文档库 最新最全的文档下载
当前位置:文档库 › 北京联动天翼锂电池

北京联动天翼锂电池

北京联动天翼锂电池
北京联动天翼锂电池

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。 2.优点:工艺简单、易实现产业化 3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能 4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

锂电池管理系统功能介绍

1.ABMS-EV系列电池管理系统 概述: ABMS-EV系列锂电池管理系统应用于纯电动大巴、混合动力大巴、纯电动汽车、混合动力汽车。采用层级设计,严格执行汽车相关标准,硬件平台全部采用汽车等级零部件,软件符合汽车编程规范。 2、ABMS-EV01电池管理系统: 2.1)概述: ABMS-EV01系列锂电池管理系统主要用于低速电动车,物流车,环卫车等,采用一体化设计,集电池电压温度检测,SOC估算,绝缘检测,均衡管理,保护,整车通信,充电机通信,及交流充电桩接口检测为一体,结构紧凑,功能完善。 2.2) 选型号说明: 2.3)技术参数: 2.4)产品外观:

3、ABMS-EV02电池管理系统: 3.1)概述: ABMS-EV02系列锂电池管理系统主要用于电动叉车,电动搬运车等快速充放电场合,采用一体化设计,集电池电压温度检测与保护,SOC估算,均衡管理,通信等功能。 3.2) 选型号说明: 3.3)技术参数:

3.4)产品外观:

4、ABMS-EV03电池管理系统: 4.1)概述: ABMS-EV03系列锂电池管理系统主要用于电动叉车,电动搬运车等需要快速充放电场合,采用一体化设计,集电池电压温度检测,SOC估算,均衡管理,保护,通信,LED电量指示,制热,制冷管理,双电源回路设计,充电机,车载电源独立供电。 4.2) 选型号说明:

4.3)技术参数: 4.4)产品外观: 5、ABMS-EK01电池管理系统:

5.1)概述: ABMS-EK01系列锂电池管理系统主要用于电动自行车,电动摩托车等,采用软硬件多重冗余保护等,充电MOS控制,放电继电器控制,实现慢充快放,一体化设计,集电池检测,SOC估算,保护,通信为一体。 5.2)选型说明: 5.3)技术参数:

关于磷酸铁锂电池的知识

关于磷酸铁锂电池的知识 导读:锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 1.介绍 磷酸铁锂电池属于锂离子二次电池,一个主要用途是用作动力电池,相对NI-MH、Ni-Cd电池有很大优势。 磷酸铁锂电池充放电效率较高,倍率放电情况下充放电效率可达90%以上。而铅酸电池约为80%。 2.八大优势 安全性能的改善 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质,因此拥有良好的安全性。有报告指出,实际操作中针刺或短路实验中发现有小部分

样品出现燃烧现象,但未出现一例爆炸事件,而过充实验中使用大大超出自身放电电压数倍的高电压充电,发现依然有爆炸现象。虽然如此,其过充安全性较之普通液态电解液钴酸锂电池,已大有改善。寿命的改善 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 长寿命铅酸电池的循环寿命在300次左右,最高也就500次,而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小时率)使用,可达到2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1~1.5年时间,而磷酸铁锂电池在同样条件下使用,理论寿命将达到7~8年。综合考虑,性能价格比理论上为铅酸电池的4倍以上。大电流放电可大电流2C快速充放电,在专用充电器下,1.5C 充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池无此性能。 高温性能好 磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。 大容量 具有比普通电池(铅酸等)更大的容量。5AH-1000AH(单体) 无记忆效应 可充电池在经常处于充满不放完的条件下工作,容量会迅速低于额定容量值,这种现象叫做记忆效应。像镍氢、镍镉电池存在记忆性,而

十大锂电池排名

锂电池生产厂商的厂家非常之多,随着新能源汽车与UPS电源储能行业的快速发展,极大的刺激了锂电池的需求,各企业开始纷纷布局进入锂电池厂商行业。但是,做锂电池的厂商这么多,产品质量都过关吗?答案并不是的,总有一些喜欢浑水摸鱼的厂家,锂电产品参差不齐,没有认证等等。今天汇总了国内前十名的锂电池厂商排名,供你们选择与参考。 1、排名第一锂电池厂商—宁德时代CATL 宁德时代新能源科技股份有限公司(CATL)成立于2011年,公司总部位于福建宁德。公司专注于通过电池技术,为全球绿色能源应用,提供能源存储解决方案。 公司研发生产电动汽车及储能系统的锂电池,电动汽车电池模组,电动汽车电池系统,动力总成,大型电网储能系统,智能电网储能系统,分布式家庭储能系统,及电池管理系统(BMS)。公司建立了动力和储能电池领域完整的研发、制造能力,拥有材料、电芯、锂电池系统、电池回收的全产业链核心技术。在储能

领域,公司承接了部分关键客户的大型储能项目,年项目总量已超过40兆瓦时。 2、排名第二锂电池厂商—比亚迪 比亚迪股份有限公司创立于1995年,横跨IT、汽车和新能源三大产业,分别在香港(H股)和深圳(A 股)上市。全球较大的充电电池生产商,镍镉电池/手机锂电池畅销,具有强大的研发实力的高新技术企业。主要产品为磷酸铁锂动力电池。 在新能源领域,比亚迪成功推出了太阳能电站、储能电站、电动车、LED和电动叉车等新能源产品,并在全球多个国家和地区推广应用。凭借全球领先的铁锂电池技术,比亚迪正积极引领全球新能源产业变革。目前的有效产能为4.5Gwh,其中惠州1Gwh、深圳坑梓3.5Gwh,预计到2015年底,整体产能将达到6Gwh,2016年将扩张到10Gwh。比亚迪的动力电池仅供比亚迪自用。2015年上半年,比亚迪动力电池业务收入约30亿元。 3、排名第三锂电池厂商—国轩

磷酸铁锂生产配方及工艺

正极材料调试详细工艺流程 1.原材料检验 1.1磷酸铁:纯度99.5%以上,D90粒度小于5um ;(必须有纯度、粒度及杂质含量检 测报告) 1.2碳酸锂:纯度99.5%以上,D90粒度小于5um ; 1.3蔗糖:纯度99.5%以上,D90粒度小于5um ; 1.4纯水:电导率大于10兆欧。 1.5氮气:99.999% 1.6分散剂:聚乙二醇(PEG) 2.工艺过程 2.1磷酸铁烘干除水 (1)烘房烘干工序:不锈钢匣钵装满原料磷酸铁置入烘房,调节烘房温度220±20℃,6-10小时烘干。出料转下一工序至回转炉烧结。 (2)回转炉烧结工序:回转炉升温、通氮气达到要求后,进料(来自上工序烘房的物料),调节温度540±20℃,烧结8-12小时。 2.2研磨机混料工序 正常生产时,两台研磨机同时投入运行,两台设备具体投料和操作相同(调试时一台单独运行亦可),程序如下: (1)碳酸锂研磨:称量碳酸锂13Kg、蔗糖12Kg、纯水50Kg,混合研磨1-2小时。暂停。 (2)混合研磨:在上述混合液中加入磷酸铁50Kg,纯水25Kg,混合研磨1-3小时。停机,出料转入分散机。取样测粒度。 (3)清洗:称量100Kg纯水,分3-5次清洗研磨机,洗液全部转入分散机。 2.3分散机机物料分散工序

(1)将2.2两台研磨机混合好(或者1台研磨机两次混合)的物料约500Kg(包括清洗研磨机的物料)一起转入分散机,再加入100Kg纯水,调节搅拌速度,充分搅拌分散1-2小时,等待用泵打入喷雾干燥设备。 2.4喷雾干燥工序 (1)调节喷雾干燥设备的进口温度220±20℃,出口温度110±10℃,进料速度80Kg/hr,然后,开始进料喷雾干燥,得到干燥物料。 (2)可以按照喷雾粒度大小调节固含量为15%~30%。 2.5液压机物料压块装料 分别调节液压机的压力为150吨和175吨,在模具中装入喷雾干燥好的物料,保压一定时间,压实成块状。装入匣钵转入推板炉。同时,放入几组散装样品,与压成块状的物料进行对比。 2.6推板炉烧结 先升温,通氮气,达到气氛要求100ppm以下,将匣钵推入推板炉,按升温段300-550℃,4-6小时;恒温段750℃8-10小时;降温段6-8小时进行,出料。 2.7辊压超细磨 将推板炉烧好的物料输入超细磨,调节转速,进行辊压研磨后送入超细磨进行研磨。每批取样测试粒度。 2.8筛分、包装 将研磨物料进行筛分、包装。5Kg、25Kg两种规格。 2.9检验、入库 产品检验、贴标签入库。包括:产品名称、检验人、物料批次、日期。

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

磷酸铁锂合成方法比较

磷酸铁锂正极材料制备方法比较 A ?固相法 一.高温固相法1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4 分子式的原子比进行配料,在保护气 氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得 LiFePO4 粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30C, 0.1 C 倍率下的初始放电容量达到160 mAh - g-1 ;例2:S.S.Zhang等采用二步加热法,以FeC:2O4?2H2O和LiH2PO4为原料,在氮气保护下先于350~380C加热5 h形成前驱体,再在800E下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh ? g-1;例3: A.S.Andersson等采用三步加热法, 将由:Li2CO3、FeC2O4?2H2O和(NH4)2HPO4组成的前驱体先在真空电炉中于300r下预热分解,再在氮气保护下先于450r加热10 h,再于800r烧结36 h,产物在放电 电流密度为2.3 mA- g-1时放电,室温初始放电容量在136 mAh ? g-1 左右;例 4:Padhi 等以Li2CO3,Fe(CH3COO)2,NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA-h /g;Takahashi 等以LiOH ? H2O, FeC2O4 ? 2H2O,(NH4)2HPO4 为原料,在675、725、800r 下,制备出具有不同 放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700r下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 ? 05C首次放电比容量为150mA ? h/g;例6: 高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C 正极材料,首次放电比容量最为139 ? 4mA ? h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 ? 15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯

锂电池隔膜概念股一览锂电池上市公司一览

(4)锂电池隔膜概念股一览 锂电池上市公司一览 “十二五”期间,“膜”的国产化将成为国家扶持的重点,为此在薄膜国产化和新能源动力汽车发展的前景下,相关的锂电池隔膜生产企业将会受益。那么具体锂电池隔膜概念股一览锂电池上市公司具体如下: 锂电池隔膜概念股一览锂电池上市公司一览 纽米科技投产云天化(600096)新材料产业渐成形 日前,云天化重庆纽米新材料科技有限责任公司投产塈重庆研发中心揭牌典礼在晏家工业园隆重举行。中国科学院理化技术研究所所长李世元、国家863计划动力电池专家组组长曹亚等行业专家出席典礼仪式,云天化集团公司副董事长兼总经理他盛华、长寿区区长韩树明及云南省国资委云天化集团监事会主席王迤南在典礼上致辞,对云天化在新材料、新能源方面的发展给予了高度的肯定。 据了解,纽米科技成立于2010年2月,位于重庆长寿经济技术开发区,总占地面积130亩,主要从事新材料、新能源材料的研发和生产,是云天化投资设立的全资子公司。公司与成都慧成科技公司合作,现已获得具有自主知识产权的高性能隔膜生产技术,并已建成年产1500万平方米高性能锂离子电池隔膜生产线一条,是重庆市科委批准的2010年重庆市纯电动汽车研发与应用示范项目及国家发改委批

准的国内投资鼓励发展项目;未来3至5年,纽米科技将形成年产2亿平方米高性能锂离子电池隔膜的生产能力。 同时揭牌成立的重庆研发中心为云天化的二级单位,下设五个研发部,分别负责聚甲醛合成技术和改性技术的研究与产品开发、玻璃纤维改性技术研究和复合材料的开发、LTCC带的开发和关键原材料的制备技术研究、氟塑料及太阳能背光膜制备技术的研究以及储能材料的制备技术研究等,可充分发挥云天化在聚甲醛工程塑料和玻璃纤维产业上的优势,形成聚甲醛与玻璃纤维复合材料系列产品的生产,实现两大产业的有机结合,促进公司聚甲醛和玻璃纤维的产业升级。 业内人士表示,近年来,云天化持续深入企业转型,主业平台成功由以肥为主转变为“以化为主、相关多元”,并重点在新材料及新能源两大领域谋求发展,增强了抵御行业风险和增强综合盈利能力。通过在重庆、珠海、巴西等地区的产业布局及国内外的技术合作,公司在玻纤及聚甲醛两大产业上的产能及技术均处于行业领先水平。此次纽米科技正式投产塈重庆研发中心揭牌成立后,云天化将实现锂电池隔膜的量产,在聚甲醛及玻纤产品的研发能力也将获大幅增强,可助其向“两新”的产业方向顺利转型。

锂离子电池绿色环保电池

锂离子电池绿色环保电池 锂离子电池是依靠锂离子在正极及负极间移动工作的,锂离子电池在充放电过程里,Li+在两电极之间来回嵌入与脱嵌:它在充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。 一、锂离子电池的安全特性 锂离子电池已非常广泛的应用于人们的日常生活中,所以它的安全性能绝对应该是锂离子电池的第一项考核指标。对于锂离子电池安全性能的考核指标,国际上规定了非常严格的标准,一只合格的锂离子电池在安全性能上应该满足以下条件。 (1)短路:不起火,不爆炸 (2)过充电:不起火,不爆炸 (3)热箱试验:不起火,不爆炸(150℃恒温10min) (4)针剌:不爆炸(用Ф3mm钉穿透电池) (5)平板冲击:不起火,不爆炸(10kg重物自1M高处砸向电池) (6)焚烧:不爆炸(煤气火焰烧烤电池) 二、锂离子电池安全特性是如何实现的? 为了确保锂离子电池安全可*的使用,专家们进行了非常严格、周密的电池安全设计,以达到电池安全考核指标。 (1)隔膜135℃自动关断保护 采用国际先进的Celgard2300PE-PP-PE三层复合膜。在电池升温达到120℃的情况下,复合膜两侧的PE膜孔闭合,电池内阻增大,电池内部升温减缓,电池升温达到135℃时,PP膜孔闭合,电池内部断路,电池不再升温,确保电池安全可*。 (2)向电液中加入添加剂 在电池过充,电池电压高于4.2v的条件下,电液添加剂与电液中其他物质聚合,电池内阻大副增加,电池内部形成大面积断路,电池不再升温。 (3)电池盖复合结构 电池盖采用刻痕防爆结构,电池升温时,电池内部活化过程中所产生的部分气体膨胀,电池内压加大,压力达到一定程度刻痕破裂、放气。 (4)各种环境滥用试验 进行各项滥用试验,如外部短路、过充、针刺、平板冲击、焚烧等,考察电池的安全性能。同时对电池进行温度冲击试验和振动、跌落、冲击等力学性能试验,考察电池在实际使用环境下的性能情况。 三、锂离子电池是一种新型绿色环保电池 作为电池消费者,应该购买、使用新型绿色环保电池;作为电池制造商,应该生产新型绿色环保电池。只有经过大家的共同努力,才能创建、保护我们美丽和谐的自然环境。 新型绿色环保电池是指近年来已投入使用或正在研制开发的一类高性能、无污染的电池。目前已经大量使用的锂离子电池、金属氢化物镍电池和正在推广使用的无汞碱性锌锰电池以及正在研制开发的锂或锂离子塑料电池、燃料电池、电化学贮能超级电容器都属于新型绿色环保电池的范畴。此外,目前已广泛应用的利用太阳能进行光电转换的太阳电池(又称光伏发电),也属于这一范畴。 (本文来自:天能能源科技)

磷酸铁锂合成工艺选择

磷酸铁锂合成工艺选择 各位LFP大牛们,以下两个生产工艺,你们更看好哪个?从原料来源、成本、生产工艺复杂度、质量控制、环保等角度考虑 (一)磷酸二氢锂+ 氧化铁红 化学反应方程式:LiH2PO4 + 0.5Fe2O3 + 0.5C --> LiFePO4 + H2O + 0.5CO (二)正磷酸铁+ 氢氧化锂 化学反应方程式:FePO4 + LiOH + 0.5C --> LiFePO4 + 0.5H2O + 0.5CO两种方案消耗的C与排出的CO等量,但方案(二)排出少一半儿的水 一的优点:成本低,容量偏低 二的优点:合成材料的电性能优良, 0.5Li2CO3+ FeC2O4·2H2O+NH4H2PO4 --> LiFePO4 + H2O + 0.5CO 不过正磷酸铁好像有结晶水? 方案1. 两个都是比较常见的原料,原料质量相对稳定,供应商也相对较多。成本分两块,原料成本该路线较低,但工艺成本该路线偏高,因为其对混料与后处理的要求更高。从产品质量上来说,该工艺路线从氧化铁到最终磷酸铁锂,经历的晶体结构变化巨大,产物的颗粒也会较大,如果后处理工艺不过关,很容易导致最终产品电化学性能不过关。 方案2. 首先,你的分析有误,常规的正磷酸铁都含几份结晶水(通常是2份)。氢氧化锂是较常见的锂盐,但吸湿性较强,可能实际使用中会有一定问题,当然,你在这里采用氢氧化锂是有道理的,固相反应更容易进行。正磷酸铁,目前国内供应商的产品,质量有待提高(主要是颗粒,纯度,铁磷比)。成本上来说,该路线的材料成本肯定高于方案1,但该路线的工艺成本相对较低,因为该工艺的后处理会相对简单。产品质量方面,煅烧过程中,磷酸铁与磷酸铁锂的结构变化相对较小,如果工艺控制得当,最终产品基本能够维持原料磷酸铁的粒度大小,后处理简单,且电化学性能也会较稳定。 在我个人看来,如果真是有技术实力的公司,自产FePO4,而后制备磷酸铁锂,应该是今后的一个主流。 两种方法理论上都是可行的,但高质量的LFP合成一般不会采用以上的工艺路线,原因主要是:方法一的原料质量很难控制,易导致合成化学计量偏离。方法二除了

磷酸铁锂动力电池维护手册 整合版

沃特玛电池有限公司 磷酸铁锂动力电池使用手册 电子部 2013-3-15 [为了方面售后服务更好的对OPT管理系统进行维护,特此制定本手册,希望对售后服务有所帮助]

前言 为应对日益突出的燃油供求矛盾和环境污染问题,世界主要汽车生产国纷纷加快部署,将发展新能源汽车作为国家战略,加快推进技术研发和产业化,同时大力发展和推广应用汽车节能技术。节能与新能源汽车已成为国际汽车产业的发展方向。新能源客车,目前正在飞速发展。 当新能源客车穿行于街市,走进人们的生活时,对它的了解和认知也就成我们的必修课。然而,在这新能源之风势在必行之际,谈到动力电池,我们中大多数的人对其都知之甚少,这其中包括很多从事纯电动客车工作的相关从业人员,也正因为如此,才给你们的工作和和生活到来了诸多的困难和疑惑。 为解决这些问题,让从事纯电动客车工作的相关从业人员对动力电池有一些初步的了解和认识,本手册将通过重点介绍磷酸铁锂动力电池和管理系统的运用与维护来让大家了解动力电池的相关知识。为了更好服务客户,让相关从业人员熟悉和掌握我公司的纯电动客车动力电池,也为更好的发挥磷酸铁锂动力电池优越的性能,做好相关的维护保养工作,特制定本手册。希望此举能为大家避免在使用或维护我公司产品时造成不必要的困扰和预防产生一些不可挽回的损失。 烦请在使用或维护沃特玛公司纯电动客车动力电池之前,详细阅读本手册!

目录第一章 第二章

第一章为何选择磷酸铁锂电池作为动力电池 电池的概念 1.1.1什么是电池 化学电源俗称为电池,是一种利用物质的化学反应所释放出来的能量直接转化为电能的装置。顾名思义,电池是装电的池子,尤如水池,电池的电压及容量类似于水池的水位高低和蓄

电池与环保

电池与环保 一、电池的类型 电池,做为提供直流电的能源,已广泛用于航天、科学实验和日常生活中,电池的种类也从最早的原电池----伏打电堆发展到铅蓄电池、镉镍电池,直至新型的氢镍电池,锂电池。现在我就为大家介绍一下庞大的电池家族。 (一)原电池--- 一次电池 所谓一次电池,就是指放电后不能充电使其复原的电池。通常由正极、负极、电解质和容器、隔膜组成,历史上第一个原电池是由伏打在18世纪末发明的。当时这个电池是由一些金属(铜、银、锌)片和湿的硬纸片组成。伏打是这样描述他的电池的;用水(盐水更好)把这些硬圆纸片浸湿,先在桌上放一块银片,再放上一块锌片,然后在它的上面放一个湿润的硬纸片,再在上面放一块银片和锌片及硬纸片,如此循环放置,直至一定高度,就组成了电堆。这是历史上最原始的电池,也称作原电池,现在所用的一次电池主要有两种: 1.锌锰电池 该种电池表达式为:Zn|NH4Cl,ZnCl2|MnO2(C)生活中常用的1号或5号干电池就多是该种电池,实际制造时,锌皮做负极同时兼作容器外皮,正极氧化锰为粉末,依靠碳棒导电。两层隔膜中的电解液制成糊状以限制其流电又可让离子发生迁移。此种电池适用于间歇式放电场合,如手电筒、收音机等。其工作电压为1.5~1.6V。由于外皮由锌组成,所以电池用完时,锌皮易被蚀穿而使电解液(NH4Cl)渗出,所以电池用完后应取出以免腐蚀电器。 2.碱性锌锰电池 这种电池性能优于传统干电池,它于1912年开发,直到1949年投产问世,该电池电解液为碱性,有良好的导电性能,负极为锌池,反应面积增大,所以可以连续大容量放电,外壳为铁皮封闭,可防电解液渗漏。所以该电池是良好的传统干电池的替代产品,但价格略高于传统干电池。 3.锌银扣式电池 该电池表达式为:Zn|KOH|Ag2O 这种电池体积小,但有优越的大电池放电性能,放电电压平稳,被广泛用于电子表、石英钟、计算机CMOS电池等。 (二)蓄电池----二次电池 二次电池,就是利用化学反应的可逆性,在电池中化学能转化为电能后,用外加电能使电池中化学体系复原,重新利用的电池。该类电池主要有: 1.铅蓄电池 该电池表达式为:Pb|H2SO4|PbO2 这是最常用的二次电池,硫酸在电池中不仅可传达电流,且参加电池反应,随放电进行,硫酸逐渐减少,且有水生成,所以硫酸浓度不断下降;充电时,硫酸不断生成,硫酸浓度不断增加,所以可用电池中硫酸浓度估计蓄电池荷电状态,该种电池单体正常工作电压为2.0V,必要时可串联多个使用以提高供电电压。 2.碱式镍镉电池 该电池表达式为:Cd|KOH(或NaOH)|NiOOH 这种电池使用寿命长,可循环充放电数4次,机械性能好,耐冲击,耐振动,自放电小,额定电压为 1.2V,所以广泛用于日常生活中。例如我们用的随身听等小电器均可用该种充电电池。 3.氢镍电池 该种电池反应复杂,有正常工作,过充电和过额电时有不同的电化学反应。氢镍电池的电解液为ρ≈1.3g/cm3的氢氧化钾水溶液。这种电池的突出优点是循环使用寿命长,可达10年,缺点是成本较高,自放电速度较大,且由于内部有4MPa气压,所以有爆炸的可能性,但其前景很乐观。现已逐步在航天领域取代镉镍电池。现在的笔记本电池也有部分使用氢镍电池。

磷酸铁锂生产配方及工艺

磷酸铁锂生产配方及工 艺 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

正极材料调试详细工艺流程1.原材料检验 1.1磷酸铁:纯度%以上,D90粒度小于5um ;(必须有纯度、粒度及杂质含量检测 报告) 1.2碳酸锂:纯度%以上,D90粒度小于5um ; 1.3蔗糖:纯度%以上,D90粒度小于5um ; 1.4纯水:电导率大于10兆欧。 1.5氮气:% 1.6分散剂:聚乙二醇(PEG) 2.工艺过程 2.1磷酸铁烘干除水 (1)烘房烘干工序:不锈钢匣钵装满原料磷酸铁置入烘房,调节烘房温度220±20℃,6-10小时烘干。出料转下一工序至回转炉烧结。 (2)回转炉烧结工序:回转炉升温、通氮气达到要求后,进料(来自上工序烘房的物料),调节温度540±20℃,烧结8-12小时。 2.2研磨机混料工序 正常生产时,两台研磨机同时投入运行,两台设备具体投料和操作相同(调试时一台单独运行亦可),程序如下: (1)碳酸锂研磨:称量碳酸锂13Kg、蔗糖12Kg、纯水50Kg,混合研磨1-2小时。暂停。 (2)混合研磨:在上述混合液中加入磷酸铁50Kg,纯水25Kg,混合研磨1-3小时。停机,出料转入分散机。取样测粒度。

(3)清洗:称量100Kg纯水,分3-5次清洗研磨机,洗液全部转入分散机。 2.3分散机机物料分散工序 (1)将两台研磨机混合好(或者1台研磨机两次混合)的物料约500Kg (包括清洗研磨机的物料)一起转入分散机,再加入100Kg纯水,调节搅拌速度,充分搅拌分散1-2小时,等待用泵打入喷雾干燥设备。 2.4喷雾干燥工序 (1)调节喷雾干燥设备的进口温度220±20℃,出口温度110±10℃,进料速度80Kg/hr,然后,开始进料喷雾干燥,得到干燥物料。 (2)可以按照喷雾粒度大小调节固含量为15%~30%。 2.5液压机物料压块装料 分别调节液压机的压力为150吨和175吨,在模具中装入喷雾干燥好的物料,保压一定时间,压实成块状。装入匣钵转入推板炉。同时,放入几组散装样品,与压成块状的物料进行对比。 2.6推板炉烧结 先升温,通氮气,达到气氛要求100ppm以下,将匣钵推入推板炉,按升温段300-550℃,4-6小时;恒温段750℃8-10小时;降温段6-8小时进行,出料。 2.7辊压超细磨 将推板炉烧好的物料输入超细磨,调节转速,进行辊压研磨后送入超细磨进行研磨。每批取样测试粒度。 2.8筛分、包装

相关文档
相关文档 最新文档