文档库 最新最全的文档下载
当前位置:文档库 › 什么叫显示动力学,什么叫隐式动力学分析

什么叫显示动力学,什么叫隐式动力学分析

什么叫显示动力学,什么叫隐式动力学分析
什么叫显示动力学,什么叫隐式动力学分析

1、显式算法基于动力学方程,因此无需迭代;而静态隐式算法基于虚功原理,一般需要迭代计算

2、显式算法最大优点是有较好的稳定性。

动态显式算法采用动力学方程的一些差分格式(如广泛使用的中心差分法、线性加速度法、Newmark法和wilson法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。因此需要的内存也比隐式算法要少。并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥, 因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。

静态显式法基于率形式的平衡方程组与Euler向前差分法,不需要迭代求解。由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。为了减少相关误差,必须每步使用很小的增量。

3、隐式算法

隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这个过程需要占用相当数量的计算资源、磁盘空间和内存。该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。

4、求解时间

使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元的尺寸成反比;

应用隐式方法,经验表明对于许多问题的计算成本大致与自由度数目的平方成正比;

因此如果网格是相对均匀的,随着模型尺寸的增长,显式方法表明比隐式方法更加节省计算成本隐式求解法

将冲压成型过程的计算作为动态问题来处理后,就涉及到时间域的数值积分方法问题。在80年代中期以前,人们基本上使用牛曼法进行时间域的积分。根据牛曼法,位移、速度和加速度有着如下的关系:上面式子中,分别为当前时刻和前一时刻的位移,和为当前时刻和前一时刻的速度,和为当前时刻和前一时刻的加速度,β和γ为两个待定参数。由上式可知,在牛曼法中任一时刻的位移、速度和加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解。这个求解过程必须通过迭代和求解联立方程组才能实现。这就是通常所说的隐式求解法。隐式求解法可能遇到两个问题。一是迭代过程不一定收敛;二是联立方程组可能出现病态而无确定的解。隐式求解法的最大优点是它具有无条件稳定性,即时间步长可以任意大。

显式求解法

如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度和加速度关系:由上式可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。另外,只要将运动方程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。显式求解法的优点是它即没有收敛性问题,也不需求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。由于冲压成型过程具有很强的非线性,从解的精度考虑,时间步长也不能太大,这就在很大程度上弥补了显式求解法的缺陷。

在80年代中期以前显式算法主要用于高速碰撞的仿真计算,效果很好。自80年代后期被越来越广泛地用于冲压成型过程的仿真,目前在这方面的应用效果已超过隐式算法。显式算法在冲压成型过程的仿真中获得成功应用的关键,在于它不像隐式算法那样有解的收敛性问题。

显式算法和隐式算法,有时也称为显式解法和隐式解法,是计算力学中常见的两个概念,但是它们并没有普遍认可的定义,下面收集的一些理解。先看看一般对两种方法的理解和比较,

=============================================================

显式算法隐式算法

-------------------------------------------------------------

(01)适用问题动力学(动态)静力学(静态)

(02)阻尼人工阻尼数值阻尼

-------------------------------------------------------------

(03)每步求解方法矩阵乘法线性方程组

(04)大矩阵(总刚)否是

(05)数据存贮量小大

(06)每步计算速度快慢

(07)迭代收敛性无有

(08)确定解有确定解可能是病态无确定解

-------------------------------------------------------------

(09)时步稳定性有条件无条件

(10)时间步小大

(11)计算精度低高=============================================================

(01)是明显不对的,只是对两种方法的初级理解,(02)也是同样。下面要详细讨论这两点。

(03)是每一步求解的方法,(04)(05)(06)(07)(08)是由(03)所决定的,它们不是两种方法的基本特点。同样,(09)是时间步选择的方法,(10)(11)是由(09)所决定的。

通过(03)(09)可以得到两种方法的计算特点,显式算法是每一步求解为矩阵乘法,时间步选择为条件稳定;隐式算法是每一步求解为线性方程组求解,时间步选择为无条件稳定。

下面主要分析两种方法的应用范围。

在求解动力学问题时,将方程在空间上采用有限元法(或其他方法)进行离散后,变为常微分方程组[M]{..u}+[C]{.u}+[K]{u}={f}。求解这种方程的其中两种方法为,中心差分法和Newmark法。采用中心差分法解决动力学问题被称为显式算法,采用Newmark法解决动力学问题被称为隐式算法。

在求解动力学问题时,离散元法(也有其他方法)主要有两种思想:动态松弛法(向后时步迭代),静态松弛法(每一步要平衡)。动态松弛法是显式算法,静态松弛法是隐式算法。其中冲压成型就是动态松弛法的主要例子。

在求解静力学问题时,有时候将其看作动力学问题来处理而采用动态松弛法,这是显式算法。其中冲压成形就是主要例子。

最后总结,

=============================================================

显式算法隐式算法

-------------------------------------------------------------

(01)每步求解方法矩阵乘法线性方程组

(02)时步稳定性有条件无条件

-------------------------------------------------------------

(03)适用问题动力中心差分法动力Newmark法

动力动态松弛法动力静态松弛法静力动态松弛法

=============================================================

附加说明:

1)求解线性静力学问题,虽然求解线性方程组,但是没有时步的关系,所以不应将其看作隐式算

法。

2)求解非线性静力学问题,虽然求解过程需要迭代,或者是增量法,但是没有明显的时步问题,所以不应将其看作隐式算法。

3)静态松弛法,可以认为是将动力学问题看作静力学问题来解决,每一步达到静力平衡,需要数值阻尼。

4)动态松弛法,可以认为是将静力学问题或者动力学问题,分为时步动力学问题,采用向后时步迭代的思想计算。对于解决静力学问题时,需要人工阻尼。

ABAQUS(显式动力学)求解子弹侵彻

ABAQUS显式动力求解子弹侵入(基于米制国际单位)1. part模块 创建靶part-target及子弹part-bullet模型如上 2. 属性模块 2.1 柔性损伤 力学>>延性金属损伤>>柔性损伤: 2.31 - 3.33 0.001 2.31 -0.3333 0.001 2.18 -0.267 0.001 2.06 -0.2 0.001 1.95 -0.133 0.001 1.85 -0.0667 0.001 1.76 0 0.001 1.67 0.0667 0.001 1.59 0.133 0.001 1.52 0.2 0.001 1.46 0.267 0.001 1.4 0.333 0.001 1.35 0.4 0.001 1.3 0.467 0.001

1.26 0.533 0.001 1.23 0.6 0.001 1.2 0.667 0.001 1.15 0.73 0.001 1.06 0.851 0.001 0.945 1.02 0.001 0.816 1.24 0.001 0.685 1.51 0.001 0.202 3.33 0.001 子选项>>损伤演化>>能量>>指数>>最大>>断裂能>>500 2.2 剪切损伤 力学>>延性金属损伤>>剪切损伤: Ks=0.03 0.86 -10 0.001 0.86 1.7 0.001 0.859 1.72 0.001 0.86 1.73 0.001 0.865 1.75 0.001 0.874 1.77 0.001 0.886 1.78 0.001 0.901 1.8 0.001 0.921 1.81 0.001 0.944 1.83 0.001 0.97 1.85 0.001 1 1.86 0.001 1.04 1.88 0.001 1.08 1.89 0.001 1.12 1.91 0.001 1.17 1.92 0.001 1.22 1.94 0.001 1.28 1.96 0.001 1.34 1.97 0.001 1.41 1.99 0.001 1.48 2 0.001 1.56 2.02 0.001 1.56 10 0.001 子选项>>损伤演化>>能量>>指数>>最大>>断裂能>>500 2.3 密度 7800 2.4 弹性 2.1e11 0.3

热分析动力学

热分析动力学 一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 )(C )(B )(A g s s +→ (1) 其反应速度可以用两种不同形式的方程表示: 微分形式 )(d d αα f k t = (2) 和 积分形式 t k G =)(α (3) 式中:α――t 时物质A 已反应的分数; t ――时间; k ――反应速率常数; f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为: α αααd /)]([d 1 )('1)(G G f = = (4) k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示: )/exp(RT E A k -= (5)

式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。 方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式: t T T β0 += (6) 即: β/=t d dT 式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。 于是可以分别得到: 非均相体系在等温与非等温条件下的两个常用动力学方程式: )E/RT)f(A t d d αexp(/-=α (等温) (7) )/exp()(β d d RT E f A T -=αα (非等温) (8) 动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)

对于反应过程的DSC 曲线如图所示。在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。 二、 微分法 2.1 Achar 、Brindley 和Sharp 法: 对方程 )/exp()(β d d RT E f A T -=αα进行变换得方程: )/exp(d d )(βRT E A T f -=α α (9) 对该两边直接取对数有: RT E A T f - =ln d d )(βln αα (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T 时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E 、指前因子A 和机理函数f(α). 2.2 Kissinger 法

Abaqus-中显示动力学分析步骤

Abaqus-中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

Abaqus 中显示动力学分析步骤

准静态分析——ABAQUS/Explicit 准静态过程(guasi-static process) 在过程进行的每一瞬间,系统都接近于平衡状态,以致在任意选取的短时间dt内,状态参量在整个系统的各部分都有确定的值,整个过程可以看成是由一系列极接近平衡的状态所构成,这种过程称为准静态过程。无限缓慢地压缩和无限缓慢地膨胀过程可近似看作为准静态过程。准静态过程是一种理想过程,实际上是办不到的。 准静态原为一个热力学概念,在这里引用主要是指模型在加载的过程中任意时刻所经历的中间状态都可近似地视为静力状态,因此当加载过程进行得无限缓慢时,在各个时刻模型所处的状态就可近似地看作是静态,该过程便是准静态过程。准静态啮合过程仿真主要考虑的是弧齿锥齿轮副在加载时的接触状态,以及齿面和齿根的应力变化规律,其前提是不考虑齿轮副惯性的影响。 ABAQUS/Explicit准静态分析 显式求解方法是一种真正的动态求解过程,它的最初发展是为了模拟高速冲击问题,在这类问题的求解中惯性发挥了主导性作用。当求解动力平衡的状态时,非平衡力以应力波的形式在相邻的单元之间传播。由于最小稳定时间增量一般地是非常小的值,所以大多少问题需要大量的时间增量步。 在求解准静态问题上,显式求解方法已经证明是有价值的,另外ABAQUS/Explicit在求解某些类型的静态问题方面比ABAQUS/Standard更容易。在求解复杂的接触问题时,显式过程相对于隐式过程的一个优势是更加容易。此外,当模型很大时,显式过程比隐式过程需要较少的系统资源。 将显式动态过程应用于准静态问题需要一些特殊的考虑。根据定义,由于一个静态求解是一个长时间的求解过程,所以在其固有的时间尺度上分析模拟常常在计算上是不切合实际的,它将需要大量的小的时间增量。因此,为了获得较经济的解答,必须采取一些方式来加速问题的模拟。但是带来的问题是随着问题的加速,静态平衡的状态卷入了动态平衡的状态,在这里惯性力成为更加起主导作用的力。目标是在保持惯性力的影响不显著的前提下用最短的时间进行模拟。 准静态(Quasi-static)分析也可以在ABAQUS/Standard中进行。当惯性力可以忽略时,在ABAQUS/Standard中的准静态应力分析用来模拟含时间相关材料响应(蠕变、膨胀、粘弹性和双层粘塑性)的线性或非线性问题。关于在ABAQUS/Standard中准静态分析的更多信息,请参阅ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)的第6.2.5节“Quasi-static analysis”。 1. 显式动态问题类比 假设两个载满了乘客的电梯。在缓慢的情况下,门打开后你步入电梯。为了腾出空间,邻近门口的人慢慢地推他身边的人,这些被推的人再去推他身边的人,如此继续下去。这种扰动在电梯中传播,直到靠近墙边的人表示他们无法移动为止。一系列的波在电梯中传播,直到每个人都到达了一个新的平衡位置。如果你稍稍加快速度,你会比前面更用力地推动你身边的人,但是最终每个人都会停留在与缓慢的情况下相同的位置。 在快速情况下,门打开后你以很高的速度冲入电梯,电梯里的人没有时间挪动位置来重新安排他们自己以便容纳你。你将会直接地撞伤在门口的两个人,而其他人则没有受到影响。

abaqus接触动力学分析

部件模态综合法 随着科学和生产的发展,特别是航空、航天事业的发展,越来越多的大型复杂结构被采用,这使得建模和求解都比较困难。一方面,一个复杂结构势必引入较多的自由度,形成高维的动力学方程,使一般的计算机在内存和求解速度方面都难以胜任,更何况一般的工程问题主要关心的是较低阶的模态。仅为了获取少数的几个模态,必须为求解高维方程付出巨大的代价也是不合适的。另一方面,正是由于结构的庞大和复杂,一个完整的结构往往不是在同一地区生产完成的,可能一个结构的各个主要零部件不得不由不同的地区、不同的厂家生产。而且由于试验条件的限制只能进行部件的模态实验,而无法对整体结构进行模态实验。针对这些主要的问题,为了获得大型、复杂结构的整体模态参数,于是发展了部件模态综合法。 部件模态综合法又叫子结构耦合法。它的基本思想是按工程观点或结构的几何轮廓,并遵循某些原则要求,把完整的结构进行人为抽象肢解成若干个子结构(或部件);首先对子结构(或部件)进行模态分析,然后经由各种方案,把它们的主要模态信息(常为低阶主模态信息)予以保留,并借以综合完整结构的主要模态特征。它的主要有点是,可以通过求解若干小尺寸结构的特征问题来代替直接求解大型特征值问题。同时对各个子结构可分别使用各种适宜的数学模型和计算程序,也可以借助试验的方法来获得他们的主要模态信息。 对于自由振动方程在数学上讲就是固有(特征)值方程。特征值方程的解不仅给出了特征值,即结构的自振频率和特征矢量——振兴或模态,而且还能使结构在动力载荷作用下的运动方程解耦,即所谓的振型分解法或叫振型叠加法。因此,特征值问题的求解技术,对于解决结构振动问题来说吧,是非常重要的。 考虑阻尼的振型叠加法 振型叠加法的定义:将结构各阶振型作为广义坐标系,求出对应于各阶振动的结构内力和位移,经叠加后确定结构总响应的方法。 振型叠加法的使用条件: ?(1)系统应该是线性的:线性材料特性,无接触条件,无非线性几何效应。 ?(2)响应应该只受较少的频率支配。当响应中各频率成分增加时,例如撞击和冲击问题,振型叠加技术的有效性将大大降低。 ?(3)载荷的主要频率应在所提取的频率范围内,以确保对载荷的描述足够精确。 ?(4)由于任何突然加载所产生的初始加速度应该能用特征模态精确描述。 ?(5)系统的阻尼不能过大。

ABAQUS分析教程

ABAQUS瞬态动力学分析 瞬态动力学分析 一、问题描述 一质量块沿着长度为1500mm的等截面梁运动,梁的材料为钢(密度ρ=7.8E-9 ton/mm3,弹性模量E=2.1E5MPa,泊松比ν=0.3),宽为60mm,高为40mm。质量块的长为50mm,宽为60mm,高为30mm。质量块的密度ρ=1.11E-007 ton/mm3,弹性模量E=2.1E5MPa,泊松比ν=0.3,如图5.1所示。质量块以10000mm/s 的速度匀速通过悬臂梁(从固定端运动到自由端),计算梁自由端沿y方向的位移、速度和加速度。 图1 质量块沿梁运动的示意图 二、目的和要求 掌握结构的动力学分析方法,会定义历史输出步。 1)用六面体单元划分网格,厚度方向有4排网格。 2)采用隐式算法进行计算。 三、操作步骤 1、启动ABAOUS/CAE [开始][程序][ABAQUS 6.7-1][ABAQUS CAE]。 启动ABAQUS/CAE后,在出现的Start Session(开始任务)对话框中选择Create Model Database(创建新模型数据库)。 2、创建部件 在ABAQUS/CAE窗口顶部的环境栏中,可以看到模块列表Module:Part,这表示当前处在Part(部件)功能模块,可按照以下步骤来创建梁的几何模型。 创建两个零件分别命名为mass(质量块)和beam(梁),均为三维实体弹性体。 3、创建材料和截面属性 在窗口左上角的Module(模块)列表中选择Property(特性)功能模块。 (1)创建梁材料 Name:Steel,Density:7.8E-9,Young’s Modulus(弹性模量):210000,Poisson’s Ratio(泊松比):0.3。 (2)创建截面属性点击左侧工具箱中的(Create Section),弹出Create Sectio n对话框,Category:Solid,Type:Homogeneous,保持默认参数不变(Material:Steel;Plane stress/strain thickness:1 ),点击OK。

纤维素热分析动力学

廖艳芬,王树荣,骆仲泱,周劲松,余春江,岑可发.纤维素热裂解过程动力学的实验分析研究.浙江大学学报,2002,36(2). 摘要:尽管针对纤维素热裂解动力学方面的研究以已开展的比较广泛,但其表观动力学的确定认识一个具有争论性的问题,从而对纤维素热裂解机理的描述也就各不相同。廖艳芬等人试图通过纤维素的热裂解动力学研究,对此种想象作出合理的解释,并给出相应的机理描述。纤维素热裂解随温度的升高经历了五个不同的阶段,其中第三阶段是整个过程的主要是部分,期间大量灰分分析出并造成明显失重。实验发现随着升温速率的增加,热滞后现象的加重致使纤维素热裂解各个阶段向高温侧移动;同时高升温速率对炭的生成具有抑制作用,但有利于挥发分的生成。通过对热裂解主反应区的热重分析,采用微商法求得对应的反应动力学参数,以600K作为分界点,低温段的活化能约在267KJ/mol,较高温度段则体现为174 KJ/mol左右的低活化能。纤维素热裂解是一传热传质现象,与化学动力学机制相互影响控制的过程试验条件传热传质过程的影响是造成结论存在差异的内在原因。 随着世界经济持续发展导致对能源需求的高速增长以及大量化石燃料燃烧利用所造成的环境污染,生物质能这一可再生的清洁能源目前已引起了世界各国的高度重视。相比于煤炭等化石燃料,生物质具有低污染排放特点,而且其生产 的零排放,从而对于缓解“温室效应”具有特殊意义。 利用过程中能实现CO 2 生物质能的热化学转换技术是生物质能转换利用研究中的一个重点,其中生物质热裂解作为目前世界上生物质能研究开发的前沿技术,不仅是生物质气化或燃烧等转化过程中的必经步骤,而且其本身就是一种产生高能量密度产物的独立工艺。生物质热裂解是指生物质由于受到外界热效应的影响而发生的热化学转换过程,随着过程的进行,生物质的理化性质发生变化,研究这种变化的趋势不仅有助于了解生物质热裂解进程的演变情况,为生物质热裂解液化技术提供理论基础,同时对开发生物质高效直接燃烧和气化技术也具有重要的工程价值。纤维素作为生物质的主要组成部分,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,因而进行纤维素热裂解过程的研究对生物质热转化利用技术的规模化应用具有重要意义,而对于纤维素热裂解过程的研究通常从其动力学特点入手来解释其过程的发展。 本文采用Perkin-Elmer TGA-7型差示热重分析仪,在程控温度操作条件下以5~50K/min的不同升温速率对纤维素原料在300~1200K的温度下进行动态升温试验,测量物质的物理性质与温度的关系,从而研究其反应动力学。试验用的载气为高纯度氮气,以保持炉内惰性气氛,同时能及时将纤维素热裂解生成的挥发性产物带离样品,从而减少了由于二次反应对试样瞬时重量带来的影响。动力学分析采用的纤维素是从含纤维素为99%的纯棉花中提取,其灰份质量分数为0.01%,粒径为50~60μm,试样量均控制在8mg以内。 2 纤维素热裂解动力学试验结果 在给定的升温速率下,随着原料温度的升高,纤维素热裂解经历了几个不同阶段,主要分为五个区域(见图1)。 的部分,在该区域中生物质除了温度升高外,没有第一区域是从室温开始到T 发生失重,此时试样的性质基本未变化;第二区域是指T0到T1的这个范围,在这个过程中生物质开始失去自由水;在接下的T1至T2的第二区域内,热重曲线几乎成一平台,期间发生微量的失重,这是生物质发生解聚及“玻璃化转变“现象的一个缓慢过程;第三区域是从T2到T4阶段,该区域是生物质热裂解过程的

abaqus动力学分析

目 录 第一章ABAQUS动力学问题概述 (1) §1-1 动力学问题 (1) §1-2 结构动力学研究的内容 (3) §1-3 振动的分类 (4) §1-4 结构动力学的研究方法 (5) §1-5 动力学问题的基本方程 (5) 小结 (6) §1-6 第2章结构特征值的提取 (7) §2-1 问题的产生 (7) §2-2 特征值的求解方法 (7) §2-3 特征值求解器的比较 (8) §2-4 重复的特征频率 (9) §2-5 征值频率的提取 (9) §2-6 频率输出 (12) §2-7 有预载结构的频率 (16) §2-8 复特征频率和刹车的啸声分析 (17) 第3章模态叠加法 (22) §3-1 模态叠加法的基本概念 (22) §3-2 模态叠加法的应用 (24) 第4章阻尼 (26) §4-1 引言 (26) §4-2 阻尼 (26) §4-3 在ABAQUS中定义阻尼 (27) 1

§4-4 阻尼选择 (31) 第5章稳态动力学分析 (33) §5-1 稳态动力学简介 (33) §5-2 分析方法 (35) §5-3 激励和输出 (36) §5-4 算例—轮胎的谐波激励稳态响应 (42) 第6章瞬态动力学分析 (49) §6-1 引言 (49) §6-2 模态瞬态动力学简介 (49) §6-3 分析方法 (54) §6-4 载荷和输出 (55) §6-5 算例—货物吊车 (58) 第7章基础运动 (64) §7-1 基础运动形式 (64) §7-2 初级基础运动 (65) §7-3 次级基础运动 (66) §7-4 在ABAQUS中定义基础运动 (66) §7-5 算例 (70) 第8章加速度运动的基线校准 (73) §8-1 加速度基线调整和校准简介 (73) §8-2 基线校准方法 (74) §8-3 加速度基线校准步骤 (76) §8-4 考虑基线校准的悬臂梁算例分析 (77) 2

热分析动力学方程

1、=B1^2 2、=B1+(1-B1)*LN(1-B1) 3、=(1-(1-B1)^(1/2))^(1/2) 4、=(1-(1-B1)^(1/2))^2 5、=(1-(1-B1)^(1/3))^(1/2) 6、=(1-(1-B1)^(1/3))^2 7、=1-2*B1/3-(1-B1)^(2/3) 8、=((1+B1)^(1/3)-1)^2 9、=((1-B1)^(-1/3)-1)^2 10、=(-LN(1-B1))^(1/4) 11、=(-LN(1-B1))^(1/3) 12、=(-LN(1-B1))^(2/5) 13、=(-LN(1-B1))^(1/2) 14、=(-LN(1-B1))^(2/3) 15、=(-LN(1-B1))^(3/4) 16、=-LN(1-B1) 17、=(-LN(1-B1))^(3/2) 18、=(-LN(1-B1))^2 19、=(-LN(1-B1))^3 20、=(-LN(1-B1))^4 21、=LN(B1/(1-B1)) 22、=B1^(1/4) 23、=B1^(1/3) 24、=B1^(1/2) 25、=B1 26、=B1^(3/2) 27、=B1^2 28、=1-(1-B1)^(1/4) 29、=1-(1-B1)^(1/3) 30、=3*(1-(1-B1)^(1/3)) 31、=1-(1-B1)^(1/2) 32、=2*(1-(1-B1)^(1/2)) 33、=1-(1-B1)^2 34、=1-(1-B1)^3 35、=1-(1-B1)^4 36、=(1-B1)^(-1) 37、=(1-B1)^(-1)-1 38、=(1-B1)^(-1/2) 39、=LN(B1) 40、=LN(B1^2) 41、=(1-B1)^(-2)

abaqus中的动态分析方法

ABAQUS 线性动态分析 如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。 7.1 引言 动态模拟是将惯性力包含在动力学平衡方程中: +P u M I - = 其中 M结构的质量。 u 结构的加速度。 I在结构中的内力。 P 所施加的外力。 在上面公式中的表述是牛顿第二运动定律(F = ma)。 在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u )。在两类模拟之间的另一个区别在于内力I的定义。在静态分析中,内力仅由结构的变形引起;而在动态分析中,内力包括源于运动(例如阻尼)和结构的变形的贡献。 7.1.1 固有频率和模态 最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。

图7–1 质量-弹簧系统 在弹簧中的内力给出为ku ,所以它的动态运动方程为 mu ku P +-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为 ω= 如果质量块被移动后再释放,它将以这个频率振动。若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。 实际结构具有大量的固有频率。因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。则运动方程变为 M u I +=0 对于无阻尼系统,I Ku =,因此有 M u Ku +=0 这个方程的解具有形式为 t i e u ωφ= 将此式代入运动方程,得到了特征值(eigenvalue )问题 K M φλφ= 其中2λω=。 该系统具有n 个特征值,其中n 是在有限元模型中的自由度数目。记j λ是第j 个

梁端加载动力学问题ABAQUS操作截图

一、提取梁的自然频率 1.创建部件(Creat Part) 点击各参数设置如下图 用Creat Lines: connected操作建立加载面的特征点 分别是(-0.5,0.5) (-0.3,0.5) (-0.1, 0.5) (0.1, 0.5) (0.3, 0.5) (0.5, 0.5) (0.5,-0.5) (0.3, -0.5) (0.1, -0.5) (-0.1, -0.5) (-0.3,-0.5) (-0.5,-0.5)然后点 中的,然后点击done,拉伸长度输入10,各参数如下图所示 点击OK,屏幕显示如下

2.选择Moduel->Property,输入材料参数 点击Creat Material,创建材料 Name:Steel General->Density, Mass Density:7800 Mechanical->Elasticity->Elastic, Young’s Modulus:2e11, Poisson’s Ratio:0.3

点击创建截面 Name:BeamSection, Category:Solid, Type:Homogeneous, Continue 然后弹出Edit Section对话框 Assign Section: 点解,选择整个部件,点击Done,弹出对话框

点击OK,部件变为绿色,屏幕显示如下图 3.选择Moduel->Assembly 点击,参数默认,点击OK 4.设置分析步

点击,Name:默认,Procedure type:Linear perturbation-> Frequency Continue 弹出对话框,更改参数value:10 点击OK 5.设置边界条件

Abaqus显式非线性动态分析

2012-11-14 11:43 by:Abaqus教程来源:广州有道有限元 Abaqus显式非线性动态分析——ABAQUS/Explicit适用的问题类型 显式动态程序对于求解广泛的、各种各样的非线性固体和结构力学问题是一种非常有效的工具。它常常对隐式求解器是一个补充,如ABAQUS/Standard;从用 户的观点来看,显式与隐式方法的区别在于: ?显式方法需要很小的时间增量步,它仅依赖于模型的最高固有频率,而与载荷的类型和持续的时间无关。通常的模拟需要取10,000至1,000,000个增量步,每个增量步的计算成本相对较低。 ?隐式方法对时间增量步的大小没有内在的限制;增量的大小通常取决于精度和收敛情况。典型的隐式模拟所采用的增量步数目要比显式模拟小几个数量级。然而,由于在每个增量步中必须求解一套全域的方程组,所以对于每一增量步的成本,隐式方法远高于显式方法。 了解两个程序的这些特性,能够帮助你确定哪一种方法是更适合于你的问题。 ABAQUS/Explicit适用的问题类型 在讨论显式动态程序如何工作之前,有必要了解ABAQUS/Explicit适合于求解哪些类问题。贯穿这本手册,我们已经提供了贴切的例题,它们一般是应用ABAQUS/Explicit求解的如下类型问题: 高速动力学(high-speed dynamic)事件 最初发展显式动力学方法是为了分析那些用隐式方法(如ABAQUS/Standard)分析起来可能极端费时的高速动力学事件。作为此类模拟的例子,在第10章“材料”中分析了一块钢板在短时爆炸载荷下的响应。因为迅速施加的巨大载荷,结构的响应变化的非常快。对于捕获动力响应,精确地跟踪板内的应力波是非常重要的。由于应力波与系统的最高阶频率相关联,因此为了得到精确解答需要许多小的时间增量。 复杂的接触(contact)问题 应用显式动力学方法建立接触条件的公式要比应用隐式方法容易得多。结论是ABAQUS/Explicit能够比较容易地分析包括许多独立物体相互作用的复杂接触问题。ABAQUS/Explicit是特别适合于分析受冲击载荷并随后在结构内部发生复杂相互接触作用的结构的瞬间动态响应问题。在第12章“接触” 中展示的电路板跌落试验就是这类问题的一个例子。在这个例子中,一块插入在泡沫封装中的电路板从1m的高度跌落到地板上。这个问题包括封装与地板之间的冲击,以及在电路板和封装之间的接触条件的迅速变化。 复杂的后屈曲(postbuckling)问题

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。由 于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处 理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

ABAQUS分析教程要点

ABAQUS 瞬态动力学分析 瞬态动力学分析 一、问题描述 一质量块沿着长度为 1500mm 的等截面梁运动,梁的材料为钢(密度 =7.8E-9 ton/mm ,弹性模量 E=2.1E5MPa ,泊松比=0.3),宽为 60mm ,高为 40mm 。质量块的长为 50mm ,宽为 60mm ,高为 30mm 。质量块的密度 =1.11E- 007 ton/mm ,弹性模量 E=2.1E5MPa ,泊松比=0.3,如图 5.1 所示。质量块 以 10000mm/s 的速度匀速通过悬臂梁(从固定端运动到自由端),计算梁自由端 沿 y 方向的位移、速度和加速度。 3 3

图1 质量块沿梁运动的示意图 二、目的和要求 掌握结构的动力学分析方法,会定义历史输出步。 1)用六面体单元划分网格,厚度方向有4 排网格。 2)采用隐式算法进行计算。 三、操作步骤 1、启动ABAOUS/CAE [开始] [程序] [ABAQUS6.7-1][ABAQUS CAE]。 启动ABAQUS/CAE后,在出现的Start Session(开始任务)对话框中选择Create Model Database(创建新模型数据库)。 2、创建部件 在ABAQUS/CAE窗口顶部的环境栏中,可以看到模块列表Module:Part,这表示当前处在Part(部件)功能模块,可按照以下步骤来创建梁的几何模型。 创建两个零件分别命名为mass(质量块)和beam(梁),均为三维实体弹 性体。 3、创建材料和截面属性 在窗口左上角的Module(模块)列表中选择Property(特性)功能模块。 (1)创建梁材料 Name:Steel,Density:7.8E-9,Young’s Modulus(弹性模量):210000,Poisson’s Ratio(泊松比):0.3。 (2)创建截面属性点击左侧工具箱中的(Create Section),弹出Create Sectio n对话框,Category:Solid,Type:Homogeneous,保持默认参数不变(Material:Steel;Plane stress/strain thickness:1 ),点击OK。 (3)给部件赋予截面属性将 点击左侧工具区中的(Assign Section),上一步创建的截面属性赋给梁。 (4)重复步骤(1)~(4),为质量块赋截面属性。

相关文档
相关文档 最新文档