文档库 最新最全的文档下载
当前位置:文档库 › 概率复习题

概率复习题

概率复习题
概率复习题

1.选择题:

(1)有55个由两个不同的英语字母组成的单字,那么,从26个英语字母中任取两个不同

的字母来排列,能排成上述单字中某一个的概率为( )

A .

113

B.

11130

C.

1165

D.

265

(2)某事件的概率是0.2,如果试验5次,则( )

A .一定会出现1次 B.一定出现5次 C.至少出现1次 D.出现的次数不确定

(3)随机猜测“选择题”的答案,每道题猜对的概率为0.25,则4道选择题相互独立地猜

对2道及2道以上的概率约为( )

A .0.1 B.0.3 C.0.5 D.0.7 (4),A

B 为两事件,若,()0,A B P B ?>则(|)P A B 与()P A 比较应满足( )

A .(|)()P A

B P A ≤ B.(|)()P A B P A = C.(|)()P A B P A ≥ D.无确定的大小关系

(5)离散型随机变量X 的分布律为{}(1,2,3,4)P X k ak k ===,则a =( )

A .0.05 B.0.1 C.0.2 D.0.25

(6)设(){}F x P X x =≤是连续型随机变量X 的分布函数,则下列结论中不正确的是( )

A .()F x 是不减函数 B.()F x 是减函数 C.()F x 是右连续函数 D.()0,()1F F -∞=+∞=

(7)设离散型随机变量X 的分布函数为

0,

10.3,10()0.4,031,

3x x F x x x <-??

-≤

A .1 B.2 C.3 D.3.45

(8)随机变量X 服从区间[,]a b 上的均匀分布是指( )

A .X 的取值是个常数

B.X 取区间[,]a b 上任何值的概率都等于同一个正常数 C.X 落在区间[,]a b 的任何子区间内的概率都相同

D.X 落在区间[,]a b 的任何子区间内的概率都与子区间的长度成比例

2.填空题:

(1)有50个产品,其中46个正品,现从中抽取5次,每次任取1个(取后放回)产品,

则取到的5个产品都是正品的概率为。

(2)一射手对同一目标独立地进行四次射击,若至少命中一次的概率为15

16

,则该射手

的命中率为。

(3)设随机变量X服从参数为λ的泊松分布,若{1}{3}

P X P X

===,则()

E X=

,()

D X=。

(4)若随机变量X在[2,6]上服从均匀分布,则()

E X=,()

D X=,

(23)

E X

-+=,(23)

D X

-+=。

(5)设随机变量~(,4)

X Nμ,且已知2

()5

E X=,则μ=,X的概率密度为

3.从5双不同的鞋子中任取4只,问这4只鞋子中至少有两只配成一双的概率是多少?4.(1)已知()0.3,()0.4,()0.5,

P A P B P A B

===求条件概率(|)

P B A B

?。

(2)已知

111

(),(|),(|),

432

P A P B A P A B

===试求()

P A B

?。

5.已知男子有5%是色盲患者,女子有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一人,恰好是色盲者,问此人是男性的概率是多少?

6.根据报导美国人血型的分布近似地为:A型为37%,O型为44%,B型为13%,A B 型为6%。夫妻拥有的血型是相互独立的。

(1)B型的人只有输入B O

、两种血型才安全,若妻为B型,夫为何种血型未知,求夫是妻的安全输血者的概率。

(2)随机地取一对夫妇,求妻为B型夫为A型的概率。

(3)随机地取一对夫妇,求其中一人为A型,另一人为B型的概率。

(4)随机地取一对夫妇,求其中至少有一人是O型的概率。

7.设事件,A B的概率均大于零,说明以下的叙述(1)必然对(2)必然错(3)可能对,并说明理由。

(1)若A与B互不相容,则它们相互独立。

(2)若A与B相互独立,则它们互不相容。

(3)()()0.6

P A P B

==,则,A B互不相容。

(4)()()0.6

P A P B

==,且,A B相互独立。

8.甲、乙两人进行乒乓球比赛,每局甲胜的概率为0.6

p=,问对甲而言,采用三局二胜制有利,还是采用五局三胜制有利,设各局胜负相互独立。

9.某人到某地参加一个会议,他坐火车、轮船、汽车、飞机的概率分别为0.30.20.10.4

、、、。如果他坐火车,迟到的概率为0.25;坐轮船,迟到的概率为0.3;坐汽车,迟到的概率为0.1;坐飞机不会迟到,则他迟到的概率是多少?若已知他迟到了,能否推测他可能是乘坐什么交

通工具来的?

10.设,,A B C 为三个随机事件,且1()()()4

P A P B P C ===

,1()()16

P A B P B C ==

()0P AC =,求:

(1),,A B C 中至少有一个发生的概率; (2),,A B C 全不发生的概率。

11.盒中有编号为1,2,3,4的4只球,随机地自盒中取一只球,事件A 为“取得的是1号或2号球”,事件B 为“取得的是1号或3号球”, 事件C 为“取得的是1号或4号球”,验证: ()()(),()()(),()()()P AB P A P B P AC P A P C P BC P B P C === 但 ()()()()P ABC P A P B P C ≠ 即事件,,A B C 两两独立,但,,A B C 不是相互独立的。

12.设在15只同类型的零件中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的只数。 (1)求X 的分布律。 (2)画出分布律的图形。 13.设随机变量X 的分布函数为

0,1()ln ,

11,X x F x x x e x e

=≤

(1)5{2},{03},{2}2P X P X P X <<≤<<。

(2)求概率密度()X f x 。

14.确定下列随机变量X 的概率密度中的待定系数k :

(1)3

~(),

1X f x kx x -=>

(2)2

6

,

0~()0,

x

kxe x X f x x -??>=??≤? 15.某公共汽车站从上午7时起,每15分钟来一班车,即:7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候

车时间少于5分钟的概率。

16.某元件的寿命X 服从指数分布,已知其参数11000

λ=,求3个这样的元件使用1000

小时,至少已有一个损坏的概率。

17.设X 在[0,5]上服从均匀分布,求方程2

4420x Xx X +++=有实根的概率。 18.设随机变量X 的分布律为

求2Y X =的分布律。

19.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸设备是否为次品是相互独立的)

20.一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为

4

1,0

()40,0x

e x

f x x -?>

?=??

≤?

工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元。试求厂方出售一台设备净盈利的数学期望。

答案: 1.(1)B (

2)D (3)B (4)C (5)B (6)B (7)D (8)D 2.(1)55

4650

(2)

12

(34)4164,

,5,

3

3

-(5)2

2

(1)21,()x f x σ

-

±=

3.

1321

4.(1)0.25(2)13

5.

2021

6.(1)0.57(2)0.0481(3)0.0962(4)0.6864 7.(1)必然错(2)必然错(3)必然错(4)可能对 8.五局三胜制有利

9.迟到的概率为0.145,若已知迟到,则乘坐火车的可能性最大。 10.(1)

58

(2)

38

11.略

12.

22121 {0},{1},{2}

353535 P X P X P X

======

13.(1)

5

ln2;1;ln

4

(2)

1

,1

()

0,

X

x e

f x x

?

<<

?

=?

?

?其他

14.(1)2(2)1 3

15.1 3

16.3

1e-

-

17.3 5

18.

19.1.0556 20.33.64

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论试题

一 、选择题(选择正确答案,并将其代号写在题干后面的括号里.每小题 3 分,共 15 分) 1.设随机变量()2,1~-N X ,()2,1~N Y ,而且X 与Y 不相关,令Y aX U +=, bY X V +=,且U 与V 也不相关,则有【. C 】 ()A .0==b a ; ()B .0≠=b a ; ()C .0=+b a ; ()D .0=ab 2.对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故 障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E 【A 】 ()A .21p p +; ()B .()()122111p p p p -+-; ()C .()211p p -+; ()D .21p p . 3.若Y X ,ρ表示二维随机变量()Y X , 的相关系数,则“1,=Y X ρ”是“存在常数a 、b 使得{ }1=+=bX a Y P ”的【C 】 ()A .必要条件,但非充分条件; ()B .充分条件,但非必要条件; ()C .充分必要条件; ()D .既非充分条件,也非必要条件. 4.设总体X 与Y 相互独立,且都服从正态分布()10,N .()91X X ,,Λ是从总体X 中抽取的一个样本,()91Y Y ,,Λ是从总体Y 中抽取的一个样本,则统计量 ~29 2191Y Y X X U ΛΛ+++= 【C 】 ()A ()92 χ; ()B ()82χ; ()C ()9t ; ()D ()8t 5.设总体X 服从参数10=λ的泊松(Poisson )分布,现从该总体中随机选出容量为20一个样本,则该样本的样本均值的方差为【B 】 ()A . 1; ()B . 5.0; ()C . 5; ()D . 50. 二、填空题(每小题 3 分,共 15 分)

概率与数理统计复习题及答案

★编号:重科院( )考字第( )号 第 1 页 复习题一 一、选择题 1.设随机变量X 的概率密度21 ()0 1x x f x x θ-?>=?≤?,则θ=( )。 A .1 B. 12 C. -1 D. 3 2 2.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。 A .12 B. 23 C. 16 D. 13 3.设)(~),(~22221221n n χχχχ,2 221,χχ独立,则~2221χχ+( )。 A .)(~22221n χχχ+ B. ~2 221χχ+)1(2 -n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212 n n +χ 4.若随机变量12Y X X =+,且12,X X 相互独立。~(0,1)i X N (1,2i =),则( )。 A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N 5.设)4,1(~N X ,则{0 1.6}P X <<=( )。 A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题 1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B =U 3.设()D X =5, ()D Y =8,,X Y 相互独立。则()D X Y += 4.设随机变量X 的概率密度?? ?≤≤=其它 , 010, 1)(x x f 则{}0.2P X >= 三、计算题 1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0 ()0, 0x Be x f x x -?>=?≤? (1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。 2.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%, 25%,这三个厂的次品率分别为0.02, 0.04,0.05。现从三个厂生产的一批产品中任取

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率统计复习题答案

概率统计复习题 (同济大学浙江学院) 一、知识要点 1.古典概率计算公式 设Ω为样本空间,A 为事件,则事件A 发生的概率为 ().A A n P A n ?? = ? ?Ω?? 概率公式 ⑴和的概率公式 ()( )() ().P A B P A P B P A B =+- 当,A B 互不相容时()A B ?=? ()()().P A B P A P B =+ 当,A B 独立时()()()()P AB P A P B ?= ()()() ()().P A B P A P B P A P B =+- ⑵条件概率公式 ()() () |.P AB P A B P B = ⑶乘法公式 ()()()|.P AB P A B P A = ⑷全概率公式及逆概率公式 设12,,,n A A A 为完备事件组,B 为任意一事件,则 ()()()1|;n i i i P B P A P B A ==∑ ()() () (|)|.i i i P B A P A P A B P B = 2.6个常用分布和数字特征 名称 分布形式 期望 方差 ()2E X 01- p ()1p p - p 二项分布 ()() 1n k k k n P X k C p p -==- np ()1np p - np

泊松分布 ()e ! k P X k k λλ-== λ λ 2λλ+ 均匀分布 ()1 , ,0, else. a x b f x b a ?<=?? 1 λ 2 1λ 2 2λ 正态分布 ()()2 2 21 e 2πx f x μσσ -- = μ 2σ 22σμ+ 3.正态分布概率计算 ⑴若()2,X N μσ ,则().b a P a X b μμσσ--???? <<=Φ-Φ ? ????? ⑵若()2,,,X N Y aX b μσ=+ 则()22,.Y N a b a μσ+ 4.二维连续型随机变量的边缘密度函数 设(),X Y 为二维连续型随机变量,(),f x y 为其联合密度函数,则边缘密度函数分别为 ()()()(),d ,,d .X Y f x f x y y f y f x y x ∞∞ -∞ -∞ ==?? 随机变量(),X Y 是独立的()()(),.X Y f x y f x f y ?= 5.数字特征 ⑴数学期望 ①离散型 ()1.n i i i E X x p ==∑ ②连续型 ()()d .E X xf x x ∞ -∞ =? ③函数的期望 离散型,设X 是离散型随机变量,()Y g X =为随机变量的函数,则 ()()1.n i i i E Y g x p ==∑

福州大学历届概率论试卷(史上最全版)

福州大学概率统计(54学时)试卷(080116) 一、 单项选择(共21分,每小题3分) 1. 设A 、B 是任意两个事件,则P (A - B )= ( ) A. ()()P A P AB - B. ()()()P A P B P AB -+ C. ()()()P A P B P A B +-U D. ()()()P A P B P AB +- 2. 对于随机变量X ,Y ,若E (XY )=E (X )E (Y ),则 ( ) A. DY DX XY D ?=)( B.DY DX Y X D +=+)( C. X 与Y 独立 D. X 与Y 不独立 3.任何一个连续型随机变量的概率密度)(x ?一定满足( )。 A 、1)(0≤≤x ? B 、在定义域内单调不减 C 、 1)(=? +∞ ∞ -dx x ? D 、1)(>x ? 4. n X X X ,,,21Λ为总体X 的简单随机样本,是指( )。 A 、n X X X ,,,21Λ相互独立; B 、n X X X ,,,21Λ中任一i X 与X 分布相同; C 、n X X X ,,,21Λ相互独立且n X X X ,,,21Λ中任一i X 与X 分布相同; D 、n X X X ,,,21Λ相互独立或n X X X ,,,2 1Λ中任一i X 与X 分布相同。 5.设21,X X 为取自总体)1,(~μN X 的简单随机样本,其中μ为未知参数,下面四个关于μ的估计量中为无偏估计的是( )。 A 、 213432X X + B 、214241X X + C 、214143X X - D 、215 3 52X X +

概率统计复习题1答案

概率统计复习题1答案 已知: 0.050.0250.050.050.050.051.65 1.96 (9) 1.833 (8) 1.860 (2,6) 5.14 (2,7) 4.74 U U t t F F ====== 一.填空题1. 随机抛4枚硬币,恰好出现3个正面的概率为__________________ Bernulii 定理或者二项分布的应用: 33 41 11()224 p C == 2. 若随机变量(3),X E 则()______,()________E X D X ==。 认符号,背公式: (3),X E 指数分布, 11(),()3 9 E X D X = = 3. 设每次试验成功的概率为(01)p p <<,则在三次重复试验中至少失败1次的概率为 ________________________________________________。 二项分布加对立事件的概率关系,所求概率为330331(1)1C p p p --=- 4. 设θ∧ 是参数θ的估计,若θ∧ 满足________________,则称θ∧ 是θ的无偏估计。 无偏估计的定义: ()E θ θ= 5. 设1(0,1),,,n X N X X __________分布。 三大统计分布的定义:上面看见正态分布下面看见卡方分,想到什么啊:当然是 t(2) 6. 若12,A A 满足________________________,则称12,A A 为完备事件组。 完备事件组的定义: 1212,A A A A φ=?=Ω 二.选择题 1. 设A,B 是两个事件,则以下关系中正确的是 ( ) (A) ()A B B A -= (B) ()A B B -=? (C) ()A B B A = (D) ()A B B AB -= 这种题画图既快又准:选(B) 2. 设()0.6,()0.84,(|)0.4,P A P A B P B A === 则()P B = ( ) (A) 0.60 (B) 0.36 (C) 0.24 (D) 0.48 看到这种题想什么呢, (),()P A P A B 已知,求()P B ,可千万别选(C),那是俺最不耻

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

概率练习题答案

一、选择题 1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=1 2.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B ) D .1 3.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( D ) A .601 B .457 C . 5 1 D . 15 7 4.若A 与B 互为对立事件,则下式成立的是( C ) A.P (A ?B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B ) D.P (AB )=φ 5.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( C ) A.8 1 B.41 C.8 3 D. 2 1 6.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53 )A |B (P =,则P (B )=( A ) A. 51 B. 52 C. 5 3 D. 5 4 7.设随机变量X 则k= A.0.1 B.0.2 C.0.3 D.0.4 8.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B . C B A

C .C B A D .C B A 9.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=53 , 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D . 25 23 10.下列各函数中,可作为某随机变量概率密度的是( A ) A .???<<=其他,0; 10,2)(x x x f B .?????<<=其他,0; 10,21 )(x x f C .? ??-<<=其他,1; 10,3)(2x x x f D .? ??<<-=其他,0; 11,4)(3x x x f 11.某种电子元件的使用寿命X (单位:小时)的概率密度为?????<≥=,100,0; 100,100 )(2x x x x f 任取 一只电子元件,则它的使用寿命在150小时以内的概率为( B ) A .41 B .31 C . 2 1 D . 3 2 12.下列各表中可作为某随机变量分布律的是( C ) A . B . C . D . 13.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( B ) A.F(-a)=1-? a 0dx )x (f B.F(-a)= ? -a dx )x (f 21 C.F(-a)=F(a) D.F(-a)=2F(a)-1 14.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432

《概率统计》试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 2101 1811515515 k X p -- 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙 企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取 1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 ,03()2,342 0, kx x x f x x ≤

【期末复习】大学概率论与数理统计期末考试试卷 答案

20**~20**学年第一学期概率论与数理统计期末考试试卷(A 卷)答案 一.(本题满分8分) 某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解: 设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分 ()()40951.010 91155 =-=-=A P A P .…………….6分 二.(本题满分8分) 设随机事件,,满足:()()()41===C P B P A P ,()0=AB P ,()()16 1==BC P AC P .求随机事件,,都不发生的概率. 解: 由于AB ABC ?,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有 ()0=ABC P .…………….2分 所求概率为() C B A P .注意到C B A C B A ??=,因此有…………….2分 ()()C B A P C B A P ??-=1…………….2分 ()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 8 3 016116104141411=-+++--- =.…………….2分 三.(本题满分8分) 某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,()10<

概率练习题(含答案)

概率练习题(含答案) 1 解答题 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出: (1)试验的基本事件; (2)事件“出现点数之和大于3”; (3)事件“出现点数相等”. 答案 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4) (2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4) (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4) 2 单选题 “概率”的英文单词是“Probability”,如果在组成该单词的所有字母中任意取出一个字母,则取到字母“b”的概率是 1. A. 2. B. 3. C. 4. D. 1

答案 C 解析 分析:先数出单词的所有字母数,再让字母“b”的个数除以所有字母的总个数即为所求的概率. 解答:“Probability”中共11个字母,其中共2个“b”,任意取出一个字母,有11种情况可能出现,取到字母“b”的可能性有两种, 故其概率是; 故选C. 点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=. 3 解答题 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问: (1)取出的两只球都是白球的概率是多少? (2)取出的两只球至少有一个白球的概率是多少? 答案 (1)取出的两只球都是白球的概率为3/10; (2)以取出的两只球中至少有一个白球的概率为9/10。 解析 本题主要考查了等可能事件的概率,以及对立事件和古典概型的概率等有关知识,属于中档题 (1)分别记白球为1,2,3号,黑球为4,5号,然后例举出一切可能的结果组成的基本事件,然后例举出取出的两只球都是白球的基本事件,然后根据古典概型的概率公式进行求解即可; (2)“取出的两只球中至少有一个白球的事件”的对立事件是“取出的两只球均为黑球”,例举出取出的两只球均为黑球的基本事件,求出其概率,最后用1去减之,即可求出所求. 解::(1)分别记白球为1,2,3号,黑球为4,5号.从口袋中每次任取一球,每次取出不放回,连续取两次, 其一切可能的结果组成的基本事件(第一次摸到1号,第二次摸到2号球用(1,2)表示)空间为: Ω={(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(2,3),(3,2),(2,4),(4,2),(2,5),(5,2),(3,4),(4,3),(3,5),(5,3),(4,5),(5,4)}, 共有20个基本事件,且上述20个基本事件发生的可能性相同.

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

大学概率统计复习题(答案)

第一章 1.设P (A )=31,P (A ∪B )=21 ,且A 与B 互不相容,则P (B )=____6 1_______. 2. 设P (A )=31,P (A ∪B )=21 ,且A 与B 相互独立,则P (B )=______4 1_____. 3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. 5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________. 6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______. 7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________. 8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同 颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____. 9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____. 10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 35 18

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

概率统计练习题8答案

《概率论与数理统计》练习题8答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( )。 A 、0 B 、1 4 C 、18 D 、15 答案:D 2、如果,A B 为任意事件,下列命题正确的是( )。 A 、如果,A B 互不相容,则,A B 也互不相容 B 、如果,A B 相互独立,则,A B 也相互独立 C 、如果,A B 相容,则,A B 也相容 D 、AB A B =? 答案:B 3、设随机变量ξ具有连续的分布密度()x ξ?,则a b ηξ=+ (0,a b ≠是常数)的分布密度为( )。 A 、 1y b a a ξ?-?? ? ?? B 、1y b a a ξ?-?? ??? C 、1y b a a ξ?--?? ??? D 、 1y b a a ξ??? - ? ??? 答案:A 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布, C 、{,}Max ζξη=服从[0,1]上的均匀分布,

D 、(,)ξη服从区域01 01x y ≤≤??≤≤? 上的均匀分布 答案:D 5、~(0, 1), 21,N ξηξ=-则~η( )。 A 、(0, 1)N B 、(1, 4)N - C 、(1, 2)N - D 、(1, 3)N - 答案:B 6、设1ξ,2ξ都服从区间[0,2]上的均匀分布,则12()E ξξ+=( )。 A 、1 B 、2 C 、0.5 D 、4 答案:B 7、设随机变量ξ满足等式{||2}116P E ξξ-≥=,则必有( )。 A 、14D ξ= B 、14 D ξ> C 、1 4 D ξ< D 、{} 15216 P E ξξ-<= 答案:D 8、设1(,,)n X X 及1(,,)m Y Y 分别取自两个相互独立的正态总体21(, )N μσ及 2 2(, )N μσ的两个样本,其样本(无偏)方差分别为21 S 及22 S ,则统计量2 122 S F S =服从F 分 布的自由度为( )。 A 、(1, 1)n m -- B 、(, )n m C 、(1, 1)n m ++ D 、( 1, 1,)m n -- 答案:A 9、在参数的区间估计中,给定了置信度,则分位数( )。 A 、将由置信度的大小唯一确定; B 、将由有关随机变量的分布唯一确定; C 、可按置信度的大小及有关随机变量的分布来选取; D 、可以任意规定。 答案:C 10、样本容量n 确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有( )。

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2x B. C. 2x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2x B. 1 C. 2x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。 (A) 0≤ f (x ) ≤1; (B) 0≤ f (x ); (C )f (x ) ≤1; (D) 没有限制

概率论基础复习题及答案

《概率论基础》本科 填空题(含答案) 1. 设随机变量ξ的密度函数为p(x), 则 p(x) ≥0; ?∞ ∞ -dx x p )(= 1 ;Eξ=?∞ ∞ -dx x xp )(。 考查第三章 2. 设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为:C B A ;A,C 发生而B 不发生可表示 C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 3. 设随机变量)1,0(~N ξ,其概率密度函数为)(0x ?,分布函数为)(0x Φ,则)0(0?等于π 21,)0(0Φ等 于 0.5 。 考查第三章 4. 设随机变量ξ具有分布P{ξ=k}=5 1 ,k=1,2,3,4,5,则Eξ= 3 ,Dξ= 2 。 考查第五章 5. 已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 XY r 。 考查第五章 6. 设),(~2 σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 211k - 考查第五章 7. 设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ 0 ;∑∞ =1 i i p = 1 ;Eξ= ∑∞ =1 i i i p x 。 考查第一章 8. 设A,B,C 为三个事件,则A,B,C 都发生可表示为:ABC ;A 发生而B,C 不发生可表示为:C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 9. )4,5(~N X ,)()(c X P c X P <=>,则=c 5 。 考查第三章

相关文档