文档库 最新最全的文档下载
当前位置:文档库 › 风载荷计算系数表

风载荷计算系数表

风载荷计算系数表

风载荷计算高度影响系数C h

风载荷计算构件形状影响系数C s

动载荷的概念及分类

第14章动载荷 14.1 动载荷的概念及分类 在以前各章中,我们主要研究了杆件在静载荷作用下的强度、刚度和稳定性的计算问题。所谓静载荷就是指加载过程缓慢,认为载荷从零开始平缓地增加,以致在加载过程中,杆件各点的加速度很小,可以忽略不计,并且载荷加到最终值后不再随时间而改变。 在工程实际中,有些高速旋转的部件或加速提升的构件等,其质点的加速度是明显的。如涡轮机的长叶片,由于旋转时的惯性力所引起的拉应力可以达到相当大的数值;高速旋转的砂轮,由于离心惯性力的作用而有可能炸裂;又如锻压汽锤的锤杆、紧急制动的转轴等构件,在非常短暂的时间内速度发生急剧的变化等等。这些部属于动载荷研究的实际工作问题。实验结果表明,只要应力不超过比例极限,虎克定律仍适用于动载荷下应力、应变的计算,弹性模量也与静载下的数值相同。 动载荷可依其作用方式的不同,分为以下三类: 1.构件作加速运动。这时构件的各个质点将受到与其加速度有关的惯性力作用,故此类问题习惯上又称为惯性力问题。 2.载荷以一定的速度施加于构件上,或者构件的运动突然受阻,这类问题称为冲击问题。 3.构件受到的载荷或由载荷引起的应力的大小或方向,是随着时间而呈周期性变化的,这类问题称为交变应力问题。 实践表明:构件受到前两类动载荷作用时,材料的抗力与静载时的表现并无明显的差异,只是动载荷的作用效果一般都比静载荷大。因而,只要能够找出这两种作用效果之间的关系,即可将动载荷问题转化为静载荷问问题处理。而当构件受到第三类动载荷作用时,材料的表现则与静载荷下截然不同,故将在第15章中进行专门研究。下面,就依次讨论构件受前两类动载荷作用时的强度计算问题。 14.2 构件作加速运动时的应力计算 本节只讨论构件内各质点的加速度为常数的情形,即匀加速运动构件的应力计算。 14.2.1 构件作匀加速直线运动 设吊车以匀加速度a吊起一根匀质等直杆,如图14-1(a)所示。杆件长度为l,横截面面积为A,杆件单位体积的重量为 ,现在来分析杆内的应力。 由于匀质等直杆作匀加速运动.故其所有质点都具有相同的加速度a,因而只要在每质点上都施加一个大小等于其质量m与加速度a的乘积、而方向与a相反的惯性力,则整个杆件即可认为处于平衡状态。于是这一动力学问题即可作为静力学问题来

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

渐开线圆柱齿轮传动的动载荷系数分析

万方数据

第34卷第1期渐开线圆柱齿轮传动的动载荷系数分析35 速时,简化方法确定的动载荷系数偏大;而在高速时,简化方法确定的动载荷系数偏小。为此本文中我们给出了一般方法确定动载荷系数的实用曲线和数据表。 1确定动载荷系数的一般方法 在亚临界区工作的齿轮,其动载荷系数Ky的表达式为[1]118—119[2】11—12 Kv=NK+1(1)K=GlBp+G2BS+C口3Bk(2)式(1)、式(2)中,Gl、G2和G3分别为考虑齿轮重合度影响的系数;8。、Bj,和仇分别为考虑齿距偏差、齿形偏差和轮齿修缘影响的系数;N为临界转速比,对于亚临界区Ⅳ≤0.85,其表达式为Ⅳ:藉(3)式(3)中,mred为齿轮副诱导质量,单位kg/mm。对于一般外啮合传动,诱导质量可按下式计算m捌=詈(等)2—11(4) (1一g{)lDl。(1一q{)lD2“2式(3)中的c,为齿轮的啮合刚度,N/(mm?/.an),其表达式为 门,’门 勺=(o.75E.+o.25)半cosp×1.05(5) 式(5)中,g’为齿轮柔度的最小值,单位mm?tan,标准齿轮可按下式确定 q’=0.04723+(0.15551+0.25791/u)/磊l(6)上面各式中其他参数的含义及取值详见参考文献[3]9一ll。 由以上各式可知,齿轮动载荷系数岛与齿轮的齿数zl、齿数比//,、小齿轮转速nl、诱导质量mred等参数有关,确定过程复杂,不便于工程应用。为此新国标给出了确定动载荷系数凰的简化方法。 2确定动载荷系数的简化方法 新国标[3]14。5和文献[4]给出了用简化方法确定 动载荷系数凰的表达式 Kv=[A+瓜200v/A]日 =[A+ ̄/j占(7)A=106—56B(8)召=0.25(C一5.O)o-667(9)式(7).式(9)中,移为齿轮的节线速度,单位m/s;C为齿轮传动精度系数C=6—12。 根据式(6),新国标给出了岛的线图,如图l所示。 新国标指出,简化方法是基于经验数据,主要考虑齿轮制造误差和节线速度的影响。曲线范围内没有考虑共振的影响,此方法主要适用于缺乏详细资料的初步设计阶段。目前,各种机械设计教材给出的都是这种简化的岛曲线。那么,该简化方法与一般方法确定的动载荷系数差异有多大,我们通过下面的实例计算加以分析。 齿轮节线速度v/(m/s) 图1齿轮动载荷系数岛‘ 3一般方法的动载荷系数计算与分析 3.1一般方法的动载荷系数计算 为了用一般方法确定动载荷系数的大小,设一对标准正常齿制直齿圆柱齿轮传动,小齿轮的齿数Z-l-25,模数m=4.0mm,小齿轮宽度b1_65mm,大齿轮宽度b2=60ram,实心式结构(式(3)中gl=q2=0)。两齿轮材料皆为40M11B(P1=P2=7.8×10“kg/mm3),热处理为表面淬火,接触疲劳极限盯liIn=1060MPa。各级精度齿轮的单个齿距偏差和齿廓总偏差按GB/T10095.1—2008确定。 厶=o.3(%+o.4“+4)×2(cr2-2.5’(tan)圪=(3.2厂磊+0.22^+o.7)×2(∽-2.5)(/.an)上式中,d.为齿轮的分度圆直径,r肿。 由(1)式可知,动载荷系数K。是临界转速比Ⅳ的函数。把式(3)、式(4)代入式(1),并设齿轮分度圆直径约等于平均直径,则有 red】/7,l玎厶111,1,,^、口。丽丽2丽丽t川,一对材料相同的实心齿轮,式(1)经整理后变为Kv=而7.1"0伽√彘南K+l(… 由式(11)可知,动载荷系数胁是2Iv/100的函数。因此,在给定齿轮精度等级的条件下可以绘制出琊的曲线(详见GB/T3480—1983)。但是实际上嘶还与齿数比/3,、单位齿宽载荷杨E/6(影响式(11)中的K)等其他参数有关。对于7级精度的齿轮,取不同齿数比和单位齿宽载荷,计算的动载荷系数K如图2所示。可见齿数比和单位齿宽载荷对动载荷系数都有较明显的影响。因此,GB/T3480—1983中简化方法确定的动载荷系数的曲线在GB/T3480一1997中被取消 了。如前所述,新国标中简化方法确定动载荷系数的  万方数据

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

动载荷的概念及其分类

第35讲教学方案 ——动载荷(Ⅰ)

第十四章 动载荷 §14-1 动载荷的概念及其分类 1.动载荷的概念 前面各章讨论的都是构件在静载荷作用下的应力、应变及位移计算。静载荷是指构件上的载荷从零开始平稳地增加到最终值。因加载缓慢,加载过程中构件上各点的加速度很小,可认为构件始终处于平衡状态,加速度影响可略去不计。动载荷是指随时间作明显变化的载荷,即具有较大加载速率的载荷。一般可用构件中材料质点的应力速率( dt d σσ=? )来表示载荷施加于构件的速度。实验表明,只要应力在比例极限之内,应变与应力关系仍服从胡克定律,因而,通常也用应变速率( dt d εε=? )来表示载荷随时间变化的速度。一般认为标准静荷的 min /)~.(3010=?ε ,随着动载荷 ? ε 的增加,它对材料力学性能的影响越趋明显。对金属材料,静荷范围约在 s /~241010--?=ε ,如果 s /210-?≥ε ,即认为是动载荷。 2.三类动载荷问题: 根据加载的速度与性质,有三类动荷问题。 (1) 一般加速度运动(包括线加速与角加速)构件问题,此时?ε还不会引起材料力 学性能的改变,该类问题的处理方法是动静法。 (2) 冲击问题,构件受剧烈变化的冲击载荷作用。?ε 大约在 s /~101 ,它将引 起材料力学性能的很大变化,由于问题的复杂性,工程上采用能量法进行简化分析计算。 (3) 振动与疲劳问题,构件内各材料质点的应力作用周期性变化。由于构件的疲劳 问题涉及材料力学性能的改变和工程上的重要性,一般振动问题不作重点介绍,而将专章介绍疲劳问题。 §13-2 构件作等加速运动时的应力计算 1.动应力分析中的动静法 加速度为 a 的质点,惯性力为其质量 m 与 a 的乘积,方向与a 相反。达朗贝尔原理指出,对作加速度运动的质点系,如假想地在每一质点上加上惯性力,则质点系上的原力系与惯性力系组成平衡力系。这样,可把动力学问题在形式上作为静力学问题处理,这就是动静法。

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

动载荷计算概述

第 章 滚动轴承 第1节 概述 一. 构造 二. 特点 1. 摩擦力矩小且稳定,易启动。 2. 轴向宽度小,结构紧凑。 3. 能同时承受轴向力和径向力。 4. 易润滑。 5. 可消除径向间隙。 6. 批量生产成本低。 7. 对轴的材料和热处理要求低。 8. 承受冲击载荷能力差。 9. 寿命短。 10. 振动、噪声大。 11. 径向尺寸大。 12. 不能剖分。 第2节 滚动轴承的主要类型及代号 一.滚动轴承的类型 1. 按轴承构成分 2. 按轴承受力分 3. 按接触情况分 二.滚动轴承的代号 直径系列代号 1. 内圈 2. 外圈 3. 4. 混合 ηn/p 滑动摩擦特性曲线 边界 前置代号 表示轴承分部件 后置代号 表示轴承结构公差精度等 直径系列的对比

选择轴承类型时考虑的因素: 一.轴承的载荷 载荷大小、方向是决定轴承类型的重要依据 二.轴承的转速 三.安装方便性 四.轴承的调心性能 第4节滚动轴承的工作情况 一.轴承元件上的载荷分布 1 .推力轴承 设轴承受到轴向力S,则每个滚动体受力: F i=S/Z 2 向心轴承 1)力分布 2) 3.失效形式:疲劳点蚀 4.设计计算准则:保证一定的接触疲劳强度 二.向心推力轴承的派生轴向 力(附加轴向力) 1. 派生轴向力的产生 R→N i→S i→S←A 2. 轴向力对接触情况的影响 注:1)Y对应A/R>e的Y 2)e由轴承样本查取 i 固定套圈应力变化情况 接 触 应 力 接 触 应 力 N i S i A/R=tanα A/R=1.25tan A/R>1.7tanα

(N) 10 60 6 ' εh nL P C= 一.滚动轴承的失效形式及基本额定寿命 1.失效形式 滚动体或内外圈滚道上的疲劳点蚀。 2.单个轴承滚动轴承的寿命: 套圈或滚动体发生疲劳扩展之前,一套圈相 对于另一套圈的转数。 3.滚动轴承的基本额定寿命 1)滚动轴承的寿命分布 2)基本额定寿命 一定条件下,一组轴承中10%的轴承发生疲 劳点蚀失效,而90%的轴承不发生疲劳点蚀失效 前的内外圈相对转数(106)或工作时数 二.滚动轴承的基本额定动载荷 1.载荷和额定寿命的关系 2.基本额定动载荷 轴承的基本额定寿命恰好为106转时, 轴承所能承受的载荷值C。 3.额定动载荷的修正 轴承工作温度与试验温度不同时应修正 额定动载荷。 C t=f t C 三.滚动轴承寿命的计算公式 1.载荷和额定寿命的关系 2.寿命计算公式 1)用转数表示的寿命公式: 2)用小时表示的寿命公式: 3)设计式: 未失效轴承数量% 轴 承 的 寿 命 ( 1 6 转 ) 100 70 50 30 10 0 12 10 8 6 4 2 载荷 额定寿命 C 10 012345678910L10(106) 额定寿命 4 3 2 C ) (106 10 转 ε ? ? ? ? ? = P C L (h) 60 106ε ? ? ? ? ? = P C n L h

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一遇的风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区;

风荷载高度变化系数μz 计算公式 A类地区=1.379(z/10)0.24 B类地区= (z/10)0.32 C类地区=0.616(z/10)0.44 D类地区=0.318(z/10)0.6 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。一般取决于建筑建筑物的平面形状等。

5风荷载计算

5 风荷载计算 风荷载标准值 主体结构计算时,为了简化计算,作用在外墙面上的风荷载可近似作用在屋面梁和楼面梁处的等效集中荷载替代,垂直于建筑物表面的风荷载标注值按公式5-1计算。 0k z s z ωβμμω???= (5-1) 式中:k ω——风荷载标准值; s μ——风荷载体型系数; z μ——风压高度变化系数; 0ω——基本风压值,本设计中的基本风压取30.00=ω; z β——高度z 处的风振系数; 根据《建筑结构荷载规范》(GB50009—2012)第条规定:地面粗糙度可分为四类:A 类指近海海面和海岛、海岸、湖岸及沙漠地区;B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇;C 类指有密集建筑群的城市市区;D 类指有密集建筑群且房屋较高的城市市区。本设计中地面粗糙度取C 类。 高度z 处的风振系数z β的计算式见公式5-2。 1z z z ξν?βμ=+ (5-2) ξ——脉动增大系数; ν——脉动影响系数; z ?——振型系数; z μ——风压高度变化系数。 根据《建筑结构荷载规范》(GB50009—2012)第节可知:对于框架结构的基本自振周期可以近似按照()10.08~0.10T n n =(n 为建筑层数)估算,应考虑风压脉动对结构发生顺风向风振的影响,本设计中自振周期取10.090.0960.54T n s ==?=,经过计算, 2 1200.300.54=0.087T ω=?。风载体型系数由《建筑结构荷载规范》(GB50009—2012)第节续表可以查得:8.0=s μ(迎风面)和5.0-=s μ(背风面)。 根据《建筑结构荷载规范》(GB50009—2012)第条规定:当结构基本自振周期s T 25.0≥时,以及对于高度超过30m 且高宽比大于1. 5 的高柔房屋,由风引起的结构振动比较明显,而且随着结构自振周期的增长,风振也随之增强。因此在设计中应考虑风振的影响,而且原则上还应考虑多个振型的影响。 由于本工程总高度为,自振周期虽已超过,但不属于高耸结构和大跨度结构,所以根据荷载规范,本工程不考虑顺风向风振的影响。即本工程在高度z 处的风振系数z β近

载荷系数

转自《中华钢结构论坛》https://www.wendangku.net/doc/b914142386.html, 在进行起重机总体设计时,特别是钢结构设计时,考虑的载荷和工民建钢结构厂房设计考虑的载荷有很大不同,其特点就是起重机是动态使用的,在考虑载荷时,都要乘一个系数,现在我把整体设计时最常用的载荷系数简单得说一下,使对起重机钢结构设计不了解的人有一个初步的认识,同时,也请这方面的专家指出不足之处。《规范》中可没有这么详细啊! 一、自重冲击系数 当货物突然起升离地、货物下降制动、起重机运行通过轨道接缝或运动机构起动、制动时,起重机的的自身重量将产生冲击和振动。由于这种冲击和振动,起重机各部分质量会产生附加的加速度,虽然可用计算机计算这种加速度,但计算工作量较大,所以,实际计算时是将自重乘以一个冲击系数,以考虑这种附加动载的影响。 按照《起重机设计规范》(GB3811-83),的规定,自重冲击系数分两种情况,一是货物离地或货物下降制动对自重的冲击,将起重机自重乘以起升冲击系数φ1,二是吊着货物的起重机运行通过轨道接缝,将起重机自重和起升载荷均乘以相同的运行冲击系数φ4,他们都是经验值。 1、起升冲击系数φ1 《规范》规定:0.9≤φ1≤1.1 这个系数的应用分两种情况:当自重对要计算的元件起增大作用时,取φ1=1.0~1.1,否则取φ1=0.9~1.0。 2、运行冲击系数φ4 《规范》规定,φ4用下式计算: φ4=1.10+0.058v√h (注:√h为h开更号) 式中v-----起重机(或小车)的运行速度(m/s) h----轨道接缝处二轨道面的高度差(mm) 理论表明,当速度较大时(v≤2m/s),冲击系数并不随速度增大,只要控制h≤2mm,系数不会大于1.1。

风荷载计算

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 风荷载高度变化系数μz

高度(m) 地面粗糙类别 A B C D 5 1.17 1.00 0.74 0.62 10 1.38 1.00 0.74 0.62 15 1.52 1.14 0.74 0.62 计算公式 20 1.63 1.25 0.84 0.62 A类地区=1.379(z/10)0.24 30 1.80 1.42 1.00 0.62 B类地区= (z/10)0.32 40 1.92 1.56 1.13 0.73 C类地区=0.616(z/10)0.44 50 2.03 1.67 1.25 0.84 D类地区=0.318(z/10)0.6 60 2.12 1.77 1.35 0.93 70 2.20 1.86 1.45 1.02 80 2.27 1.95 1.54 1.11 90 2.34 2.02 1.62 1.19 100 2.40 2.09 1.70 1.27 150 2.64 2.38 2.03 1.61 200 2.83 2.61 2.30 1.92 250 2.99 2.80 2.54 2.19 300 3.12 2.97 2.75 2.45 350 3.12 3.12 2.94 2.68 400 3.12 3.12 3.12 2.91 ≥450 3.12 3.12 3.12 3.12 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型

动载荷

第十二章动载荷 §12-1 动载荷的概念及其分类 1.动载荷的概念 前面各章讨论的都是构件在静载荷作用下的应力、应变及位移计算。静载荷是指构件上的载荷从零开始平稳地增加到最终值。因加载缓慢,加载过程中构件上各点的加速度很小,可认为构件始终处于平衡状态,加速度影响可略去不计。动载荷是指随时间作明显变化的载 荷,即具有较大加载速率的载荷。一般可用构件中材料质点的应力速率( dt d σσ=? )来表示载荷施加于构件的速度。实验表明,只要应力在比例极限之内,应变与应力关系仍服从 胡克定律,因而,通常也用应变速率( dt d εε=? )来表示载荷随时间变化的速度。一般 认为标准静荷的 min /)~.(3010=? ε ,随着动载荷 ? ε 的增加,它对材料力学性能的影响 越趋明显。对金属材料,静荷范围约在 s /~2 4 10 10--? =ε ,如果 s /2 10 -? ≥ε ,即认为是 动载荷。 2.三类动载荷问题: 根据加载的速度与性质,有三类动荷问题。 (1) 一般加速度运动(包括线加速与角加速)构件问题,此时? ε还不会引起材料力 学性能的改变,该类问题的处理方法是动静法。 (2) 冲击问题,构件受剧烈变化的冲击载荷作用。? ε 大约在 s /~101 ,它将引 起材料力学性能的很大变化,由于问题的复杂性,工程上采用能量法进行简化分析计算。 (3) 振动与疲劳问题,构件内各材料质点的应力作用周期性变化。由于构件的疲劳 问题涉及材料力学性能的改变和工程上的重要性,一般振动问题不作重点介绍,而将专章介绍疲劳问题。 §12-2 构件作等加速运动时的应力计算 1.动应力分析中的动静法 加速度为 a 的质点,惯性力为其质量 m 与 a 的乘积,方向与a 相反。达朗贝尔原理指出,对作加速度运动的质点系,如假想地在每一质点上加上惯性力,则质点系上的原力系与惯性力系组成平衡力系。这样,可把动力学问题在形式上作为静力学问题处理,这就是动静法。

18号槽钢受力计算(考虑动载系数)

双18号槽钢强度和挠度计算 以双18号槽钢面对面安装组成建议的吊装梁。 一、计算载荷的确定 考虑到动载荷、不均衡载荷、风载荷。在起重吊装工程的设计中,为了计入动载荷、不均衡载荷的影响,常以计算载荷作为计算依据。计算载荷的一般公式为:Qj= K1 K2 Q 其中式中:Qj——计算载荷;K1——动载荷系数;K2——不均衡载荷系数;Q——设备及索吊具重量。 一般取动载荷系数K1为1.5 1.2 1.1 1.25 一般取不均衡载荷系数K2为1.1~1.2。 另外,在北方和沿海地区的室外吊装作业时还要考虑风载荷。(考略到恶劣的情况取K=K1K2=2) 二、18号槽钢的受力分析 截面形心轴位置见图 受力计算简图(梁的长度是2M,在中心位置吊装)

计算参数 [ 18号槽钢A=2929mm 2 I x =13700000mm 4 W x =152000mm 3 1290y y mm == 截面抵抗矩 3=13700000/90152222W W mm ==下上 1)当不考虑动载系数的影响时 中心处强度计算: 60F kN =(以中心吊装6T 的货物计算) 1160302 M kN m ?=?=g ()2230000000/152222298.6/215/N mm f N mm σ=?=<= 符合要求。 挠度计算 3356000020000.184848 2.0610137000002 Fl W mm EI ?===????中心 2)考虑动载系数的影响时,按照最恶劣的情况计算,取系数K=2。 中心处强度计算: 60F kN =(以中心吊装6T 的货物计算) 1160302 M kN m ?=?=g ()()222/30000000/1522222197.2/215/M W N mm f N mm σ=?=?=<= 符合要求。 挠度计算 33526000020000.364848 2.0610137000002Fl W mm EI ??===????中心

风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 一般情况下的风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷 载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小 于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采 用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力 设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压 应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离 地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

当量动负荷的计算-计算所需额定动载荷C的数值-滚动轴承选择的第三步

当量动负荷的计算-计算所需额定动载荷C的数值-滚动轴承选择的第三步

当量动负荷的计算-计算所需额定动载荷C的数值 -滚动轴承选择的第三步 选择了轴承的大概类型,我们要开始计算轴承上的载荷了。我们首先得根据实际作用于进口轴承上的载荷,计算出当量动载荷(P),再根据要求的轴承寿命,计算出所需额定动载荷(C)。 1,当量动负荷的计算 什么是当量动负荷呢? 轴承大多承受径向负荷与轴向负荷的合成负荷,并且负荷条件多种多样(如各种旋转条件,大小发生变化等)。因此,不可能将轴承的实际负荷直接与基本额定负荷比较。这时,将实际负荷换算成通过轴承中心、且大小和方向一定的假想负荷来进行比较,轴承在假想负荷下具有与实际负荷和转速下相同的寿命。 这样换算的假想负荷称做当量动负荷,我们用“P“表示。 其实,简单来说,当量动负荷是指一个假设的负荷,其大小和方向是固定的,且径向作用于径向轴承上;或轴向和同心作用于推力轴承上。 当量动负荷 P 的计算 径向轴承一般需要承受同时作用的径向和轴向负荷。如果联合负荷的大小和方向是固定的,当量动负荷P的计算公式为: P = XFr + YFa 式中: ?P:当量动负荷,N;对于向心轴承可以表示为Pr(径向当量动负荷); 对于推力轴承可以表示为Pa(轴向当量动负荷) ?Fr:径向负荷,N ?Fa:轴向负荷,N ?X:径向负荷系数 ?Y:轴向负荷系数 对于单列向心轴承,只有轴向负荷与径向负荷的比 Fa / Fr,大于某一特定限制系数 e,轴向负荷才会影响到当量动负荷 P。当 Fa / Fr 小于等于 e 时,取 X=1,Y=0。此时当量动负荷为 P=Fr。(e表示一个界限值,一般轴承样本中都会有介绍) 但是对于双列向心轴承,即使很小的轴向负荷,一般也会造成很大的影响。

风荷载计算

4.2 风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑 所受的风荷载。 4.2.1 单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以 高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1. 基本风压值Wo 按当地空旷平坦地面上10 米高度处10 分钟平均的风速观测数据,经概率统计得出50 年一遇大值确定的风速V0(m/s) 按公式确定。但不得小于0.3kN/m2 。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100 年重现期的风压值;对风荷载是否敏 主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60 米时,采用100 年的风压。 《建筑结构荷载规范》(GB50009 -2001 )给出全国各个地方的设计基本风压。 2. 风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D 四类。 A 类:指近海海面、海岸、湖岸、海岛及沙漠地区; B 类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C 类:指有密集建筑群的城市市区;

D 类:指有密集建筑群且房屋较高的城市市区; 风荷载高度变化系数μ z 0.24 )0.44 0.6 地面粗糙类别 高度( m) A B C D 5 1.17 1.00 0.74 0.62 10 1.38 1.00 0.74 0.62 15 1.52 1.14 0.74 0.62 计算公式 20 1.63 1.25 0.84 0.62 A 类地区=1.379(z/10) 30 1.80 1.42 1.00 0.62 B 类地区= (z/10) 0.32 40 1.92 1.56 1.13 0.73 C 类地区=0.616(z/10 50 2.03 1.67 1.25 0.84 D 类地区=0.318(z/10) 60 2.12 1.77 1.35 0.93 70 2.20 1.86 1.45 1.02 80 2.27 1.95 1.54 1.11 90 2.34 2.02 1.62 1.19 100 2.40 2.09 1.70 1.27 150 2.64 2.38 2.03 1.61

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1 风荷载标准值的计算方法 幕墙属于外围护构件, 按建筑结构荷载规范 (GB50009-2001 2006 年版)计算: W k =β gz μ Z μ SI w ) ……7.1.1-2[GB50009-2001 2006 年版] 上式中: W k :作用在幕墙上的风荷载标准值(MPa ); Z :计算点标高: 15.6m ; μ S1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数 μ S1: 一、外表面 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2 或 0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。 根据风洞试验结果和国外的有关资料, 在上述区域 风吸力系数可取 - 1.8 ,其余墙面可考虑 -1.0 ,由于围护结构有开启的可能, 所以 还应考虑室内压 -0.2 。 β gZ =K(1+2μ f ) 其中 K 为地面粗糙度调整系数, μ f 为脉动系数 A 类场地: β gZ =0.92 × (1+2 μ f ) 其中: μ f =0.387×(Z∕10) -0.12 B 类场地: β gZ =0.89× (1+2μ f ) 其中: μ f =0.5(Z∕10) -0.16 C 类场地: β gZ =0.85× (1+2μ f ) 其中: μ f =0.734(Z∕10) -0.22 D 类场地: β gZ =0.80×(1+2μ f ) 其中: μ f =1.2248(Z∕10) -0.3 类场地: 类场地: 类场地: 对于 B 类地形, μ z =1.000× (Z∕10) 0.24 μ Z =1.379× (Z∕10) 0.24 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 μ Z =(Z∕10) 0.32 当 Z>350m 时,取 Z=350m 当 Z<10πi 时,取 Z=10m 0.44 μ Z =0.616× (Z∕10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15πi 时,取 Z=15m μ Z =0.318× (Z∕10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30πi 时,取 Z=30m 15.6m 高度处风压高度变化系数: 0.32=1.1529 按表 7.3.1 采用; 取-1.0 取-1.8 β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 对于B 类地形,15.6m 高度处瞬时风压的阵风系数: β gz =0.89 × (1+2 × (0.5(Z∕10) -0' 1δ ))=1.7189 μ Z :风压咼度变化系数; 根据不同场地类 型 , 按以下公式计算: 类场地:

相关文档