文档库 最新最全的文档下载
当前位置:文档库 › 七上数学3.2解一元一次方程(2)罗希权20141215

七上数学3.2解一元一次方程(2)罗希权20141215

七上数学3.2解一元一次方程(2)罗希权20141215
七上数学3.2解一元一次方程(2)罗希权20141215

龙泉中学集体备课案

第32课时 用等式的性质求一元一次方程的解

第32课时用等式的性质求一元一次方程的解 【学习目标】: ①了解一元一次方程的解的概念,会检验一个数是否一元一次方程的解; ②会利用等式的两个性质求一元一次方程的解。 【教学过程】: 一、【学】 1、观察上图说说按照箭头的方向,是根据等式的哪个性质进行了怎样的变形? 2、检验一下x=19是方程①,②,③的解吗?x=3是方程①,②,③的解吗? 3、思考:如果我们见到形如①,②,③的一元二次方程,如何求出它们的解呢? 二、【导】阅读P82 用等式的性质求方程的解 例1:利用等式性质解下列方程。 (1) x+5=26 (2) 2x=42 解:两边都减7,得:x +5-5=26-5 解:两边都_______,得:_______________ 于是 x=21 于是____________ (3) 2x+10=52 解:两边都_______,得:___________ 化简得 两边都_______,得:___________ 所以______________ x= 解方程:求出使方程中等号左右两边相等的未知数的值,即把方程转化为“x=a(常数)的形式。关键:①左边去数字;②右边去x; ③左边x的系数化“1”。 三、【升】 1、利用等式性质解下列方程 (1)、 1 51 3 x --=

2、课本P83页练习(1)x-5=6 (2)0.3x=45 (3)5x+4=0 (4)2-1 3 4 x= 2、课堂小结: 四、【布置作业】 1、课本P83页习题3.1第4题; 五、小测《课堂小测本》A32 1、下列方程中,解为4的方程是() A、2x-1=9 B、8-3x=4 C、1 323 2 x x +=- D、2x+1=3x+5 2、利用等式的性质解下列方程: (1)x-5=5 (2) 2 6 3 y =-

人教版七级上数学一元一次方程练习题

一元一次方程练习题 一.选择 1.在a -(b -c )=a -b +c ,4+x =9,C =2πr ,3x +2y 中等式的个数为( ). (A)1个 (B)2个 (C)3个 (D)4个 2.在方程6x +1=1,,32 2= x 7x -1=x -1,5x =2-x 中解为3 1的方程个数是( ). (A)1个 (B)2个 (C)3个 (D)4个 3.根据等式性质5=3x -2可变形为( ). (A)-3x =2-5 (B)-3x =-2+5 (C)5-2=3x (D)5+2=3x 4.下列方程中,解是x =4的是( ). (A)2x +4=9 (B) 4322 3 -=+x x (C)-3x -7=5 (D)5-3x =2(1-x ) 5.已知关于y 的方程y +3m =24与y +4=1的解相同,则m 的值是( ). (A)9 (B)-9 (C)7 (D)-8 6.方程 3 1 41=x 正确的解是( ). (A)x =12 (B)12 1=x (C)34=x (D)43 =x 7.将3(x -1)-2(x -3)=5(1-x )去括号得( ) (A)3x -1-2x -3=5-x (B)3x -1-2x +3=5-x (C)3x -3-2x -6=5-5x (D)3x -3-2x +6=5-5x 8.已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ). (A)-2 (B)0 (C) 3 2 (D) 2 3 9.已知y =1是方程y y m 2)(31 2=--的解,关于x 的方程m (x -3)-2=m (2x -5)的解是( ) (A)x =10 (B)x =0 (C)3 4= x (D)4 3= x 10.方程6 1 513-- =-x x 的解为( ) (A) 37 (B) 3 5 (C) 3 35 (D) 3 37 11.若关于x 的方程)1(42 2-=+x a x 的解为x =3,则a 的值为( ). (A)2 (B)22 (C)10 (D)-2 12.方程52 1 =-- x x 的解为( ). (A)-9 (B)3 (C)-3 (D)9 13.方程,4 17 2753+-=+-x x 去分母,得( ). (A)3-2(5x +7)=-(x +17) (B)12-2(5x +7)=-x +17 (C)12-2(5x +7)=-(x +17) (D)12-10x +14=-(x +17)

初中数学一元一次方程(1)

第三章 一元一次方程 学习要求 了解从算式到方程是数学的进步.理解方程、方程的解和解方程的概念,会判断一个数是否为方程的解.理解一元一次方程的概念,能根据问题,设未知数并列出方程.初步掌握等式的性质1、性质2. 一、填空题 1.表示_______关系的式子叫做等式;含有未知数的_______叫做方程. 2.使方程左、右两边的值相等的_______叫做方程的解.求_______的过程叫做解方程. 3.只含有_______未知数,并且未知数的_______的_______叫做一元一次方程. 例题1.已知:y 1=4x -3,y 2=12-x ,当x 为何值时,(1)y 1=y 2;(2)y 1与y 2互为相反数;(3)y 1比y 2小4. 一、选择题 1.下列方程变形中,正确的是( ). (A)由4x +2=3x -1,得4x +3x =2-1 (B)由7x =5,得7 5=x (C)由 ,02 =y 得y =2 (D)由 ,115 =-x 得x -5=1 2.下列方程中,解是x =4的是( ). (A)2x +4=9 (B) 4322 3 -=+x x (C)-3x -7=5 (D)5-3x =2(1-x ) 3.已知关于y 的方程y +3m =24与y +4=1的解相同,则m 的值是( ). (A)9 (B)-9 (C)7 (D)-8 4.求方程的解: (1) ;‘)5,15(1853-===-x x x (2)).6 1 ,41(14126110312==-+=+--x x x x x 5.已知(m 2-1)x 2-(m -1)x +8=0是关于x 的一元一次方程,它的解为n . (1)求代数式200(m +n )(n -2m )-3m +5的值; (2)求关于y 的方程m |y |=n 的解. 二、解答题 1.k 为何值时,多项式x 2-2kxy -3y 2+3xy -x -y 中,不含x ,y 的乘积项.

七年级上册解一元一次方程(去分母)

3.3解一元一次方程(去分母) 【目标导航】 1.掌握有分母的一元一次方程的解法; 2.通过列方程解决实际问题,感受到数学的应用价值; 3.培养分析问题、解决问题的能力. 【要点梳理】 知识点: 有分母的一元一次方程的解法 引例:解方程 33712132=+++x x x x 解: 注:1.根据 ,先去掉等式两边的分母,然后再去括号、移项、合并、系数化为1 2.本题用 的思想,将有分母的方程转化为已学的无分母的方程。 例1 解方程53210232213+--=-+x x x 注:①所选的乘数是所有的分母的最小公倍数;②用这个最小公倍数去乘方程两边时,不要③ 练习1:解下列方程 ()31232131--=-+x x x ()5 1241212232+--=-+x x x 注:①小结解一元一次方程的步骤;②解一元一次方程每步的依据。 例2 解方程1 03.02.017.07 .0=--x x

注:⑴先用分数的基本性质把分母的小数转化为整数,同时变化的是一个分数的分子、分母,其它项不发生变化。⑵去分母是用的等式性质2,等号两边的每一项都乘以所有分母的最小公倍数。 练习2:解下列方程 (1)4.15 .032.04=--+x x (2)13.02.18.12.06.02.1=-+-x x 【课堂操练】 解方程:⑴34 23- =-x x ⑵1352=--x x ⑶() 13526411 3++=--x x ⑷()()113722134++=-y y ⑸63 3252212+-+=+--x x x x ⑹??? ??+-=-+-4211323623x x x ⑺15.013.021.0x x +=- ⑻3106.001.001.02.01.0-=--x x x

七年级数学一元一次方程应用题复习题及答案

一元一次方程应用题 1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案. 2.和差倍分问题 增长量=原有量×增长率现在量=原有量+增长量 3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h= r2h ②长方体的体积 V=长×宽×高=abc 4.数字问题 一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a,百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.市场经济问题 ×100% (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润 商品成本价 (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 7.工程问题:工作量=工作效率×工作时间 完成某项任务的各工作量的和=总工作量=1 8.储蓄问题 每个期数内的利息 利润= ×100% 利息=本金×利率×期数 本金 1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作? 2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

七年级上册数学一元一次方程测试题及答案

一元一次方程测试卷 一、选择题(每小题3分,共36分) 1.在方程23=-y x ,021 =-+x x ,2121=x ,0322=--x x 中一元一次方程的 个数为( )A .1个 B .2个 C .3个 D .4个 2.解方程 3 1 12-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3.方程x x -=-22的解是( ) A .1=x B .1-=x C .2=x D .0=x 4.下列两个方程的解相同的是( ) A .方程635=+x 与方程42=x B .方程13+=x x 与方程142-=x x C .方程021=+ x 与方程02 1 =+x D .方程5)25(36=--x x 与3156=-x x 5.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。若经过x 个月后,两厂库存钢材相等,则x 是( ) A .3 B .5 C .2 D .4 6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。 A .80元 B .85元 C .90元 D .95元 7.下列等式变形正确的是( ) A.如果ab s =,那么a s b = ; B.如果x=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y 8、已知:()2 135m --有最大值,则方程5432m x -=+的解是( ) 7979 B C D 9797 A --、、、、 9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱( ) A 17200元, B 16000元, C 10720元, D 10600元; 10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停

六年级数学一元一次方程

1 页,共 1页 一元一次方程 一、选择题 1.在方程23=-y x ,021 =-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为 ( ) A .1个 B .2个 C .3个 D .4个 2.解方程3 1 12-=-x x 时,去分母正确的是——————————————————( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3.方程x x -=-22的解是————————————————————————( ) A .1=x B .1-=x C .2=x D .0=x 4.下列两个方程的解相同的是———————————————————————( ) A .方程635=+x 与方程42=x B .方程13+=x x 与方程142-=x x C .方程021=+ x 与方程02 1=+x D .方程5)25(36=--x x 与3156=-x x 5.下列等式变形正确的是————————————————————————( ) A.如果ab s =,那么a s b = ; B.如果x=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y 6.下列图形都是由同样大小的长方形按一定的规律组成,其中第(1)个图形的面积为2cm 2 ,第 (2)个图形的面积为8 cm 2,第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为( ) A .196 cm 2 B .200 cm 2 C .216 cm 2 D . 256 cm 2 二、填空题 1.比a 的3倍大5的数是9,列出方程式是__________________。 2.如果0631 2=+--a x 是一元一次方程,那么=a 。 3. 若x =2是方程2x -a =7的解,那么a =____ ___ 4.如果)12(3 1 2 5+m b a 与)3(21 22 1 +-m b a 是同类项,则=m 。 5.某校教师假期外出考察4天,已知这四天的日期之和是42,那么这四天中最后一天的日期是 ________. 6.已知当1x =时,2 2ax bx +的值为3,则当2x =时,2 ax bx + 的值为________. 7、已知1-= , -= , -= , -= … 根据这些等式求值. 三、解答题 1解方程 (1)x x -=+212 (2) 2(x-1)-(4x-1)=1 (3)3)31(35=--y (4)14 2 312-+=-y y (5) 12136x x x -+- =- (6)35 .01 2.02x =+--x 20.若a 与2a-9互为相反数,求a 的值。 (6分)

初一七年级一元一次方程30题(含答案解析)

初一七年级一元一次方程30题(含答案解析) 一.解答题(共30小题) 1.(2005?宁德)解方程:2x+1=7 2. 3.(1)解方程:4﹣x=3(2﹣x); (2)解方程:. 4.解方程:. 5.解方程 (1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣. 6.(1)解方程:3(x﹣1)=2x+3; (2)解方程:=x ﹣. 7.﹣(1﹣2x)=(3x+1) 8.解方程: (1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:. 10.解方程: (1)4x﹣3(4﹣x)=2; (2)(x﹣1)=2﹣(x+2). 11.计算: (1)计算: (2)解方程: 12.解方程: 13.解方程: (1) (2) 14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2 (3)[3(x ﹣)+]=5x﹣1 15.(A类)解方程:5x﹣2=7x+8; (B 类)解方程:(x﹣1)﹣(x+5)=﹣; (C 类)解方程:. 16.解方程 (1)3(x+6)=9﹣5(1﹣2x) (2) (3) (4) 17.解方程: (1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x ﹣﹣3 18.(1)计算:﹣42×+|﹣2|3×(﹣)3 (2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2; (4)解方程:. 19.(1)计算:(1﹣2﹣4)×; (2 )计算: ÷;(3)解方程:3x+3=2x+7; (4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1; (2). 21.解方程:(x+3)﹣2(x﹣1)=9﹣3x. 22.8x﹣3=9+5x. 5x+2(3x﹣7)=9﹣4(2+x). . . 23.解下列方程: (1)0.5x﹣0.7=5.2﹣1.3(x﹣1); (2)=﹣2.

浙教版数学七年级上册第7讲 一元一次方程

第7讲 一元一次方程 知识理解 1、下列由等式的性质进行的变形,错误的是( ) A 、如果b a =,那么33+=+b a B 、如果b a =,那么33-=-b a C 、如果b a =,那么a a 32= D 、如果a a 32=,那么3=a 2、下列方程中:①312+=-x x ;②21=-x ;③123222=+;④3-x ;⑤6=+y x .其中是一元一次方程的有( ) A 、1个 B 、2个 C 、3个 D 、4个 3、已知方程x m x 743-=+的解为1=x ,则m 的值为( ) A 、- 2 B 、- 5 C 、6 D 、- 6 4、若y x =,下列各式中:①33-=-y x ;②55+=+y x ;③88-=-y x ;④y x x +=2;其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 5、下列等式变形:①如果y x =,那么ay ax = B ;②如果y x =,那么a y a x = ;③如果ay ax =,那么y x = ;④如果a y a x = ,那么y x =.其中正确的是( ) A 、③④ B 、①② C 、①④ D 、②③ 6、下列说法:①在等式42=x 两边都加上2,可得等式64=x ;②在等式42=x 两边都减去2,可得等式2=x ;③在等式42=x 两边都乘以 2 1 ,等式变为2=x ;④等式两边都除以同一个数,等式仍然成立.其中正确的说法有( ) A 、1个 B 、2个 C 、3个 D 、4个 7、中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球的质量等于( )个正方体的重量. A 、2 B 、3 C 、4 D 、5 8、已知a 是任意有理数,在下面各题:(1)方程0=ax 的解是1=x ;(2)方程a ax =的解是1=x ;(3)方程1=ax 的解是a x 1 = ;(4)方程a x a =的解是1±=x .其中结论正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 9、如果652=-x ,那么_________2=x ,其中依据是__________________________. 10、若方程()0122 =+++c bx x a 是关于x 的一元一次方程,则字母系数a 、b 、c 满足的条件是 _____________________________.

(完整版)初一数学一元一次方程练习题(含答案)

初一数学一元一次方程练习题(含答案) 一、选择题(每小题3分,共30分) 1.下列方程中,属于一元一次方程的是( ) A. B. C D. 2.已知ax=ay,下列等式中成立的是() A.x=y B.ax+1=ay-1 C.ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价() A.40% B.20?5%D.15% 4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是() A.a米 B.(a+60)米 C.60a米 D.(60+2a)米 5.解方程时,把分母化为整数,得()。 A、B、C、D、 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是() A.10 B.52 C.54 D.56 千米1小时还有3一条山路,某人从山下往山顶走7.

才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为() A.x-1=5(1.5x) B.3x+1=50(1.5x) C.3x-1=(1.5x) D.180x+1=150(1.5x) 8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为( ) A.约700元 B.约773元 C.约736元 D.约865元 9.下午2点x分,钟面上的时针与分针成110度的角,则有() A. B. C. D. 10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为() A.15% B.17% C.22% D.80% 二、填空题(每小题3分,共计30分) 11.若x=-9是方程的解,则m= 。 12.若与是同类项,则m= ,n= 。 的代数y用含,y=得y的代数式表示x用含方程13. 式表示x得x=。 14.当x=________时,代数式与的值相等. 15.在400米的环形跑道上,男生每分钟跑320米,女生每

七年级上册数学一元一次方程测试题(带答案)

《一元一次方程》单元测验 一. 选择题(每题3分,共24分) 1.下列方程是一元一次方程的是( ). A.3=-y x B.x x 26=- C.13=x D.y x 3= 2.2-=x 是下列哪个方程的解( ). A.21=+x B.02=-x C. 121=x D.1322=+-x 3.下列方程变形过程正确的是( ). A.由761-=+x x 得176-=-x x B.由3)1(24=--x 得3224=--x C.由0532=-x 得032=-x D.x x 2 3921-=+由得92=x 4.方程731=-y 的解是( ). A.21 -=y B.2 1=y C.2-=y D.2=y 5. 若2=x 是关于x 的方程0132=-+m x 的解,则m 的值为( ). A. -1 B .0 C. 1 D. 31 6. 当x =4时,式子5(x +b )-10与bx +4的值相等,则b 的值为( ). A .-7 B .-6 C .6 D .7 7.今年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( ) . A .2631830+=-x x B . 2631830+=+x x C .2631830-=-x x D . 2631830-=+x x 8. 小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ). A .15号 B .16号 C .17号 D .18号 二.填空题(每题3分,共24分) 9.当.____=x 时,代数式53-x 与2x 的值相等. 10.已知一个一元一次方程的解是2,则这个一元一次方程是 (只写一个即可). 11.若032=-++y x ,则y x +=_____. 12.某种商品的进价是400元,利润率是8%,则这种商品的标价是________元.

中考数学一元一次方程

A.3 2011年全国各地中考数学试卷试题分类汇编第4章一元一次方程以及应用 一、选择题 1.(2011山东菏泽,7,3分)某种商品的进价为800元,出售标价为1200元,后来由于 该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 A.6折B.7折C.8折D.9折 【答案】B 2.(2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有() (A)54盏(B)55盏(C)56盏(D)57盏 【答案】B 3.(2011甘肃兰州,11,4分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为 A.x(x-1)=2070 C.2x(x+1)=2070B.x(x+1)=2070 D. x(x-1) =2070 2 【答案】A 4.(2011重庆江津,3,4分)已知3是关于x的方程2x-a=1的解,则a的值是() A.-5 B.5 C.7 D.2 【答案】B· 5.(2011湖北荆州,6,3分)对于非零的两个实数a、b,规定a?b= 1?(x+1)=1,则x的值为 111 B.C.D.- 2322 【答案】D 6. 二、填空题11 -,若b a

. 1. (2011 四川重庆,16,4 分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种 盆景由 15 朵红花、24 朵黄花和 25 朵紫花搭配而成.乙种盆景由 10 朵红花、12 朵黄花 搭配而成.丙种盆景由 10 朵红花、18 朵黄花和 25 朵紫花搭配而成.这些盆景一共用 了 2900 朵红花,3750 朵紫花,则黄花一共用了 朵. 【答案】4380 2. (2011 福建泉州,10,4 分)已知方程| x | = 2 ,那么方程的解是 . 【答案】 x = 2,x = -2 ; 1 2 3. (2011 湖南邵阳,13,3 分)请写出一个解为 x=2 的一元一次方程:_____________。 【答案】2x-2=2.(答案不唯一) 4. (2011 重庆市潼南,15,4 分)某地居民生活用电基本价格为 0.50 元/度.规定每月基本用 电量为 a 度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在 5 月份 用电 100 度,共交 电费 56 元,则 a = 度. 【答案】40 5. ( 2011 广东湛江 15,4 分)若 x = 2 是关于 x 的方程 2 x + 3m -1 = 0 的解,则的值 为 . 【答案】 -1 6. (2011 湖南湘潭市,13,3 分)湘潭历史悠久,因盛产湘莲,被誉为“莲城” 李红买了 8 个莲蓬,付 50 元,找回 38 元,设每个莲蓬的价格为 x 元,根据题意,列出方程为 ______________. 【答案】50-8x=38 7. 三、解答题 1. (2011 浙江省舟山,21,8 分)目前“自驾游”已成为人们出游的重要方式.“五一” 节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴 下高速,其间用了 4.5 小时;返回时平均速度提高了 10 千米/小时,比去时少用了半小 时回到舟山. (1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表: 嘉兴 东海 舟山

新北师大版七年级解一元一次方程50道练习题

解一元一次方程50道练习题(含答案) 1、【基础题】解方程: (1)712=+x ; (2)825=-x ; (3)7233+=+x x ; (4)735-=+x x ; (5)914211-=-x x ; (6)2749+=-x x ; (7)32141 +=-x x ; (8)162 3+=x x . 1.1、【基础题】解方程: (1)162=+x ; (2)9310=-x ; (3)8725+=-x x ; (4)2 53231+=-x x ; (5)x x -=-324; (6)4227-=+-x x ; (7)152+=--x x ; (8)23 312+=--x x . 2、【基础题】解方程: (1)475.0=)++(x x ; (2)2-41)=-(x ; (3)511)=-(x ; (4)212)=---(x ; (5))12(5111+=+x x ; (6)32034)=-(-x x . 2.1、【基础题】解方程: (1)5058=)-+(x ; (2)293)=-(x ; (3)3-243)=+(x ; (4)2-122)=-(x ; (5)443212+)=-(x x ; (6)3 232 36)=+(-x ; (7)x x 2570152002+)=-(; (8)12123)=+(x . 3、【综合Ⅰ】解方程: (1) 452x x =+; (2)3423+=-x x ; (3)) -()=+(3271 131x x ; (4))-()=+(131141x x ; (5)142312-+=-x x ; (6)) +(-)=-(2512121x x . (7))+()=+(20411471x x ; (8)) -(-)=+(73 1211551x x . 3.1、【综合Ⅰ】解方程: (1)432141=-x ; (2) 83457=-x ; (3)815612+= -x x ; (4)62 9721-=-x x ; (5)1232151)=-(-x x ; (6)1615312=--+x x ; (7)x x 2414271-)=+(; (8)25 9300300102200103 )=-()-+(x x . 4、【综合Ⅰ】解方程: (1)307221159138)=-()--()--(x x x ; (2) 5 1 413121-=+x x ; (3)13.021.02.015.0=-+--x x ; (4) 3.01-x -5 .02+x =12.

七年级数学上册_一元一次方程测试卷及答案

一元一次方程 测试卷 一、填空题(每题3分,共30分) 1.关于x 的方程(k-1)x-3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________. 3.若x=3是方程2x-10=4a 的解,则a=______. 4.(1)-3x+2x=_______. (2)5m-m-8m=_______. 5.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 6.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm . 7.某服装成本为100元,定价比成本高20%,则利润为________元. 8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则 列出的方程为______. 9.当m 值为______时,453 m 的值为0. 10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,?现我军以7千 米/小时的速度追击______小时后可追上敌军. 二、选择题(每题3分,共30分) 11.下列说法中正确的是( ) A .含有一个未知数的等式是一元一次方程 B .未知数的次数都是1次的方程是一元一次方程 C .含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程 D .2y-3=1是一元一次方程 12.下列四组变形中,变形正确的是( ) A .由5x+7=0得5x=-7 B .由2x-3=0得2x-3+3=0 C .由6x =2得x=13 D .由5x=7得x=35 13.下列各方程中,是一元一次方程的是( )

A .3x+2y=5 B .y 2-6y+5=0 C .13x-3=1x D .3x-2=4x-7 14.下列各组方程中,解相同的方程是( ) A .x=3与4x+12=0 B .x+1=2与(x+1)x=2x C .7x-6=25与715 x -=6 D .x=9与x+9=0 15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下 的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( ) 44.1.120201*********.1.1202012202012 x x x x A B x x x x C D =--=+-=++=-+ 16.(2006,江苏泰州)若关于x 的一元一次方程 2332x k x k ---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .-1311 D .0 17.一条公路甲队独修需24天,乙队需40天,若甲、?乙两队同时分别从两端开始修,( ) 天后可将全部修完. A .24 B .40 C .15 D .16 18.解方程1432 x x ---=1去分母正确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1 C .2(x-1)-3(4-x )=6 D .2x-2-12-3x=6 19.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,?已知轮 船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( ) A .280千米,240千米 B .240千米,280千米 C .200千米,240千米 D .160千米,200千米 20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,?于

32解一元一次方程(一)

3.2 解一元一次方程 ————合并同类项与移项 第一课时 3.2.1合并同类项 第 周星期 班别 姓名 学号 (一) 学习目标:利用合并同类项解一元一次方程 (二)新知探索: 问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,?今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机? 分析:设前年这个学校购买了x 台计算机,那么去年购买 台,则今年购买了 台. 前年购买量+去年购买量+今年购买量= ↓合并 归纳解方程步骤:① ② ↓系数化为1 上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数. 例:解方程7x-2.5x+3x-1.5x=-15×4-6×3 解:合并同类项,得 系数化为1,得 (三)练习巩固 1、解下列方程: (1)925=-x x (2)72 32=+x x (3)105.03=+-x x 2、足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少? 3、某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1?页,?还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解) 4、解下列方程

(1)55.25.47-=-x x (2)132243+?-=+-x x x (3))(1132252-?+?=- --x x x (4) 1.54316.251.42?-?-=+-+-x x x x 二、解答题. 1.育红小学现有学生320人,比1995年学生人数的23 少150人,问育红小学1995年学生人数是多少? 2.甲、乙两地相距460千米,A 、B 两车分别从甲、乙两地开出,?A?车每小时行驶60千米,B 车每小时行驶48千米. (1)两车同时出发,相向而行,出发多少小时两车相遇? *(2)两车相向而行,A 车提前半小时出发,则在B 车出发后多少小时两车相遇?相遇地点距离甲地多远? 四、课堂小结 1、本节课的两个问题的相等关系都是:“总量=各部分量的和”.这是一个基本的相等关系. 2、合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x 或-x 的系数分别是1,-1,而不是0. 第二课时 3.2.2 移项 第 周星期 班别 姓名 学号

初一数学一元一次方程(

2013-2014学年度第一学期初一数学《一元一次方程》测试卷 姓名: 班级: 分数: 学号: 一、选择题(每题5分) 1、一元一次方程2x=4的解是( ) A .x=1 B .x=2 C .x=3 D .x=4 2、下列各式中是一元一次方程的是( )。 A 1232x y -=- B .2341x x x -=- C .1123y y -=+ D .12 26 x x -=+ 3、.若a=b ,则下列等式不一定成立的是( ) A .a+5 = b+5 B .5-a =5-b C .2a = 4b D .0.25a+c =1 4b+c 4、、根据“x 的3倍与5的和比x 的31 多2”可列方程( )。 A .3525x x +=- B .3523x x +=+ C .3(523x x +=-) D .3(523x x +=+) 5、把方程1 123x x --=去分母后,正确的是( )。 A .32(1)1x x --= B .32(1)6x x --= C .3226x x --= D .3226x x +-= 6、下列变形过程中,属于移项的是( ). A .由3x=2,得x=32 B .由5x = 4,得x=20 C .由4x+5=0,得5-4x=0 D .由2x+1=0,得2x=-1 二、填空题(每题5分) 1、关于x 的方程ax-5=17+a 的解是2,则a= . 2、某件商品进价100元,售价150元,则其利润是 元,利润率是 . 3、当x =_______时,x 的3倍与1x -互为相反数. 4、若单项式2a m+1b 3与-a 2b n 是同类项,则 m=________,n=_________. 5、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 升水。 6、一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是 . 三、解下列方程(每题5分) (1)7x +6=8-3x (2)4x -3(20-x)= 12-x (3) 23312+-=-x x (4) 1615312=--+x x 四、列方程解应用题(每题10分) 1、某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道. 2、将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个半径为100毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(π取3). 3、国庆长假期间,某商场决定开展促销活动。某件衣服标价132元,如果以九折降价出售,仍可获利10%。问此衣服的进价是多少? 4、为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?

(完整版)人教版七年级数学解一元一次方程

七年级数学解一元一次方程 【典型例题】 类型一、解较简单的一元一次方程 例1.解下列方程 -5x+6+7x=1+2x-3+8x 类型二、去括号解一元一次方程 例2.解方程:类型三、解含分母的一元一次方程 例3.解方程: 434343 1 623 x x x +++ ++=.类型四、解较复杂的一元一次方程 例4. 解方程: 112 [(1)](1) 223 x x x --=- 类型五、解含绝对值的方程 例5.解方程|x|-2=0 类型六、解含字母的方程 例6.解方程ax-2=0 ()() 1221107 x x +=+()()() 232123 x x -+=-

巩固练习 一、选择题 1.下列方程解相同的是 ( ). A .方程536x +=与方程24x = B .方程31x x =+与方程241x x =- C .方程102x + =与方程102 x += D 方程63(52)5x x --=与方程6153x x -= 2.下列解方程的过程中,移项错误的是( ). A .方程2x+6=-3变形为2x =-3+6 B .方程2x -6=-3变形为2x =-3+6 C .方程3x =4-x 变形为3x+x =4 D .方程4-x =3x 变形为x+3x =4 3. 方程 11 43 x =的解是 ( ) . A .12x = B .1 12 x = C .43x = D .3 4 x = 4.对方程2(2x -1)-(x -3)=1,去括号正确的是 ( ). A .4x -1-x -3=1 B .4x -1-x+3=1 C .4x -2-x -3=1 D .4x -2-x+3=1 5.方程1 302 x -- =可变形为( ). A .3-x -1=0 B .6-x -1=0 C .6-x+1=0 D .6-x+1=2 6.3x -12的值与1 3 - 互为倒数,则x 的值为( ). A .3 B .-3 C .5 D .-5 7.解方程21101136x x ++-=时,去分母,去括号后,正确结果是( ). A .4x+1-10x+1=1 B .4x+2-10x -1=1 C .4x+2-10x -1=6 D .4x+2-10x+1=6 8.某道路一侧原有路灯106盏,相邻两盏灯的距离为 36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯 有( ) A .54盏 B .55盏 C .56盏 D .57盏 二、填空题 9.(1)方程2x+3=3x -2,利用________可变形为2x -3x =-2-3,这种变形叫________. (2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________. 10.方程2x -kx+1=5x -2的解是x =-1,k 的值是_______. 11.如果式子2x+3与x -5的值互为相反数,那么x =________. 12.将方程 11111 24396 x x x x +++=去分母后得到方程________. 13.在有理数范围内定义一种运算“※”,其规则为a ※b =a -b .根据这个规则,求方程(x -2)※1=0的解为________. 14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s . 三、解答题 15.解下列方程 (1)4(2x -1)-3(5x+2)=3(2-x ) (2)12 323 x x x ---=- (3) 0.10.21 30.020.5 x x -+-= 16.式子12-3(9-y )与5(y -4)的值相等,求2y (y 2+1)的值.

人教版七年级数学上册 3.2解一元一次方程(2)导学案

3.2解一元一次方程(2) 一、导学 学习目标: 1.理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形的化归思想. 2. 能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值. 学习重点: 确定实际问题中的相等关系,建立形如 ax+b=cx+d的模式的方程,利用移项与合并同类项解一元一次方程. 学习难点:准确确定相等关系并列出一元一次方程,正确地进行移项并解出方程.自主学习,研读教材 教科书第88~89页: 问题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生? 思考: (1)你认为题中涉及到哪些数量关系和相等关系? (2)你认为引进什么样的未知数,根据这样的相等关系列出怎样的方程? 问题2、该方程与上节课的方程x+2x+4x=140在结构上有什么不同? 问题3、怎样才能将方程3x+20=4x-25转化为x=a的形式呢? 二、探究 1、将方程化为3x-4x=﹣25﹣20的依据是什么?这种变形叫什么?移项起什么作用?

2、例3:解方程 (1) (2) 三、检测 1.教科书第90页第1题 2.天平的左边放2枚硬币和13克砝码,右边放6枚硬币和5克砝码,此时天平恰好平衡.每枚硬币的质量是多少克? 四、拓展 1、课堂小结: ⑴本节课学习了哪些主要内容? ⑵移项的依据是什么?起到什么作用?移项时应该注意什么问题? ⑶解一元一次方程的步骤是什么? ⑷用方程来解决实际问题的关键是什么? 2、知识延伸 约公元825年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本为《对消与还原》.“对消”与“还原”是什么意思呢? 37322.x x +=-3 312 x x -=+

相关文档
相关文档 最新文档