反应,两台反应器正在进行蒸汽吹扫和催化剂再生,一台反应器进行反应器前预处理,恢复至合适的反应条件,保证反应器正常运转。同时,如果设备需要进行更换催化剂和定期检修,可以预先调整程序,改变为四台反应器并联的操作顺序,保证工艺生产过程不间断。

丙烯环氧化与过氧化氢生产集成

常规工艺在过氧化氢生产过程中,氢化液需先进入氧化塔,氧化液再通入H2O2萃取塔,由水萃取出的过氧化氢溶液中还含有部分蒽醌,需再通入萃取塔由苯萃取出其中的蒽醌液,最后萃取液在工作液回收塔中精馏分离出苯。采用集成工艺,省去氧化塔、纯化塔和萃取塔以及相关换热和流体输送设备,节省了设备购置费从而节约固定资产费用。另一方面省掉H2O2的萃取、净化、储运等步骤,减少了操作环节,节省了运营成本。另外,耦合工艺促进液体的不断循环与更新,减少了有毒添加剂的使用,有利于化工清洁化生产。

在考虑生产创新过程中,我们对方案的可行性进行了如下研究:

①过程选用1,3,5-三甲苯(TMB)、磷酸三辛酯(TOP)、甲醇所组成的混合溶剂。2-乙基蒽醌溶解于TMB,2-乙基氢蒽醌溶解于TOP中,三者形成工作液相。甲醇与丙烯溶解丙烯形成水醇相。

②1,3,5-三甲苯和磷酸三辛酯进入环氧化系统对丙烯环氧化反应影响不大。

③TS-1分子筛的平均孔径约为0.55nm,且活性位大多位于孔道之内,而烷基蒽醌和烷基氢蒽醌的分子尺寸较大,它们不能扩散进入TS-1分子筛的孔道内。因而TS-1分子筛的存在对烷基氢蒽醌的氧化反应并无影响。

④甲醇对烷基氢蒽醌的氧化反应没有明显的影响。

⑤氢蒽醌的氧化反应在工作液相中进行,生成的H2O2迅速转移到水醇相中,同时TS-1在蒽醌工作液中的分散相较差,其主要分散在甲醇水相中,发生环氧化反应生成的环氧丙烷则部分转移到工作液相中,水醇相中环氧丙烷的浓度降低不仅有利于环氧丙烷反应,还减少了环氧丙烷的开环副反应。

⑥分相后得到的工作液可以用浓碳酸钾溶液吸收其中的水分后循环使用,干燥后工作液的后处理须将其中夹带的碳酸钾除去。

100kt/a丙烷制环氧丙烷生产项目——创新性说明书

5

四分离技术

变压吸附(PSA)

利用Catofin工艺会副产大量氢气,将氢气进行提纯可以供给过氧化氢生产的氢化过程,减少了原料成本和运输风险。在炼油行业,从轻烃体系中提取氢气必须在深冷条件下进行操作,势必会导致大量能耗。

本工艺采用变压吸附(PSA)对氢气进行提纯,工序采用“5-1-2”PSA操作方式,即装置由五个吸附塔组成,其中一个吸附塔始终处于进料吸附状态,其工艺过程由吸附、两次均压降压、顺放、逆放、冲洗、两次均压升压和产品最终升压等步骤组成,具体工艺过程如下图所示。

图 4 变压吸附操纵步骤曲线

针对工艺对氢气纯度和处理量的要求,对各步骤操作时间进行了优化,设计了操作甘特图。通过计算机程序控制对变压吸附塔的进气、出气阀进行定时调节,保证变压吸附过程的稳定操作。通过变压吸附,获得氢气纯度99.9%,收率78.5%,满足后续过程对氢气的需求。

图 5 变压吸附操作时间图

渗透蒸发>恒沸精馏

由于丙烯环氧化反应在甲醇溶剂中进行,少量环氧丙烷会与甲醇反应生成丙

100kt/a 丙烷制环氧丙烷生产项目——创新性说明书

二醇单甲醚(PGME ),是一种低毒性优良溶剂,有“万能溶剂”之称,被广泛应用于涂料、印染和农药等行业。将PGME 随水相进入污水处理处,不仅会加大水处理负担,而且造成很大的资源浪费,提取水中的少量丙二醇单甲醚不仅是清洁生产的要求,而且也有利于企业创收。由基本实验可知,水和丙二醇单甲醚发生共沸,所以无法使用常规精馏的方法将二者分离。

当前工业上较为成熟的方式是以苯作为恒沸剂进行恒沸精馏的方法,将水分夹带至塔顶,而后在塔釜获得纯的较高的丙二醇单甲醚。一方面苯获取容易,价格低廉;而且苯水恒沸液在静置分层后上层溶液苯含量在99.94%,不用进行处理可直接流回恒沸精馏塔中继续使用,废水中苯含量0.07%,需要进行处理才可进行排放。但是本工艺水相中PGME 含量较低,水含量较大,因此共沸精馏需要将大量水与苯的恒沸物蒸至塔顶,势必消耗大量能量。

渗透蒸发(pervaporation )是一种将热驱动的蒸馏法与膜法相结合的手段,Deng 等人提出二氧化硅填充的聚二甲基硅氧烷膜(PDMS )对水和丙二醇单甲醚体系有较大的分离因子,但渗透蒸发膜的通量与分离因子存在“trade -off”效应。本工艺处理量相对较大,而且体系内含有大量甲醇,还有其他杂质,通过渗透蒸发并不能得到合格的丙二醇单甲醚产品,但是它可以达到浓缩料液的目的,采用渗透蒸发除去进料中的水分,再采用精馏的方法进行分离,可以减少精馏过程中的能耗,同时节省恒沸剂苯的使用。

010

20

30

40

50

60

70

蒸汽折合消耗冷却水电耗膜和密封材料总计恒沸精馏蒸汽渗透815.50

17.55.517.7066.631.233.6

图 6 恒沸精馏与渗透蒸发经济分析

我们对恒沸精馏与渗透蒸发进行能耗分析,如下图所示。最终确定渗透蒸发与普通精馏作为丙二醇单甲醚的分离手段。

100kt/a丙烷制环氧丙烷生产项目——创新性说明书

7

五节能降耗技术

运行成本是影响经济效益的重要因素之一,其中很大一部分为公用工程的消耗。通过通过换热网络的设计和优化,可以尽可能地实现对内部流股热量的集成和最大化利用,充分利用丙烷脱氢反应器出口废热和精馏塔塔釜废热,减少公用工程的消耗30%左右。

除此之外,采用压差式热耦合对丙烯精馏过程进行节能。

图7差压式热耦合示意图

丙烯丙烷混合组分由提馏塔塔顶进料,精馏段的压力高于提馏段,在两精馏塔之间加设置压缩机,低压精馏塔段塔顶的气相物料,经压缩机压缩,进入高压精馏塔段塔底,同时,高压精馏塔段塔底液相进入低压精馏塔顶部;高压精馏塔段塔顶的气相物料作为热介质进入主再沸器提供热量,换热后的物料进入回流罐;低压精馏塔段底部的液相物料作为冷介质进入主再沸器吸收热量汽化,换热后的物料进入低压精馏塔塔底的再沸蒸汽入口。普通精馏与压差热耦合精馏节能对比如下表所示。

冷凝器-23187.384 压缩机

3554.26

再沸器23152.5362 辅助冷凝器3279.6

差压式热耦合节能率

由此可见,差压式热耦合应用到丙烯精馏过程中可以节能69.9%,具有良好的经济效益。

100kt/a丙烷制环氧丙烷生产项目——创新性说明书

六环境保护

本项目提出的耦合工艺源头与生产过程无高毒性物质输入、循环与输出。固废产量少,装置正常生产无直排大气的废气,催化蒸馏塔顶冷凝器不凝气及甲醇回收塔不凝气,主要成分为C3、甲醇,排入火炬燃烧;在非正常情况下,如系统误操作、停电、断水时,通过安全阀排入火炬。向火炬排放的最大物料量为15000kg/h,主要成分为C3,低于二级标准的日平均浓度要求。

工艺主要的杂质排放点在T0901甲醇水塔,由于分相器分相可能不完全,含有污染物重芳烃、磷酸三辛酯、烷基蒽醌及其降解物的有机物废水,以油状物存在于废水中。当油珠的粒径>100μm时,易浮于水面形成油膜或油层(浮油);粒径在10~100μm时以极小的油珠悬浮于水中,但不稳定,静置一段时间后也往往形成油膜或油层(分散油)。对这部分油珠可采用重力分离法去除;粒径<10μm 的油珠(乳化油)会形成稳定的乳化液,长期静置也难以从水中分离出来,必须先经过破乳处理转化为浮油,再分离。针对该废水的特点,决定先利用重力分离法隔油去除大部分的浮油和分散油,然后加入混凝剂破乳去除乳化油,再由气浮设备进行浮选。经过隔油+混凝气浮预处理后,将减轻后续处理的压力。浮选后的废水用过氧化氢催化氧化法打开苯环,降解大部分的芳香烃类有机物,最后用活性炭吸附残留的有机物。

而对于固定床(氢化塔)钯催化剂再生、后处理白土床、氢化再生床吹扫产生的高浓度污染物蒸汽冷凝废水和工作液洗涤水(含重芳烃、磷酸三辛酯、烷基蒽醌及其降解物、采取先存蓄,然后多次少量进入废水处理系统处理的办法,减轻高浓度废水对系统的冲击。氧化铝粉末等污染物的废水),采取先存蓄,然后多次少量进入废水处理系统处理的办法,减轻高浓度废水对系统的冲击。

对于甲醇水塔排出的甲醇废水采用好氧生物法处理,其原理为在有氧条件下,利用好氧微生物的作用来去除废水中的有机物。在处理过程中,废水中溶解性的有机物透过细菌的细胞壁进入细菌体内为细菌所吸收,而固体和胶体形式的有机物先被吸在细菌体外,由细菌分泌的外酶分解为溶解性物质,然后再渗人细菌细胞中。细菌通过自身的生命活动,即在细胞内的作用下通过氧化、还原、合成等过程,相反,一部分被吸附的有机物氧化为简单的无机物,如有机物中的碳被氧化成二氧化碳、氮和氧化合成水、氮被转化为氨等。同时释放出细菌生长、活动所藉要的能量。与此同时,另一部分有机物合成为新的原生质,作为细菌自身生长、繁殖所必需的营养物质。来自装置区的含醇废水经过调节池,均匀混合后进人一级生化池(一级生化池含有甲醇种)。氧处理后,进入二级生化池。进

100kt/a丙烷制环氧丙烷生产项目——创新性说明书

9

一步经过好氧处理后,进人斜板沉降池,除去废水中的悬浮物。然后经过活性炭过滤器过滤。悬浮物经进一步吸附后,达到循环水质要求后,补充到循环水系统得以利用。

本项目产生的废水均排入污水处理站处理,达到一级排放标准后进入回用水装置处理,达到《污水再生利用工程设计规范》(GB/T50335-2002)后回用于循环水工艺,其余部分排入总厂厂外蒸发池。

七过程设备

耦合反应的实现需要反应器达到较大的返混程度,为此选用气升式环流浆态床作为反应器,气升式环流反应器(air-liftloopreactor,简称ALR)是在鼓泡床基础上发展起来的一类气-液,气-液-固多相反应器。气升式环流反应器与机械搅拌釜最大的差异在于,气升式环流反应器是一种气体搅动装置,由气体提供动力带动反应器内的混合物进行运动和混合,从而避免了由于密封,复杂的轴承或者磁力驱动导致污染的可能性,同时降低了固定设备的投资成本。与鼓泡床相比,气升式环流反应器具有液体定向流动的特点,在较低的表观气速下即可实现固体颗粒的完全悬浮,提高了操作弹性与稳定性,同时降低了生产过程中的能耗,缩减成本的同时达到了节能环保的目的。

由于气升式环流反应器具有这样结构简单、造价低、能耗低、不易污染等的优点,目前已广泛应用于工业生产,并越来越受到人们的重视,由于对其流动与传质行为认识上的不足,目前在设计与放大过程上仍存在较大的不可预知性,因此,我们采用CFD对其内部流动和传质行为进行深入研究。

100kt/a丙烷制环氧丙烷生产项目——创新性说明书

图8 流体速度矢量图图9 自然对流下水相含率分布气升式环流反应器的主要特性参数包括气含率,循环液速,气泡直径及分布,传质特性,扩散系数,以及反应器内速度分布,压力分布等等。由于气升式环流反应器工作过程中的传质传热参数不宜直接观测,主要通过气含率和循环液速来反应气升式环流反应器工作性能。

通过CFD流场模拟证明了循环返混的可行性,并根据流场分布状况添加设备内件,避免死区导致溶液分层、催化剂沉积影响反应和传质速率。同时为提高返混程度,而且及时移走反应热,同时考虑到在该循环液速下,环流反应器的自然对流湍动程度较小,对反应动力学不利,因此考虑增加强制对流。为反应器增加外循环,同时外接换热器,在促进对流的同时及时移走反应热。

年产10万吨HPPO法环氧丙烷项目--项目总结

年产10万吨HPPO法环氧丙烷项目 项目总结 、

1 1 项目总结 一、HPPO 工艺生产系统设计思路 本项目突出作为母厂子系统中转站的地位,纵观整套HPPO 生产系统由总厂 供应原料丙烯、溶剂甲醇和共沸剂苯,有两家公司双重保证双氧水供应,年产10吨环氧丙烷通过管网运输至园区内的可利亚多元醇和南京红宝丽有限公司用于聚醚多元醇生产;副产的丙二醇甲醚和丙二醇输回总厂利用或者销售;将系统产生的少量废水输回总厂三废处理中心统一处理,形成与总厂的物料大集成。 图1 物料集成图 二、工艺流程介绍 本项目包括三个工段:反应及预分离工段、环氧丙烷(PO )提纯工段及重 可利亚多元醇(南京)有限公司 南京红宝丽股份有限公司 HPPO 工艺生产系统 少量废水 双氧水 江苏扬农化工集团 江苏天鸿化工有限公司 环氧丙烷 丙二醇甲醚 丙二醇 扬子石化 下游生产、销售 丙烯原料 共沸剂苯 溶剂甲醇

组分回收工段。 反应及预分离工段工艺流程如下图所示: 图2 反应及预分离工段流程图1 图3 反应及预分离工段流程图2 如图2、图3所示:丙烯、双氧水在甲醇作为溶剂,改良的TS-1作为催化剂,20bar,40-65℃的体系下,在逐层外取热模拟移动床反应器中进行反应。反应器出口混合物流进入预分离塔进行丙烯的预分离。塔顶所得的丙烯和氧气混合物流股经“冷凝-加热-冷凝”三级平衡,最终除去体系中的氧气,剩余丙烯循环回原料预混罐,重复利用。

环氧丙烷(PO)提纯工段工艺流程如下图所示: 图4 环氧丙烷提纯工段流程图1 图5 环氧丙烷提纯工段流程图2 如图4、图5所示:由反应及预分离工段的预分离塔塔釜所得的混合物流股,经萃取精馏后,塔顶得到粗环氧丙烷,粗环氧丙烷首先通过离子交换树脂除醛塔,经化学吸附除去醛类物质,然后通入环氧丙烷提纯塔,塔顶除去轻组分,塔釜得到合格的环氧丙烷产品。此外,为减少产品的损失,本项目增设了一个环氧丙烷回收塔。

油气罐区防火防爆十条规定

《油气罐区防火防爆十条规定》解读 8月4日,国家安全监管总局印发了《油气罐区防火防爆十条规定》(以下简称《十条规定》),共275字,规定了油气罐区在日常管理、安全设施、特殊作业、人员资质等方面的禁止事项。《十条规定》主要针对近年来油气罐区发生的重大及典型事故暴露出的突出问题,立足于现场管理和问题导向,依据《中华人民共和国安全生产法》、《危险化学品安全管理条例》和与之相关的部门规章、规范性文件、国家及行业标准等。《十条规定》每一条都是血的教训,每一条都是生命线、高压线和不可逾越的红线。油气罐区安全事关重大,关注度高,影响面广,一旦失控后果严重,各企业要切实做到“铁规定、刚执行、全覆盖、真落实、见实效”。 为深刻领会、准确理解《十条规定》的内容和要求,现对《十条规定》逐条进行解读: 一、严禁油气储罐超温、超压、超液位操作和随意变更储存介质。 本条主要规定了油气储罐的使用管理要求。油气储罐储存介质、储存温度、压力、液位必须符合设计工艺条件和工艺控制指标,这些指标超出控制范围会带来泄漏着火、爆炸等安全风险。 储罐在设计阶段是按照既定的某种储存介质进行设计,设计考虑的因素仅局限于该种介质的物化性质和储运工艺要求,若要变更储存介质,必须要考虑既定储罐的设计条件是否满足该介质的存储要求,确保储罐安全运行。随意变更储存介质或储罐用途可能带来安全隐患,导致事故的发生。 典型事故案例:1984年3月31日,河北省保定市石油化工厂油罐发生爆炸事故,造成16人死亡、6人重伤,事故主要原因是违章输入渣油(原为锅炉燃料油罐),油温过高,大量瓦斯与罐内空气混合形成爆炸性气体,遇到火花引发爆炸。 二、严禁在油气罐区手动切水、切罐、装卸车时作业人员离开现场。 本条主要规定了储罐区手动切水、切罐、装卸车作业管理要求。手动切水是指通过间断手动打开切水阀放出沉积在油气储罐底部的水;切罐是指将进出物料从一个储罐切换到另一个储罐;装卸车是指将储罐中物料装车或从运输车辆向储罐中输送物料。 切水、切罐、装卸车等作业环节应当严格遵守安全作业标准、规程和制度,并在监护人员现场指挥和全程监护下进行。若监护不到位,极易造成油气泄漏,引发事故。

环氧丙烷生产技术及市场行情研究报告

环氧丙烷生产技术及市场行情研究报告 出版日期:2013-9-5 目录 第一部分:有机化工行业概述 (1) 第一节:有机化工行业范围、基本原料和用途介绍 (1) 第二节:化工市场跌宕起伏,有机化工产品表现上佳 (2)

第三节:生物基有机化工产业正在兴起 (3) 第二部分:环氧丙烷生产技术及市场行情研究报告目录 (5) 第三部分:研究方法、数据来源和编写资质 (9) 第一部分:有机化工行业概述 第一节:有机化工行业范围、基本原料和用途介绍 有机化工是有机化学工业的简称,又称有机合成工业。是以石油、天然气、煤等为基础原料,主要生产各种有机原料的工业。 基本有机化工的直接原料包括氢气、一氧化碳、甲烷、乙烯、乙炔、丙烯、碳四以上脂肪烃、苯、环氧丙烷、环氧丙烷、乙苯等。从原油、石油馏分或低碳烷烃的裂解气、炼厂气以及煤气,经过分离处理,可以制成用于不同目的的脂肪烃原料;从催化重整的重整汽油、烃类裂解的裂解汽油以及煤干馏的煤焦油中,可以分离出芳烃原料;适当的石油馏分也可直接用作某些产品的原料;由湿性天然气可以分离出甲烷以外的其他低碳烷烃;从煤气化和天然气、炼厂气、石油馏分或原油的蒸气转化或部分氧化可以制成合成气;由焦炭制得的碳化钙,或由天然气、石脑油裂解均能制得乙炔。此外,还可从农林副产品获得原料。 基本有机化工产品的品种繁多,按化学组成可分类如表。这种划分具有一定的灵活性,因很多物质含有两种以上的特定元素或两种以上的基团,它们常又按其主要特点划入某一类。 基本有机化工产品也可按所用原料分类: ①合成气系产品(见合成气)。 ②甲烷系产品(见甲烷)。 ③乙烯系产品(见乙烯)。 ④丙烯系产品(见丙烯)。 ⑤C4以上脂肪烃系产品(见碳四馏分;碳五馏分)。 ⑥乙炔系产品(见乙炔)。

环氧丙烷的几种生产工艺及市场分析模板

一环氧丙烷的几种生产工艺及对比 环氧丙烷, 又名氧化丙烯, 英文名称propylene oxide (P0)。它是一种无色、具有醚类气味的低沸易燃液体。工业产品为两种旋光异构体的外消旋混合物。凝固点一112.13℃, 沸点34.24℃, 相对密度0.859。与水部分混溶, 与乙醇、乙醚混溶, 并与二氯甲烷、戊烷、戊烯、环戊烷、环戊烯等形成二元共沸物。有毒, 对人体有刺激性。 环氧丙烷(P0)是一种重要的有机化工产品, 也是丙烯系列产品中仅次于聚丙烯和丙烯睛的第三大衍生物, 同时也是一种重要的基本有机化工原料。环氧丙烷具有广泛的用途, 主要用于生产聚醚多元醇(PPG)、丙二醇(PG)、丙二醇醚、异丙醇胺、轻丙基甲基纤维素醚、轻丙基纤维素醚等, 也是非离子表面活性剂、油田破乳剂、农药乳化剂、溶剂、增塑剂、润滑剂、阻燃剂等的主要原料。广泛应用于化工、轻工、医药、食品和纺织等行业。当前生产环氧丙烷的主要工业生产工艺有氯醇法, 共氧化法和直接氧化法( HPPO) 。国内只有氯醇法和共氧化法, 按年产量计算氯醇法占74%, 共氧化法占24%。国内当前还没有直接氧化法的装置。 国内环氧丙烷的年产能与需求对照表 单位: 万吨

环氧丙烷PO 的生产工艺较多, 当前国内外已工业化的主要有: 氯醇化法、 共氧化法和过氧化氢氧化法(简称HPPO 法), 其中共氧化法又能够分为乙苯法和异丁烷法两种。根据 世界PO 生产能力统计, 氯醇化法占总生产能力的40.3%, 共氧化法占51.5%, HPPO 法占5%。在共氧化法中, 乙苯法占世界总生产能力的24.9%, 异丁烷法占26.6%。 1、 直接氧化法: 丙烯用双氧水直接氧化制环氧丙烷。催化剂为TS-1, 钛硅分子筛。 2、 共氧化法: 以异丁烷或乙苯作为氧的载体, 预先制成有机过氧化物, 然后与丙烯反应制环氧丙烷。OH C CH -33)( 3、 氯醇法或氯碱法: 丙烯经过氯醇化过程用卤素氧化制环氧丙烷。据估计每生产1吨PO 伴生2.1t 2l a C C , 至少43t 的废水排放。 O HC HCL O H C l l 22+→+ OH CH CHC CH C CHOHCH CH O HC H C 232363l l l 22+→+ O H C C PO OH C OH CH CHC CH C CHOHCH CH 2223232l a 2a l l ++→++)( 【工艺比较】 一、 PO 三种工艺路线比较 表一: 基本情况

环氧乙烷环氧丙烷共聚醚的研究进展_刘佳

环氧乙烷环氧丙烷共聚醚的研究进展 刘 佳,程 斌* (北京化工大学,新型高分子材料的制备与加工北京市重点实验室,北京 100029) 摘要:综述了环氧乙烷环氧丙烷共聚醚的聚合机理﹑聚合工艺及其应用。环氧乙烷环氧丙烷共聚醚的聚合按其催化剂体系的机理可以分为阴离子聚合、阳离子聚合和配位聚合三类,其中阳离子聚合应用较少。在环氧乙烷和环氧丙烷开环聚合生成共聚醚的反应中,不同的反应工艺条件对生成的聚醚有着很大的影响。同样比例的环氧乙烷和环氧丙烷,因聚合反应器设计、反应器种类、起使剂种类﹑催化剂种类与用量﹑温度﹑加料方式﹑端基结构等的不同,所合成的共聚醚会产生不同的结构和性能。环氧乙烷环氧丙烷共聚形成的聚醚可以分为嵌段共聚醚和无规共聚醚两类。其中,嵌段共聚醚可以分为EPE和PEP两类。 关键词:环氧乙烷;环氧丙烷;聚醚;开环聚合;聚合机理;聚合工艺;嵌段共聚醚;无规共聚醚;应用 引言 环氧乙烷(E O)环氧丙烷(PO)共聚醚是一种重要的非离子型表面活性剂,其性能可以通过相对分子质量以及E O和PO比例的不同进行调控[1]。环氧乙烷环氧丙烷共聚醚自问世以来发展异常迅速,在生产和生活方面得到了极为广泛的应用[2]。特别是近年来,在生物材料、纳米材料、介孔材料的设计制备中起到重要的作用。环氧乙烷环氧丙烷嵌段聚醚的分子,不但能够自组装成形态不同、尺寸可调的纳米单元,而且反应后易除去,是一种优良的纳米材料模板剂,已经在介孔材料的设计合成过程得到应用[3]。随着介孔材料在分离提纯、催化、传感器、生物材料、环境能源、信息通信等领域越来越广泛的应用,对介孔结构的要求也越来越高,环氧乙烷环氧丙烷共聚醚模板剂也因其结构及性能的可设计性得到越来越多的关注。聚醚分子具有良好的生物相容性,可以很容易地进行功能性基团修饰,在生物材料中也得到广泛应用。随着人们对纳米材料、介孔材料以及生物材料等热门领域的研究不断深入,环氧乙烷环氧丙烷共聚醚分子的应用价值和应用范围必将大大提升。 1 聚合机理 已有报道的各种环氧化物开环聚合催化剂体系按聚合机理可分为三类:阴离子聚合、阳离子聚合与配位聚合。 1.1 阴离子开环聚合 目前工业上普遍采用的方法是阴离子聚合法,齐永新等[4]对阴离子开环聚合催化体系进行总结。阴离子开环聚合催化剂包括:碱金属化合物体系和碱土金属化合物体系。碱金属化合物体系包括碱金属氢氧化物、醇盐等。一般常用的催化剂有氢氧化钾、氢氧化钠、醇钾及醇钠等。碱土金属化合物体系中,比较有代表性的是Sr、Ba基的碱土金属化合物。使用这些化合物,最后合成出相对分子质量较高、分布较窄的聚醚。 阴离子开环聚合机理一般认为:环氧化物与碱金属氢氧化物或其醇盐作用产生了醇盐阴离子引发聚合,该阴离子段通过与单体分子的连续开环反应不断增长成聚合物链。环氧化物的阴离子聚合反应具有活性阴离子聚合的特点,通常不发生终止反应[5]。连续加入不同的环氧单体,形成嵌端共聚物;加入混合 作者简介:刘佳(1984-),女,硕士研究生,主要从事新型聚合的设计合成与性能控制的研究; *通讯联系人,E-mail:chen gb@https://www.wendangku.net/doc/bb9724880.html,

POSM工艺流程说明

2.2 工艺说明 2.2.1工艺生产方法 POSM 装置以丙烯和乙苯为原料,采用共氧化法生产环氧丙烷和苯乙烯单体。下面所示的简化方块总流程图描述了采用均相钼基环氧化催化剂的POSM 技术。 空气100 200EB EBHP MBA ACP EB 氧化浓缩300EBHP MBA ACP EB 环氧化/C3分离400粗PO PO精制PO产品700 600ACP ACP加氢MBA脱水/SM精制500ACP MBA EB吸收/MBA分馏EB 氢气 SM产品催化剂丙烯EB:乙苯PO:环氧丙烷SM:苯乙烯 EBHP:乙苯过氧化氢ACP:苯乙酮MBA:甲基苄醇POSM工艺流程方块图 EB MBA MBA ACP EB 2.2.2 工艺流程说明 2.2.2.1 过氧化反应(100) 100单元的目的是通过乙苯与空气中的氧在液相发生过氧化放热反应生成乙苯过氧化氢(EBHP ),反应方程式如下: 在145℃和0.24MPaG 下,乙苯和空气中的氧通过两个非催化、液相、串联氧化反应器反应生成乙苯过氧化氢(EBHP )。副产物主要是甲基苄醇(苯乙醇)(MBA )和苯乙酮(ACP ),此外还有醛、酚、酸和酯以及重组分等,通过保持乙苯低转化率以减少副产品的生成。经过每个反应器的转化率为5-10%,经过两个反应器后EBHP 的浓度为8-10%wt 。液相反应产物

从反应器出来送至200浓缩单元,反应器顶部气相进入到乙苯回收塔底部与顶部的新鲜乙苯以及和来自200和500单元的循环乙苯逆流接触以回收反应热。冷凝下来的乙苯、新鲜乙苯以及循环乙苯从乙苯回收塔底部进入到氧化反应器作为液相进料。空气通过空气压缩机鼓泡进入反应器。反应循环气通过循环气压缩机在反应器和乙苯回收塔之间建立循环气回路以控制反应的温度,循环气通过分布器进入到反应器。乙苯回收塔顶部尾气用500单元的贫油洗涤以回收未冷凝的有机物,使尾气中的有机物含量降到非常低的水平后,送入催化转换单元。在催化转换单元,尾气中残留的有机物被破坏后,排放至大气。乙苯对乙苯过氧化氢的选择性与氧化反应器中的氧气分压,反应器的段数,乙苯的停留时间以及乙苯转化率有关。 2.2.2.2 乙苯过氧化氢(EBHP)浓缩(200) 200单元用二效蒸发系统浓缩100单元的乙苯过氧化氢至40%wt。回收的EB循环返回到过氧化单元。浓缩的氧化物送到300环氧化反应单元。 氧化反应器出来的反应产物进入到第一浓缩塔中,在0.044MPaA压力下,进料中少于40%wt的乙苯从塔顶蒸出,其首先在第二浓缩塔的再沸器中冷凝,液化潜热为第二缩塔提供塔釜热源,未冷凝汽相用冷却水冷却。回收的乙苯通过乙苯回收塔返回到氧化反应器。塔釜液作为进料泵送至第二浓缩塔。第一浓缩塔用低压蒸汽作为再沸器热源。利用液环泵和蒸汽喷射系统提供操作所需的真空。 在第二浓缩塔,乙苯过氧化氢釜液进一步被浓缩到40%wt,然后送入300单元作为环氧化反应进料。塔顶蒸出多余的乙苯,用冷却水冷却后和第一浓缩塔塔顶乙苯混合后返回过氧化反应系统。两级蒸汽喷射泵系统为第二浓缩塔提供操作所需真空。 2.2.2.3 环氧化反应/C3分馏(300) (1)环氧化反应 在约100℃和4.0MPa,在专有钼催化剂存在下,浓缩后的EBHP与丙烯发生液相环氧化反应,生成环氧丙烷(PO)和MBA。维持丙烯的低转化率,以减少副产品的生成。通过气化液态丙烯除去反应热。经过两个水平布置的串联反应器后,EBHP的转化率为99%wt,PO对EBHP的摩尔选择性为90%。 (2)C3分馏以及粗PO回收(废碱液来源1:酚、有机杂质、环氧化催化剂) 这个子单元的目的是用一系列分馏塔从PO和C8组分中回收丙烯,分离出原料附带的丙烷和乙烷,以防止其在反应循环气中的积累。 环氧化反应器的气液相进入到高压脱丙烷塔,塔顶操作压力为1.95MPaG,使冷却水恰好能冷凝塔顶丙烯气,冷凝下来的丙烯和新鲜丙烯一起作为环氧化反应的丙烯进料。低压蒸汽作为塔底再沸器热源,塔釜液经过一系列碱洗和水洗以去除影响苯乙烯质量的酚及其他有机杂质和环氧化反应催化剂。装置内污水池和分离罐收集的有机物也间断送入到此碱洗和水洗系统,以回收有机物。 高压脱丙烷塔塔顶不凝气体通过乙烷压缩机增压后送到脱乙烷塔,操作压力为2.9MPaG,使冷却水恰好能冷凝塔顶绝大部分的丙烯和丙烷气,塔顶不凝气用丙烯制冷的尾气深冷器冷凝以减少丙烯损失。脱乙烷塔塔顶不凝气主要是乙烷、进料中的轻组分、环氧化反应中生成的CO和CO2,并入到装置连续火炬气系统。 高压脱丙烷塔塔顶冷凝的部分液相物料送入C3分离塔,分离出原料丙烯中带入的丙烷,以控制丙烯反应循环气中的丙烷含量。塔操作压力为1.95MPaG,用冷却水冷凝丙烯并

防火防爆设计的基本内容实用版

YF-ED-J2096 可按资料类型定义编号 防火防爆设计的基本内容 实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

防火防爆设计的基本内容实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 防火防爆设计的基本内容包括以下几个方面: 1考虑总体布局、厂址选择和厂区总平面的配置对限制灾害的要求;包括:厂址选择;总平面布置;防火间距等。 2建筑防火防爆的设计;包括:生产及储存的火灾危险性分类;建筑物的耐火等级;厂房的耐火等级;层数和占地面积;厂房建筑的防爆设计。 3消防扑救设施的设置。 下面是一个具体的实例分析:甲醇罐区的

火灾爆炸危险性分析及防火防爆设计 王允升(四川大学化工学院) 摘要:根据甲醇的物化性质及储存过程特点,对甲醇罐区潜在的火灾爆炸危险性进行分析,提出设计中应采取的防火防爆措施以及设计审核时需着重检查的项目和内容。 关键词:甲醇罐区危险性防火防爆设计1概述:甲醇(CH3OH)是重要的基本有机化工原料,具有剧毒、易燃烧性,其蒸气与空气在一定范围内可形成爆炸性混合物。同时也是一种清洁、高效的液体燃料,在国民经济中占有十分重要的地位。由于甲醇的易燃性及其蒸气与空气在一定浓度区间内混合物的爆炸性,因此,如何安全、有效地储存和使用是非常重要的。

HPPO环氧丙烷直接氧化法调研报告

【行业动态】 巴斯夫、陶氏化学等公司已经完成环氧丙烷直接氧化法工业化规模生产试验,于2009年在比利时安特卫普建成产能为300kt/a的第一套装置并运营;于2011年陶氏化学和泰国SCG集团将在泰国建成年产390kt/a规模的直接氧化法环氧丙烷第二套装置,两套装置均采用先进的HPPO工艺技术。 2007年,中海油壳牌合资公司在惠州建成年产250kt/a环氧丙烷和550kt/a苯乙烯联产装置;2010年3月中石化在浙江镇海炼化建成第一套具有世界级规模的环氧丙烷/苯乙烯(PO/SM)联产装置,28.5万吨/年环氧丙烷、62万吨/年苯乙烯装置由中石化与美国利安德公司合资兴建,以上两套装置采用的是共氧化工艺技术。国内其他装置均为氯醇法。 【技术动态】 大连化学物理研究所研发的双氧水直接氧化丙烯制环氧丙烷新 技术,于2008年8月10日通过专家组鉴定。该项新技术将改变传统环氧丙烷生产工艺污染严重等弊端,实现了业界一直追求的环境友好环氧丙烷工艺路线的目标。 双氧水直接氧化丙烯制环氧丙烷新技术与项目组前期开发的原 位耦合法相比,简化了工艺流程,减少了催化剂的损失;与传统工业生产方法相比,工艺简单,环境友好,无联产品问题;在优化的工艺

条件下,催化剂循环使用5次后,环氧丙烷相对双氧水的产率仍保持在87%以上,产物分布选择性>99%。 新方法在适宜的溶剂体系中,在该研究组开发的新一代反应控制相转移催化剂作用下,可直接催化双氧水氧化丙烯,高选择性地生成环氧丙烷。反应结束后,催化剂及溶剂都可循环使用,因而对环境友好。 【工艺概况】 环氧丙烷PO的生产工艺较多,目前国内外已工业化的主要有:氯醇化法、共氧化法和过氧化氢氧化法(简称HPPO法),其中共氧化法又可以分为乙苯法和异丁烷法两种。根据2007年世界PO生产能力统计,氯醇化法占总生产能力的40.3%,共氧化法占51.5%,HPPO法占5%。在共氧化法中,乙苯法占世界总生产能力的24.9%,异丁烷法占26.6%。 1、直接氧化法:丙烯用双氧水直接氧化制环氧丙烷。 催化剂为TS-1,钛硅分子筛。 2、共氧化法:以异丁烷或乙苯作为氧的载体,预先制成有机过氧 化物,然后与丙烯反应制环氧丙烷。

环氧丙烷氯化法、共氧化法和直接氧化法技术路线解析

环氧丙烷生产工艺 氯醇化法、共氧化法和直接氧化法技术解析 万华化学集团股份有限公司(以下简称万华化学)又一具有自主知识产权的高端技术打破国外公司技术垄断,“乙苯共氧化法高效绿色制备环氧丙烷成套技术”项目通过中国石油和化学工业联合会成果鉴定,继百万吨乙烯项目选择丙烷路线之后,将投资32.5亿元,在山东烟台实施该技术成果转化,建设一套年产30万吨环氧丙烷并联产65万吨苯乙烯的世界级规模工业化装置,该装置预计2021年建成投产。该技术跟其他工艺路线有何不同呢? 乙苯共氧化法高效绿色制备环氧丙烷成套技术”项目通过由中国工程院陈建峰院士、蹇锡高院士以及中国科学院李亚栋院士等行业知名专家组成的鉴定,专家委员会认为,该项目成果整体技术进入国际领先行列。 据悉,环氧丙烷是国家重点鼓励发展的高端石化产品,是支撑聚氨酯新材料、精细化工等产业发展非常重要的基础有机化工原料,其生产工艺主要有氯醇化法、共氧化法和直接氧化法。随着我国精细化工和聚氨酯工业的发展,环氧丙烷产品市场前景日益广阔,但是目前我国环氧丙烷生产主要采用的是氯醇法生产工艺,该工艺存在对设备腐蚀严重、产生的含氯化钙废水严重污染环境等缺点。乙苯共氧化法环氧丙烷生产技术具有三废少、联产物附加值高、能耗低、经济性好等综合优点,但技术长期被国外公司垄断。 为促进国内环氧丙烷产业技术升级,万华化学数年前就组建团队开始乙苯共氧化法环氧丙烷制造技术自主研究开发,并与浙江大学产学研合作开展小试

工艺技术研究。为突破技术封锁,万华化学的近百名科技人员参与了该项目的研发,并在核心催化剂、反应器关键装备及相关工艺上申请国内外发明专利18件,形成了自主知识产权保护。 同时,万华化学自主设计建成的年产500吨环氧丙烷并联产1100吨苯乙烯工业化试验装置,也一次投料试车成功,并累计实现稳定运行超过90天。 未来,万华化学将投资32.5亿元,在山东烟台实施该技术成果转化,建设一套年产30万吨环氧丙烷并联产65万吨苯乙烯的世界级规模工业化装置,该装置预计2021年建成投产。 环氧丙烷:Propylene oxide 简称PO CAS:75-56-9 又名氧化丙烯、甲基环氧乙烷 是除聚丙烯和丙烯腈以外的第三大丙烯衍生物; 重要的基础有机化工原料,主要用于聚醚多元醇的生产,其次用于丙二醇的生产; PO的衍生物产品有近百种,是精细化工产品的重要原料,广泛应用于汽车、建筑及化妆品等行业。

环氧氯丙烷各种合成新工艺研究

环氧氯丙烷各种合成新工艺研究 环氧氯丙烷(ECH)别名表氯醇,化学名称为1-氯-2,3-环氧丙烷,是一种易挥发、不稳定的无色油状液体,有与氯仿、醚相似的刺激性气味,有毒性和麻醉性,微溶于水,易溶于酒精、乙醚、苯等有机溶剂,可与多种有机液体形成共沸物。 环氧氯丙烷是一种重要的有机化工原料和精细化工产品,用途十分广泛。以它为原料制得的环氧树脂具有粘结性强,耐化学介质腐蚀、收缩率低、化学稳定性好、抗冲击强度高以及介电性能优异等特点,在涂料、胶粘剂、增强材料、浇铸材料和电子层压制品等行业具有广泛的应用。进入21世纪后环氧树脂的应用领域不断扩大,产量迅猛提高,我国目前是全球环氧树脂最大生产基地,对环氧氯丙烷的需求将愈来愈大。 1目前环氧氯丙烷主要生产工艺 环氧氯丙烷的生产始于上世纪30年代。1945年,壳牌化学公司开始丙烯高温氯化法(或称烯丙基氯化物法、氯丙烯法)的工业化生产。1955年,陶氏化学公司成为世界上第2家用丙烯高温氯化法生产ECH的生产商。1985年,日本昭和电工公司开始采用醋酸丙烯酯法(或称烯丙醇法)生产ECH,同年实现该法的工业化。目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和醋酸丙烯酯法2种。 1.1丙烯高温氯化法 丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,由美国Shell公司于1948年首次开发成功并应用于工业化生产。目前,世界上90%以上的环氧氯丙烷采用该方法生产,主要原料是丙烯、氯气和石灰。其工艺过程主要包括:丙烯高温氯化制氯丙烯;氯丙烯次氯酸化合成二氯丙醇(DCH);二氯丙醇皂化合成环氧氯丙烷3个反应单元。 丙烯高温氯化法的特点是生产过程灵活,工艺成熟,操作稳定;除了生产环氧氯丙烷外,还可生产甘油、氯丙烯等重要的有机合成中间体;副产DO混剂(1,3-二氯丙烯和1,2-二氯丙烷)也是合成农药的重要中间体。缺点是原料氯气引起的设备腐蚀严重,对丙烯纯度和反应器的材质要求高,能耗大,氯耗高,副产物多,产品收率低;生产过程产生大量的含氯化钙和有机氯化物的废水,处理费用高,清焦周期短。 1.2醋酸丙烯酯法 利用醋酸丙烯酯为原料生产环氧氯丙烷的生产工艺由前苏联科学院以及日本昭和电工公司于20世纪80年代分别开发成功。前苏联科学院采用先氯化后水解的生产工艺;日本昭和电工公司则采用先水解后氯化的生产工艺,主要原料是丙烯、氧气和醋酸。日本昭和电工公司的工艺过程主要包括以下4个反应单元:丙烯气相催化氧乙酰化制醋酸丙烯酯;醋酸丙烯酯水解制烯丙基醇;烯丙基醇与氯加成合成二氯丙醇;二氯丙醇用石灰皂化生成环氧氯丙烷。

防火防爆安全管理制度

防火防爆安全管理制度 一、目的 加强防火防爆安全管理,杜绝火灾、爆炸等恶性事故的发生。 二、原则及适用范围 1.以限制火灾爆炸激发能源、杜绝易燃易爆物品意外释放、加强人员防火防爆组织管理为原则。 2.本制度适用于公司生产生活区防火防爆安全管理。 三、内容 1. 消防组织管理 1.1.逐级建立领导防火责任制,公司总裁为消防安全第一责任者,领导本公司消防安全工作。各车间、部室、班组的主要领导负责本部门消防安全工作。 1.2.生产岗位实行防火责任制,责任落实到人,每个职工必须明确并认真履行自己岗位的防火职责。 1.3.各部门要按职工总数的比例和危险性,建立义务消防队,并进行明确分工。每年都要进行两次消防业务学习训练,熟悉防火、灭火知识。 1.4.对火险隐患及时发现并整改,至少公司每周组织检查一次,车间每天检查一次,班组随时检查,并认真做好检查记录,重大火险隐患要有“三定”(定人、定措施、定时间)整改方案,火险隐患消除前要有可靠的防范措施。

1.5.按照公司实际情况确定重点防火部位,重点防火部位工作人员必须业务技术熟练,有灭火技能,能胜任本职工作的人员。 1.6. 做好防火宣传教育,对重点工种的职工要专门进行消防训练和考核。对新工人和变换工种的职工逐级进行消防安全教育,并经考试合格后方能上岗操作。对电工、焊工和从事操作危险化学物品的人员,经常进行消防专业知识培训,定期考核。全公司职工必须达到“四懂”、“四会”(懂火灾危险性、懂预防措施、懂扑救办法、懂火场逃生知识;会报警、会使用消防器材、会扑灭初级火灾、会逃生和组织逃生)的要求。 1.7.健全防火档案,档案做到内容完整,随时更新。 1.8.消防安全工作与生产要同时计划、布置、检查、总结、评比、承包。 2.火源控制管理 2.1.全公司范围内为禁火区(食堂厨房除外),禁止使用一切明火,严禁吸烟(宿舍除外),应在防火重点部位设置明显的防火标志,实行严格管理 2.2.因特殊情况需要电、气焊、电动工具等作业的部门和人员应按照《动火作业管理制度》办理动火证,落实现场监护人,在确认无火灾爆炸危险后方可动火作业。动火作业人员应当遵守消防安全管理规定,并落实相应的消防安全措施。 2.3.火灾爆炸场所的照明、布线和电气、电动仪表、设备应符合防火防爆要求,并保持清洁、干燥和绝缘良好。 2.4.需要临时安装的设备、线路应由使用单位提出申请,经电仪车间批准后,由正式电工安装,应符合防火防爆要求,并限期拆除。

环氧丙烷装置培训教材

环氧丙烷装置培训教材(营销专业)

生产流程简介第一章 前言1.1在丙烯衍生产品中,环氧丙烷目前环氧丙烷是石油化工的 重要中间体之一, 仅次于聚丙烯和丙烯腈的第三大衍生物。。,分子量为58.08OPO)分子式:CH)环氧丙烷(propylene oxide 简称63OCHCHCH。结构式:32环氧丙烷是生产聚醚、表面活性剂、丙二醇、碳酸丙烯酯、烯丙醇等的主要原料。我公司环氧丙烷装置采用氯醇法生产技术,连续法生产,年生产时间300天,装置生产能力50000吨/年,该装 置的生产工艺比较完善合理,属国际先进水平,产品质量好,收率高,原 料单耗低。 1.2装置组成 本装置由下列单元组成: 1)环氧丙烷主装置 本系统分六个工序: (1)液氯汽化工序 (2)氯醇化工序 (3)尾气回收工序 (4)皂化精馏工序

(5)石灰乳制备工序 (6)压滤工序 2)丙烯原料罐区 3)氯气原料罐区及液氯气化工序 )石灰库区及石灰乳制备4. 5)尾气回收装置 6)产品及中间品罐区 7)污水预处理及污水处理装置 8)公用工程配套装置循环水、空压制氮站、冷冻站、工艺水站、消防水、锅炉房等 9)原料、中控及成品化验室 10)物流区及原料材料库区 11)综合办公区 1.3生产工艺 (一)生产方法 以丙烯、氯气、水为原料反应生成氯丙醇,氯丙醇再石灰乳发生皂化反应,生成粗环氧丙烷,在皂化过程中,生成的粗环氧丙烷中还含有水及少量氯化副产器(如二氯丙烷、二氯二异丙醚、丙醛等)。为了生产出符合要求的环氧丙烷产品,需要精馏提纯。粗环氧丙烷再经过精馏成为成品。其传统工艺流程如图3-1所示。

3-1图环氧丙烷的传统工艺流程图 (二)工艺特点)本装置采用国际上先进的管式反应器技术,工艺流程简单,安全可靠。管式1. 氯醇化反应设备是氯气与工艺水在喷射泵中充分预溶,然后与丙烯在管中混合并发生氯醇化反应。管式反应设备由于采用圆管结构,径向返混激烈,气液接触充分;轴向返混少,近似平推流,反应可按理论等配比进行,氯丙醇选择性高,丙烯和氯气转化率高,因此不需要尾气循环,并节省了能源。由于使用了钛合金,反应温度可以提高(一般在90℃左右),主反应可在极短时间里(一般10秒)反应完全,因此氯丙醇的选择性高,丙烯和氯气的转化率高,副产物少。由于采用了管式反应结构,使设备材料用量极少,生产能力显著提高,因此节省了设备投资。管式反应设备代表了目前世界上最先进的氯醇化反应技术。 2)废气回收作液化气,最大限度的节约资源,同时减少了对环境的污染。 3)装置设计采取了有效的节能和提高产品收率的措施,使原料及公用工程消耗降低。 (三)生产能力 1)生产能力:环氧丙烷 50000吨/年 二氯丙烷(副产品) 7500吨/年 2)年操作时间:7200小时

环氧丙烷工业应用和生产工艺(更新至2017年)(可编辑修改word版)

环氧丙烷应用和生产主要工艺路线 一、环氧丙烷基础性质 中文别称:氧化丙烯 英文名称:Propylene Oxide(简称PO) 分子式:C3H6O 分子量:58.08 相对密度:0.859 g/cm3(20℃) 熔点:-112℃ 沸点:34℃ 环氧丙烷易溶于水,是无色透明的低沸易燃液体,具有类似醚类气味。 环氧丙烷在铁、锌等碱金属存在下易引起自聚反应,所以必须用干氮或者其他惰性气体贮存在容器内加以保护,使用不锈钢洁净容器进行贮存,不适宜长距离运输。二、环氧丙烷的应用领域 环氧丙烷(PO)是一种重要的有机化工原料,是除了聚丙烯和丙烯腈之外的第三大丙烯衍生物。环氧丙烷主要用于聚醚多元醇以及丙二醇及丙二醇醚等的生产。 聚醚多元醇(PPG)主要用于生产聚氨酯塑料,其次用作表面活性剂(如泡沫稳定性、造纸工业消泡剂和原油破乳剂等),也可用作润滑剂和专用溶剂等。 丙二醇(PG)主要用作抗冻剂、有机溶剂等,也用于生产环氧树脂、不饱和聚酯树脂等,还用于生产医药等的重要中间体。 丙二醇醚是用途广泛的低毒性有机溶剂。 全球环氧市场主要是生产聚醚多元醇,约占70%;其次是生产丙二醇。 在我国约85%的环氧丙烷用于生产聚醚多元醇,约8%用于生产丙二醇,其次是生产丙烯酸酯(2%)和醚类(2%)。 因国内聚醚多元醇的厂家主要集中在ft东、上海、江苏等地区,所以这些地区也是环氧丙烷最大的消费地。

二、环氧丙烷主要生产工艺 1、氯醇法,(1931 实现工业化) 主要反应式: ?氯醇化反应 ?皂化反应 皂化是氯醇与碱反应制取环氧化物的过程。 氯醇法制环氧丙烷的原料消耗 原料规格消耗氯气(吨/吨 PO)100% 1.35-1.65 丙烯(吨/吨 PO)100% 0.82-0.86 石灰(吨/吨 PO)95% 1.0-2.1 电(kwh/t)200-300 冷却水(吨/吨 PO)250-320

油气罐区防火防爆十规定及详解

油气罐区防火防爆十条规定及详解 近几年来,罐区事故时有发生,所造成的后果也多是灾难性的,影响极其恶劣,做好罐区事故预防刻不容缓。 1.严禁油气储罐超温、超压、超液位操作和随意变更储存介质.本条主要规定了油气储罐的使用管理要求。 油气储罐储存介质、储存温度、压力、液位必须符合设计工艺条件和工艺控制指标,这些指标超出控制范围会带来泄漏着火、爆炸等安全风险。 储罐在设计阶段是按照既定的某种储存介质进行设计的,设计考虑的因素仅局限于该种介质的物化性质和储运工艺要求,若要变更储存介质,必须要考虑既定储罐的设计条件是否满足该介质的存储要求,确保储罐安全运行。 随意变更储存介质或储罐用途可能带来安全隐患,导致事故的发生。 2.严禁在油气罐区手动切水、切罐、装卸车时作业人员离开现场.本条主要规定了储罐区手动切水、切罐、装卸车作业管理要求。手动切水是指通过间断手动打开切水阀放出沉积在油气储罐底部的水切罐是指将进出物料从一个储罐切换到另一个储罐装卸车是指将储罐中物料装车或从运输车辆向储罐中输送物料。切水、切罐、装卸车等作

业环节应当严格遵守安全作业标准、规程和制度,并在监护人员现场指挥和全程监护下进行。若监护不到位,极易造成油气泄漏,引发事故。 3.严禁关闭在用油气储罐安全阀切断阀和在泄压排放系统加盲板。本条主要规定了安全阀和泄压排放系统的安全操作要求。安全阀切断阀指为方便安全阀校验或更换而在其前后安装的切断阀门,泄压排放系统指能迅速排放储罐压力的系统,通常指火炬系统或专用排放系统。 安全阀切断阀关闭或压力泄放系统加盲板都将使储罐在超压或紧急状况时压力无法泄放,储罐因超压造成爆炸、着火等恶性事故。 4.严禁停用油气罐区温度、压力、液位、可燃及有毒气体报警和联锁系统。本条规定了油气罐区温度、压力、液位、可燃及有毒气体等关键参数报警和联锁系统的管理要求。 油气储罐应按照标准和规范要求设置液位计、温度计、压力表、可燃(有毒)气体报警仪,以及高液位报警和高液位自动联锁切断进料措施,报警信号应发送至操作人员常驻的控制室或操作室,并且报警要设置声光报警,以便及时发现异常并做出处理,因此必须要保证报警和联锁系统的完好并且处于在用状态。 5.严禁未进行气体检测和办理作业许可证,在油气罐区动火或进入受限空间作业。本条主要规定了油气罐区动火和受限空间作业管理要求。 动火作业前要分析检测油气罐区动火点周围可燃气体含量,进入受限空间作业前要对储罐内可燃、有毒气体和氧含量进行分析。

环氧丙烷工艺技术概况

环氧丙烷工艺技术概况 a)氯醇法 氯醇法是传统的环氧丙烷工业生产路线,该法自20世纪30年代由美国UCC公司开发并进行工业生产以来,一直是生产环氧丙烷的主要方法。截止到2009年6月,全球环氧丙烷的总生产能力约810万吨/年,其中氯醇法占33.58%。 氯醇法分为以石灰为皂化原料的传统氯醇法和以电解液(NaOH)为皂化原料的改良氯醇法。1)传统氯醇法 主要专利商:美国Dow Chemical、日本Asahi glass公司、Mitsui Chemicals和Showa denko 公司、意大利Enichem公司等。 主要工艺过程: 丙烯、氯气和水按一定配比送入氯醇化反应器中进行反应,未反应的丙烯与反应中产生的HCl及部分的二氯丙烷等自反应器顶部排出,经冷凝除去氯化氢和有机氯化物,丙烯循环回用。反应器底部得到氯丙醇质量分数为4~5%的盐酸溶液。将该溶液与过量约10%的石灰乳混合后送入皂化塔中皂化,再经精馏即可得到环氧丙烷。 优点:传统氯醇法具有流程比较短,工艺成熟,操作负荷弹性大,产品选择性好、收率高,生产比较安全,对原料丙烯纯度的要求不高,投资少,无引起市场干扰的联产产品,其产品具有较强的低成本竞争力等优点。 缺点:传统氯醇法存在的最大问题是设备易于腐蚀,在生产过程中产生大量含氯污水(每吨产品约产生45~60吨废水和2.1吨氯化钙)废渣,该废水具有温度、pH值、氯根含量、COD含量和悬浮物含量“五高”的特点,处理成本高,造成严重的环境污染。世界上大多数发展中国家和地区采用传统氯醇法技术,装置规模都比较小。例如:俄罗斯、东欧、巴西、印度和中国。少数发达国家的老装置也在使用该技术(如日本、德国),面临被淘汰。 2)改良氯醇法 主要专利商:美国Dow Chemical和意大利Enichem公司。 主要工艺过程: 改良氯醇法是用烧碱代替石灰乳,在常压或减压条件下于80~130℃与氯丙醇发生皂化反应。该法提高了氯丙醇的转化率和环氧丙烷的收率,同时抑制了皂化副反应的发生,提高了环氧丙烷的选择性。 优点: (1)用NaOH溶液代替石灰乳作为皂化原料,避免了氯化钙的产生,从而消除了废渣的生成及其对环境的污染。 (2)避免了废水污染问题。该工艺的废水总量并未减少,每生产1吨环氧丙烷仍伴随产出超过30吨的废水,其中含有7~8%的NaCl、10-4级的丙二醇以及其它微量有机物质。但将此含盐水溶液经过精制处理,除去其中的有机物,再经重新饱和后可电解产生氯和碱,并可循环用于平衡环氧丙烷合成所需的氯和碱,实现了闭路循环,从而避免了废水污染。(3)良好的经济效益。上述说明该工艺具有良好的环境效益,同样它具有良好的经济效益。该工艺在Dow 化学公司的一个40万吨/年环氧丙烷生产装置中运行,环氧丙烷的总收率较传统法提高5%,发挥了原料共用和规模化的优势,节能5%,生产成本降低且不产生公害。提高了氯丙醇的转化率和环氧丙烷的收率,避免了氯化钙的产生,根除了废渣的来源和污染,消除了石灰皂化引起的弊端。 缺点:仍使用氯,耗电量大,生产成本难以降低,需和氯碱装置配套生产。 b)共氧化法 共氧化法又称间接氧化法、联产法、哈康法,根据原料和联产品的不同,又可分为乙苯共氧化法(PO/SM)、异丁烷共氧化法(PO/TBA)两种工艺。

工艺流程

磷酸二氢钠 原料球罐液化石油气水洗塔顶液化石油气酸洗混合器酸洗罐水洗混合器水洗罐反应进料缓冲罐 底水洗水甲醇精馏塔顶甲醇罐区 底水水洗塔 主反应进料预热器主反应进料换热器主反应加热炉主反应器反应油气主反应进料换热器混烃精馏 底C2 外送甲烷做燃料气 塔顶氢气C1-C4馏分LPG精馏塔顶氢气C1-C2馏分乙烷精馏塔顶氢气甲烷PSA 氢气外送底C5+馏分脱戊烷塔底C3-C4馏分丙烷塔顶C3 加氢 底C4 副反应进料预热器副反应进料换热器 副反应加热炉副反应器反应油气副反应进料换热器混烃精馏塔 顶戊烷主反应原料顶C6-C7 非芳烃塔顶甲苯脱庚烷塔 脱戊烷塔底C6+馏分白土塔脱庚烷塔底少量甲苯C8+馏分脱甲苯塔底C8+馏分脱C8塔 顶混合二甲苯罐区顶C9 罐区 脱C8塔底C9+馏分脱C9塔底重芳烃罐区 5层塔板苯罐区 环丁砜顶抽余油水洗去罐区顶苯、甲苯苯塔底甲苯罐区 C6-C7 非芳烃塔底富溶剂芳烃塔底贫溶剂非芳塔

苯 物理性质 物理状态:液体 外观:无色液体 气味:芳香味 pH: - 蒸汽压: 74.3 mm Hg @ 20 ℃ 气体密度: 2.7 (空气=1) 蒸发速率:: 2.8 (Ether=1) 粘度: 0.647mPa.s @ 20 ℃ 沸点: 80℃ 结晶点: 6 ℃ 自燃点: 561 ℃ 闪点: -11 ℃ 爆炸低限: 1.3 vol % 爆炸高限: 7.1 vol % 分解温度: - 溶解度:微溶 比重: 0.874 分子式: C6H6 分子量: 78.042 化学性质 苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在苯环上的加成反应(注:苯环无碳碳双键,而是一种介于单键与双键的独特的键);一种是普遍的燃烧(氧化反应)(不能使酸性高锰酸钾褪色 甲苯 物理性质 外观与性状:无色透明液体,有类似苯的芳香气味。 熔点(℃):-94.9 相对密度(水=1):0.87 沸点(℃):110.6 相对蒸气密度(空气=1):3.14 分子式:C7H8 分子量:92.14 饱和蒸气压(kPa):4.89(30℃) 燃烧热(kJ/mol):3905.0 临界温度(℃):318.6 临界压力(MPa):4.11

储油罐防火防爆设计

储油罐防火防爆设计 课程设计报告纸 一、设计概况 1.油库的主要技术经济指标 罐区面积:4225 m 储存油类:柴油总容量:120XX m 储罐类型:钢制拱顶立式储罐,油罐为固定顶罐,全地面式 2.地基土参数 地基土为粉质粘土:容重/m3;孔隙比e;液性指数IL;粘聚力Ck;内摩擦角k22°;地基承载力标准值fk136kPa。 3.储罐储存物质参数 车用10#柴油:密度=820~860kg/m3;闪点Td>55℃。 4.储罐规格 钢制拱顶立式储罐规格 容积 /m3 公称容积设计容积内径尺寸 /mm 罐底直径罐壁高度储罐总高度重量/kN 3000 3300 18992 19092 11760 13857 5000 5500 23760 23880 12530 15143 10000 10700 31282 31402 14070 17504 32 5.设计计算中有关术语: 储罐组 防火堤或防护墙围成的一个或几个储罐组成的储罐单

元。 共页第1页 课程设计报告纸 储罐区 一个或若干个储罐组组成的储罐区域。 防火堤 用于常压液体储罐组,在油罐和其他液态危险品储罐发生泄漏事故时,防止液体外流和火灾蔓延的构筑物。用于常压条件下,通过低温使气态变成液态物质的储罐组,在发生泄漏事故时,防止冷冻液体骤变成气体前外流的防火堤亦称围堰。 隔堤 用于减少防火堤内储罐发生少量泄漏(如冒顶)事故时的污染范围,而将一个储罐组分隔成若干个分区的构筑物口用于减少防火堤内储罐发生少量泄漏事故时,低温液体骤变成气体前的影响范围,而将一个储罐组分隔成若干个分区的隔堤亦称隔堰。 防火堤有效容积 一个储罐组的防火堤内可以有效利用的容积。 设计液面高度 计算防火堤有效容积时堤内液面的设计平均高度。

环氧丙烷

环氧丙烷(英文名称Propylene Oxide,简称PO),又名甲基环氧乙烷或氧化丙烯,在常温常压下为无色透明液体,具有类似醚类气味,主要物性:沸点(101kPa)34.23℃,凝固点-112.13℃,密度(25℃)0.823g/cm3,蒸汽压(25℃)75.86kPa,闪点-37℃,爆炸极限(在空气中)3.1~27.5%(VOL),可与丙酮、四氯化碳、乙醚、甲醇等多种溶剂互溶。环氧丙烷化学性质活泼,易开环聚合,可与水、氨、醇、二氧化碳反应,生成相应的化合物或聚合物。在含有两个以上活泼氢的化合物上聚合,生成的聚合物通称聚醚多元醇。 环氧丙烷是除了聚丙烯和丙烯腈以外的第三大丙烯衍生物,是重要的基本有机化工原料。环氧丙烷主要用于聚醚多元醇的生产;其次是用于表面活性剂、碳酸丙烯酯和丙二醇的生产。另外,在丙二醇醚、羟丙基甲基纤维素(HPMC)、改性淀粉、丙烯酸羟丙酯以及其它方面有所应用。环氧丙烷的衍生物产品有近百种,是精细化工产品的重要原料,广泛用于汽车、建筑、食品、烟草、医药及化妆品等行业。 2 、生产工艺 目前世界上工业化生产产环氧丙烷的方法主要是氯醇法和共氧化法,生产能力各占一半。 氯醇化法是合成环氧丙烷的经典工业生产方法,大约世界产量的50%以上是采用这种方法生产的,以美国陶氏化学公司的氯醇化法为代表。其主要过程包括氯醇化、皂化和精馏三个工序,特点是工艺成熟,流程短,操作弹性大,选择性好,效率高,对原料丙烯的纯度要求不高从而可提高生产的安全性,建设投资少,产品成本低。但生产

过程中要消耗相当量的氯气,缺点是腐蚀性强,污水排放量大,适宜在有条件的地方建设。拥有氯醇法环氧丙烷的专利商有日本的旭硝子、三井东压,美国的Dow化学、意大利的EniChem、法国的Atochem、意大利的普利斯、国内的天津大沽化工公司、山东滨化集团有限公司、锦化集团等。 共氧化法(哈康法)主要是异丁烷共氧化法和乙苯共氧化法。前者是异丁烷和丙烯共氧化生产环氧丙烷,副产异丁烯和叔丁醇;后者是乙苯与丙烯进行共氧化反应生产环氧丙烷,副产苯乙烯。共氧化法克服了氯醇法的腐蚀、污水多等缺点,自1969年工业化以来,发展迅速,受到世界重视。成本低和无公害是它的基本优点,其缺点是工艺流程长,所需的原料种类多,对丙烯纯度要求较高,设备造价高,装置投资大,同时每吨环氧丙烷要联产2.2-2.5吨苯乙烯或2.3吨异丁烯,原料来源和产品销售相互牵扯较大,因此经过两次石油危机的冲击后,利用共氧化法新建厂已不多。但是对于原料及产品销售可以妥善解决的大型生产装置,共氧化法技术仍是具有相当竞争力的。 过氧化氢(双氧水,H2O2)催化环氧化丙烯生产环氧丙烷是一种全新的生产技术,由于反应产品仅为环氧丙烷和水,无副产品产生,因此是一种环境友好的清洁生产方法。 2003年,陶氏化学和巴斯夫开始合作开发过氧化氢法(HPPO)技术并将其商业化。与传统的环氧丙烷工艺技术相比,HPPO技术在经济、环境以及未来的发展机会等三大领域具有独特的优势。2008年6月,陶氏化学公司宣称,该公司与泰国Siam Cement集团(SCG)

相关文档