文档库 最新最全的文档下载
当前位置:文档库 › 集成霍尔传感器特性

集成霍尔传感器特性

集成霍尔传感器特性
集成霍尔传感器特性

实验一 集成霍尔传感器特性与简谐振动实验

【实验目的】

随着科学技术的进步,测量方法也不断进步。90年代初,集成霍尔传感器技术得到了迅猛发展。各种性能的集成霍尔传感器不断涌现,在工业,交通,通讯等领域的自动控制中得到大量应用。如磁感应强度测量,位移测量,周期和转速的测量,还有液位控制,流量测量,产品计数,车辆行程计量,角度测量等。 本实验将学习集成开关型霍尔传感器的特性,并用该传感器测量弹簧振子的振动周期。从而掌握简谐振动的规律,以及磁敏器件测量振动周期的新方法。

【实验原理】

1、 弹簧在外力作用下将产生形变(即伸长或缩短)。在弹性限度内,外力F 和它的变形 量Y ?成正比,即:

F K Y =?

[1] 这就是胡克定律,比例系数K 称为弹簧的倔强系数,其值与弹簧的形状,材料有关。若改变施加在弹簧上的外力,并测量相应的形变量,即可通过式(1)推算该弹簧的倔强系数K 。

2、 质量为M 的物体系于一轻弹簧的自由端,并放置在光滑的水平台面上,而弹簧的另 一端固定,这就构成一个弹簧振子。若使物体在外力作用下(如用手拉)离开平衡位置少许,然后释放,则弹簧振子将在平衡点附近来回作简谐振动,其周期为: K M T π

2=

[2]

实际上弹簧本身具有质量0M ,它必对周期产生影响,故式(2)可修正为

2T π= [3]

其中p 是待定系数,01p <<,其值可以通过实验予以确定。0pM 称为弹簧的有效质量(亦称折合质量)。

若将上述弹簧振子铅直地悬挂在一个稳固的支架上,则它仍能在重力(是一个常力)及 弹性力的作用下作简谐振动,只是平衡位置有所变动。新的平衡位置即是弹簧下端悬挂物体后所处的平衡位置,故式(3)仍成立

3、集成开关型霍尔传感器

如图1所示,集成霍尔开关是由稳压器A 。霍尔电势发生器(即硅霍尔片)B ,差分放大器C ,施密特触发器D 和OC 门输出E 五个基本部分组成。(1),(2),(3)代表集成霍尔开关的三个引出端点。

图1 图2

在输入端(1)输入电压V cc ,经稳压器稳压后加在霍尔发生器的两端。根据霍尔效应原理,当霍尔片处于磁场中时,在垂直于磁场的方向通以电流,则与这二者相垂直的方向上将会有一个霍尔电势差V H 输出,该V H 信号经放大器放大以后送至施密特触发器整形,使触发器整形,使其成为方波输送到OC 门输出。当施加的磁场达到"工作点"(即B op )时,触发器输出高电压(相对于地电位),使三极管导通,此时,OC 门输出端输出低电压,通常称这种状态为“开”。当施加的磁场达到“释放点”(即B rp )时,触发器输出低电压,三极管截止,使OC 门输出高电压,这时称其为“关”态,这样两次高电压变换,使霍尔开关完成了一次开关动作。

B op 与B rp 的差值一定,此差值B h =B op -B rp 称为磁滞,在此差值内,V o 保持不变,因而 使开关输出稳定可靠,这也就是集成霍尔开关传感器优良特性之一。

集成霍尔开关传感器输出特性如图2。

【实验仪器和用具】

集成霍尔传感器特性与简谐振动实验仪 仪器结构

图3

1、弹簧,

2、砝码盘,

3、平面镜,

4、游标卡尺,

5、卡尺固定螺母,

6、调节螺母,

7、砝码和磁钢,8、开关霍尔传感器,9、水平调节螺丝,10、锁紧螺丝,11、计时电压测量稳压组合仪

【实验内容】

一、测量弹簧的倔强系数K

1、利用新型焦利秤测定弹簧倔强系数K

实验装置如图3所示。在砝码盘W 中放置砝码i M ,则作用力()i i F M m g =+式中m 为砝码盘质量与弹簧的有效质量之和,g 为重力加速度。利用(1)式可得:

0()i i M m g Y Y +=- (4)

(1)调节实验装置底脚螺丝,使焦利秤立柱垂直(目测);

(2)将弹簧固定在焦利秤上部悬臂上,旋转悬臂,使挂于弹簧下放的砝码盘的尖针 靠拢游标尺上的小镜;

(3)在砝码盘中放置一定质量的砝码1M 后,弹簧伸长。调节立柱旁游标高度,使小镜 上刻线对准尖针的下端,记录砝码1M 值及游标尺上相应的指示读数1Y ;

(4)往砝码盘中逐步放入一定量的砝码。记录砝码盘中的砝码i M 以及对应的游标卡尺的读数i Y ;

(5)从盘中逐个取出一定量的砝码后,弹簧稍收缩。再次记下此 时盘中i M 码值及游标卡尺相应读数i Y 。

(6)作i i M Y 图,验证i i M Y 满足线性关系,并求出斜率'K ,'/K g 即为弹簧的倔强系数K 。

2、测量弹簧振子振动周期求弹簧倔强系数

(1)用电子秒表测弹簧振子振动50次的时间,然后求得弹簧振子的周期T ,利用公式(3)求得弹簧倔强系数K ,公式(3)中1/3p =,pM 为弹簧的等效质量。

(2)用集成开关型霍尔传感器测量弹簧振动周期,求弹簧倔强系数。

将集成霍尔开关的三个引脚分别与电源和周期测试仪相接。OUT 接周期测试仪正级,V -接电源负极,并和周期测试仪负级连接,V+接电源正级,见图3,将钕铁硼磁钢粘于20g 砝码下端,使S 极面向下。把集成霍尔开关感应面对准S 极,其与磁钢间距在10cm ~20cm 之间。轻轻拉动弹簧使其上下振动,记录振动50次的时间,求出弹簧振子周期。要求进行多次测量(测量5~6次,每次50个周期)。由公式(3)求弹簧倔强系数K 。

3、 测量集成开关霍尔传感器的参数。

如图4接线,把小块钕铁硼磁钢粘在固定支架上,使小磁钢的S 极与集成开关型霍尔 传感器(简称集成霍尔开关)的感应面(有文字面)紧密相对(接触),记录电路板在固定支架上的位置x 0,将集成霍尔开关向外线移动。当发光二级管熄灭时记录电路板的位置x 1,再,将集成霍尔开关向内线移动,当发光二级管又被点亮时再记录电路板的位置x 2,计算该传感器与磁钢间距的关系(相距︱x 2-x 0︱时工作,相距︱x 1-x 0︱时释放)。然后,用95A 型集成线性霍尔传感器测量离磁钢距d 处的磁感应强度B 。求出集成霍尔开关的特性参数:工作点B op 及工作距离D op ,释放点B rp 及释放距离d rp ,计算磁滞值B H 。集成线性霍尔传感器的接线图和集成霍尔开关的接线图,请看附录。

02x x D op -= 01x x d rp -=

)(500

.2mT K

U B -=

(5)

)('

mT K

U B =

(6)

图4

95A型集成线性霍尔传感器的连接方法和集成开关型霍尔传感器的基本相同,不同的只是不接周期测试仪,而接电压表。先将95A型集成线性霍尔传感器远离磁场,调节输入电压,使输出霍尔电压为2.500V,再进行测量,此时运用公式(5),如果补偿了零磁场时的2.500V,运用公式(6)。

【思考题】

1.实验中除了可由M i~Y i图线判断弹簧的弹性回复力与弹簧偏离平衡位置的位移成线性关系外,还可以由什么来判断这一关系?

2.集成霍尔开关有哪些主要特性参数?怎样测量这些特性参数?

3.集成霍尔开关测量周期或转速有何优点?你是否可以举些例子说明集成霍尔开关的应用吗?

【附录】

1、A44E集成霍尔开关

实验中用于测量的A44E集成霍尔开关,磁钢用直径D=6.004mm,长度为L=3.032mm的钕铁硼磁钢。电源用直流,霍尔开关输出由四位半直流数字电压表测量,磁感应强度B用95A型集成霍尔元件测量。

图5

图5中,(a)为集成霍尔传感器外形图。测量时(1)和(2)两端加直流+12V,在输出端(3)与电流(10之间接一个2K 的负载电阻,如图(b)所示。

(1)输出特性传感器主要特性是它的输出特性,即输入磁感应强度B与输出电压V

间的关系。测量所得数据见表1。

从表1 中数据可见,A44E 集成霍尔开关是单稳态型。由测量数据作出的特性曲线如 图2所示。

(2)磁输入特性

传感器的磁输入基本有三种情况:单极磁场,双极磁场和交变磁场。 A44E 集成霍尔开 关的磁输入为单极磁场,即施加磁场的方式是改变磁铁和集成霍尔开关之间的距离。

测量时,将磁铁固定,移动集成霍尔开关,且使移动方向在磁铁与霍尔开关的轴心线 方向上。实验中显示,当磁铁和霍尔开关移近到一定位置,霍尔开关接通,二者移开一定距离后,霍尔开关断开。若以两者之间的距为r ,则测得r=4mm 时,霍尔开关导通,此时B=16.9mT ,而r=5mm 时,霍尔开关断开,测得B=13.2mT 。可见导通点与释放点间距离值为1mm ,这是用直径只有D=4.0mm 钕铁硼强磁材料做成磁铁测量的结果,其它形状和大小磁铁的测量结果略有不同。

2、 95A 型集成霍尔元件

95A 型集成霍尔元件的内部结构如图6所示。左端为一霍尔传感器,中间连接了一个放大器,右端方框表示薄膜电阻组成的剩余电压补偿器。95A 型集成霍尔元件测量时输出信号大,不必考虑剩余电压的影响,V+与V-间的电压为5V 左右,0和V-两端即为输出电压。在磁感应强度为零时,调节电流电压,使输出电压为2.500V ,在此标准状态下,它的输出电压U 与磁感应强度B 关系如图8所示 该关系可用(5)式表示: )(500

.2mT K

U B -=

式中,U 为集成霍尔传感器输出电压,K 为该集成霍尔传感器的灵敏度。

如果外接一个2.500V 辅助直流电源,使磁感应强度为OT 时,输出信号U 1为0,那么集成霍尔传感器输出电压U 1与磁感应强度B 的关系为(6): )('

mT K

U B =

图6

图7 图7是95A 型集成霍尔传感器的特性曲线。95A集成霍尔线性传感器参数如表2

表2

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验 141270046 自动化杨蕾生 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差: 当x=1mm时, Y=-0.9354×1+1.849=0.9136 Δm =Y-0.89=0.0236V yFS=1.88V δf =Δm /yFS×100%=1.256% 当x=3mm时: Y=-0.9354×3+1.849=-0.9572V Δm =Y-(-0.94)=-0.0172V yFS=1.88V δf =Δm /yFS×100%=0.915% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进 行补偿。 答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

霍尔元件分类及其特性

二:霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如下图所示,是其中一种型号的 外形图 三:霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种: 1.线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组 成,它输出模拟量。 2.开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

配合差分放大器使用霍尔元件产生的电势差很小,一般在毫伏量级,所以在使用时要进行一定的放大处理(如下图) 配合触发器用在上述电路的基础上,再添加一个施密特触发器用作阈值检测,则可以使霍尔器件输出数字信号,结构图如下: 集成场效应管在上述电路的基础上添加一个场效应管,可以

增强霍尔开关的驱动能力(可以直接驱动LED、继电器等) 四:霍尔传感器的特性 1.线性型霍尔传感器的特性 2.开关型霍尔传感器的特性 如图4所示,其中BOP为工 作点“开”的磁感应强度,BRP 为释放点“关”的磁感应强度当 外加的磁感应强度。超过动作点 Bop时,传感器输出低电平,当磁感应强度降到动作点Bop以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。Bop 与BRP之间的滞后使开关动作更为可靠。

A3144是开关霍尔传感器 五:开关型霍尔传感器 开关型霍尔传感器主要用于测转数、转速、风速、流速、接近开关、关门告知器、报警器、自动控制电路等。 1.测转速或转数 如图所示,在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。

霍尔芯片发展趋势分析报告

霍尔芯片的发展 第一阶段是从霍尔效应的发现到20世纪40年代前期。1910年有人用金属铋制成霍尔元件,但是由于金属材料中的电子浓度很大,而霍尔效应十分微弱,所以几乎没有多大用处。 第二阶段是从20世纪40年代中期,随着半导体材料、制造工艺和技术的应用,出现了各种半导体分立霍尔元件,特别是锗的采用推动了霍尔元件的发展,相继出现了采用霍尔元件制造的各种磁场传感器,应用十分广泛。但是由于温漂的存在,所以精确度受到了一定的限制,并且还需要外加信号调理电路,所以使用较复杂且成本比较高。 第三阶段是自20世纪60年代开始,随着集成电路技术的发展,出现了将霍尔半导体元件和相关的信号调节电路集成在一起的霍尔传感器。由于将霍尔元件和信号调理电路和温度补偿电路集成在一起,因此具有很好的线性度,精确度很高。 第四阶段是20世纪80年代,随着大规模超大规模集成电路和微机械加工技术的进展,霍尔元件从平面向三维方向发展,出现了三端口或四端口固态霍尔传感器,实现了产品的系列化、加工的批量化、体积的微型化。 未来的发展趋势是量子霍尔传感器和等离子霍尔传感器。 一、分立霍尔元件 1、1双极平行元件 采用标准双极(bipolar)工艺制成的霍尔元件,由于电流在外延层内平行于芯片表面流动,因此又称为平行霍尔元件。 1、2垂直元件 采用双极工艺还可以制成垂直霍尔(VH)元件,该霍尔元件的灵敏度较低。为了提高灵敏度而减少电流路径,又研制了扩散型(DVH)和沟道型(TVH)两种垂直霍尔元件 1、2、1 MOS垂直元件 薄MOS沟道作为霍尔元件的激励区,可获得1 000V/AT的灵敏度。 1、2、2 CMOS垂直元件 采用CMOS工艺制成的体型(bulk)垂直霍尔元件,电流从芯片表面流入芯片内部,灵敏度可达450V/AT。 1、2、3 JFET垂直元件 在上述TVH元件的基础上,增加离子反应刻蚀(RIE)工艺,制成了结型场效应管垂直霍尔元件。这种霍尔元件灵敏度可达1 243V/AT。 二、集成霍尔传感器 2、1三维VH磁场传感器 VH传感器是最常见的磁场传感器,它的特点是将电极形成在芯片表面,对平行于芯片表面的磁场敏感,从不同的方向测量该磁场就形成了不同坐标的传感器。 2、2单片硅指南针 采用TLC(tran linear circuit)工艺制成的模拟集成霍尔指南针,它由2个VH元件和信号转换处理电路组成。 2、3全集成三维角度-位置传感器 霍尔传感器芯片平行放在椭圆型永磁铁下面,旋转轴固定在磁铁的中心。当转轴旋转时霍尔传感器将产生正比于转轴角位移的正弦和余弦两个信号,经简单的信号处理即可直接获得得位置信号。

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

实验报告 班级: 姓名: 学号: 一、实验名称 集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场 二、实验目的 1、掌握霍尔效应原理测量磁场; 2、测量单匝载流原线圈和亥姆霍兹线圈轴线上的磁场分布。 三、实验仪器 亥姆霍兹线圈磁场测定仪、包括圆线圈和亥姆霍兹线圈平台(包括两个圆线圈、固定夹、不锈钢直尺等)、高灵敏度毫特计和数字式直流稳压电源。 四、实验原理 1、圆线圈的磁场 根据毕奥—萨伐尔定律,载流线圈在轴线上某点的磁感应强度为: NI x R R B 2 322 20) (2+= μ 式中I 为通过线圈的电流强度,R 为线圈平均半径,x 为圆心到该点的距离,N 为线圈的匝数,A m T /1047 0??=-πμ,为真空磁导率。因此,圆心处的磁感应强度为 NI R B 20 μ= 2、亥姆霍兹线圈的磁场 亥姆霍兹线圈:两个半径和匝数完全相同的线圈,其轴向距离等于线圈的半径。 这种线圈的特点是当线圈串联连接并通以稳定的直流电后,就可在线圈中心区域内产生较为均匀性较好的磁场,因而成为磁测量等物理实验的重要组成部件,与永久磁铁相比,亥姆霍兹线圈所产生的磁场在一定范围内具有一定的均匀性,且产生的磁场具有一定的可调性,可以产生极微弱的磁场直至数百高斯的磁场,同时在不通电的情况下不会产生环境磁场。 亥姆霍兹线圈如图所示,是一对彼此平行且连通的共轴圆形线圈,两线圈内电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的半径R 。 设z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,根据毕奥—萨伐尔定律及磁

场叠加原理可以从理论上计算出亥姆霍兹线圈轴上任意一点的磁感应强度为 ? ?????-++++???='--232 2232220]z 2([]z 2([21))R R R R R I N B μ 而在亥姆霍兹线圈上中心O 处的磁感应强度' B 为 R I N B ??= 02 3 ' 058μ 当线圈通有某一电流时,两线圈磁场合成如图 可看出,两线圈之间轴线上磁感应强度在相当大的范围内是均匀的。 3、测量亥姆霍兹线圈磁场的方法——霍尔效应法 直接测量,设备简单,操作容易,适用于弱磁场和非均匀磁场的测量,霍尔探头经定标后可直接显示磁感应强度值。 五、实验步骤 1、载流圆线圈和亥姆霍兹线圈轴线上各点磁感应强度的测量 (1)先按要求将各导线连接好,直流稳压电源中数字电流表已串接在电源的一个输出端,测量电流I=100 mA 时,单线圈a 轴线上各点磁感应强度a B ,每隔1.00 cm 测量一个数据。实验中,随时观察毫特斯拉计探头是否沿线圈轴线移动。每测量一个数据,必须先在直流电源输出电路断开(I=0)调零后,才测量和记录数据。将测得数据填入表1中。 (2)用理论公式计算圆线圈中轴线上各点的磁感应强度,将计算结果填入表1中并与实验测量结果进行比较。 (3)在轴线上某点转动毫特斯拉计探头,观察一下该点磁感应强度测量值的变化规律,并判断该点磁感应强度的方向。 (4)将线圈a 和线圈b 之间的距离d 调整到d=10.00 cm ,这时,组成一个亥姆霍兹线圈。取电流值I=100 mA ,分别测量两线圈单独通电时,轴线上各点的磁感应强度值a B 和b B ,然后将亥姆霍兹线圈在通同样电流I=100mA ,在轴线上的磁感应强度值b a B +,将测量结果填入表2中。证明在轴线上的点b a b a B B B +=+,即载流亥姆霍兹线圈轴线上任一点磁感应强度是两个载流单线圈在该点上产生的磁感应强度之和。 (5)分别把亥姆霍兹线圈间距调整为2 R d = 和R d 2=,与步骤(4)类似,测量在电流为I=100mA 时轴线上各点的磁感应强度值,将测量结果分别填入表3和表4中。 (6)作间距2 R d = ,R d =,R d 2=时,两个线圈轴线上磁感应强度B 与位置z 之间关系图,即B-z 图,验证磁场叠加原理。 2、载流圆线圈通过轴线平行面上的磁感应线分布的描绘 2 R 2 R R R B

传感器课程设计——霍尔传感器测量磁场要点

目录 一、课程设计目的与要求 (2) 二、元件介绍 (3) 三、课程设计原理 (6) 3.1霍尔效应 (6) 3.2测磁场的原理,载流长直螺线管内的磁感应强度 (8) 四、课程设计内容 (10) 4.1电路补偿调节 (10) 4.2失调电压调零 (10) 4.3按图4-3接好信号处理电路 (10) 4.4按图4-4接好总测量电路 (11) 4.5数据记录与处理 (12) 4.6数据拟合 (14) 五、成品展示 (16) 六、分析与讨论 (17) 实验所需仪器 (19) 个人总结 (20) 致谢 (21) 参考文献 (22) 参考网址 (22)

一、课程设计目的与要求 1.了解霍尔传感器的工作原理 2.掌握运用霍尔传感器测量磁场的方法

二、元件介绍 CA3140 CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。 应用范围: .单电源放大器在汽车和便携式仪表 .采样保持放大器 .长期定时器 .光电仪表 .探测器 .有源滤波器 .比较器 .TTL接口 .所有标准运算放大器的应用 .函数发生器 .音调控制 .电源 .便携式仪器

3503霍尔元件 UGN3503LT,UGN3503U和UGN3503UA霍尔效应传感器准确地跟踪磁通量非常小的变化,密度变化通常太小以致不方便操作霍尔效应开关。 可作为运动探测器,齿传感器和接近探测器,磁驱动机械事件的镜像。作为敏感电磁铁的显示器,就可以有效地衡量一个系统的负载量可以忽略不计的性能,同时提供隔离污染和电气噪声。 每个霍尔效应集成电路包括一个霍尔传感元件,线性放大器和射极跟随器输出级。 三种封装形式提供了对磁性优化包大多数应用程序。封装后缀“LT”是一个缩影SOT-89/TO243AA表面贴装应用的晶体管封装;后缀“U”是一个微型三引脚塑料SIP,而'UA'是一个三引脚超小型SIP协议。所有器件的额定连续运行温度范围为-20 °C至+85°C。 特点: ·极为敏感 ·至23 kHz的平坦的响应Array·低噪声输出 ·4.5 V至6 V的操作 ·磁性优化装箱 图2-4 3503霍尔元件封装及引脚图

基于线性霍尔元件的位移传感器设计

郑州轻工业学院 传感器及应用系统课程设计说明书基于线性霍尔元件的位移传感器 姓名:吴富昌 专业班级:电子信息工程13-01 学号:9 指导老师:陆立平 时间:2016.6.27 -2016.7.1

郑州轻工业学院 课程设计任务书 题目基于线性霍尔元件的位移传感器设计 专业、班级电子信息工程13-01 学号39 姓名吴富昌 主要内容、基本要求、主要参考资料等: 一、主要内容: 利用线性霍尔元件设计一个位移传感器。 二、基本要求: (1)设计一个位移传感器,并设计相关的信号处理电路。 (2)为达到误差控制要求,需要对霍尔元件的误差进行补偿校正,主要包含霍尔元件的零位误差及补偿和温度误差及补偿。 (3)完成系统框图和电路原理图的设计和绘制,系统理论分析和设计详细明确,有理有据。 (4)信号处理电路应包含激励信号电路、消除不等位电势补偿电路、放大电路、相敏检波电路和低通滤波电路等。 (5)利用软件仿真,得出主要信号输入输出点的波形,根据仿真结果验证设计功能的可行性、参数设计的合理性。 (6)根据模拟结果计算位移传感器的迟滞误差、线性度和灵敏度等参数。 (7)写出3000~5000字的设计报告,主体文本字号为小四号,标题章节字号依照美观合理原则选择,并合理加黑,字体均为宋体。 三、主要参考资料: (1)何金田,张斌主编,传感器原理与应用课程设计指南。哈尔滨:哈尔

滨工业大学出版社,2009.01. (2)周继明,刘先任、江世明等,传感器技术与应用实验指导及实验报告。长沙:中南大学出版社,2006.08. (3)陈育中,霍尔传感器测速系统的设计,科学技术与工程,2010,10:7529-7532. 完成期限:2016年6月27 日-2016年7月1日 指导教师签章: 专业负责人签章: 2016年 6 月27 日 基于线性霍尔元件的位移传感器设计 摘要 霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔期间以霍尔效应为其工作原理。当被测物体分别与恒定电流I和恒定磁场B垂直二当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。 关键词霍尔传感器位移霍尔电压

霍尔传感器的直流激励特性实验

霍尔传感器的直流激励特性实验 一、实验目的:了解霍尔传感器的直流激励特性。 二、实验内容: 给霍尔传感器通以直流电源,经差动放大器放大,当测微头随振动台上、下移动时,就有霍尔电势输出,从而可以测出霍尔传感器在直流激励下的输出特性。 三、实验原理: 由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔元件(霍尔片)通过底座连接在振动台上。当霍尔片通以恒定电流时,将输出霍尔电势。改变振动台的位置,霍尔片就在梯度磁场中上下移动,霍尔电势V值大小与其在磁场中的位移量X有关。 四、实验要求 1、按图1接线,插接线插接要牢靠。 2、直流激励电压为±2V,不能任意加大,否则将损坏霍尔片。 五、实验装置: 1.传感器系统实验仪CSY型1台 2.通用示波器COS5020B 1台 3.系统微机1台 4.消耗材料: 霍尔片(专用) 1个 插接线(专用) 10根 图1 霍尔传感器实验接线图 六、实验步骤: 1.按图1接线,使霍尔片位于梯度磁场中间位置,差放调零。 2.上、下移动振动台并调节差放增益与电桥WD电位器,使得电压表双向指示基本对称且趋近最大。 3.将测微头与振动台吸合,并调节霍尔片使之处于梯度磁场的中间位置。 4.用测微头驱动霍尔片输入位移量X, 每次变化0.5mm,量程为:-3mm +3mm,读取相应的输出电压值,填入表中。 七、实验数据及处理: 1.整理实验数据,作出V-X曲线,求出灵敏度及线性区 2.给出位移测量系统的适宜量程

1.计算灵敏度:S=0.587V/mm 则拟合直线方程为:V=0.857X+0.334 由图像得,当X在(-1.00,3.00)之间时,图像具有线性。当X〉3.00时,图像失去线性。 其线性区间为(-1.00,3.00)单位:mm 2.系统的适宜量程: 霍尔传感器在线性区内测量有效,适宜量成为:(-1.00,3.00)单位:mm

传感器技术的发展历程

传感技术大体可分3代,第1代是结构型传感器。它利用结构参量变化来感受和转化信号。例如:电阻应变式传感器,它是利用金属材料发生弹性形变时电阻的变化来转化电信号的。 第2代传感器是70年代开始发展起来的固体传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成的。如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器等。 70年代后期,随着集成技术、分子合成技术、微电子技术及计算机技术的发展,出现集成传感器。集成传感器包括2种类型:传感器本身的集成化和传感器与后续电路的集成化。例如:电荷藕合器件(CCD),集成温度传感器AD590集成霍尔传感器UGN3501等。这类传感器主要具有成本低、可靠性高性能好、接口灵活等特点集成传感器发展非常迅速,现已占传感器市场的2/3左右,它正向着低价格、多功能和系列化方向发展。 第3代传感器是80年代刚刚发展起来的智能传感器。所谓智能传感器是指其对外界信息具有一定检测、自诊断、数据处理以及自适应能力,是微型计算机技术与检测技术相结合的产物。80年代智能化测量主要以微处理器为核心,把传感器信号调节电路微计算机、存贮器及接口集成到一块芯片上,使传感器具有一定的人工智能.90年代智能化测量技术有了进一步的提高,在传感器一级水平实现智能化,使其具有自诊断功能、记忆功能、多参量测量功能以及联网通信功能等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城。https://www.wendangku.net/doc/b414337170.html,/

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

实验 线性霍尔式传感器位移特性实验

实验 线性霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板 图28—1霍尔效应原理 的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数; K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。 具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1μm 左右。 霍尔传感器有霍尔元件和集成霍尔传感器两种类型。集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。 本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,

霍尔传感器制作实训报告1

佛山职业技术学院实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试专业电气自动化技术 班级08152 姓名陈红杰 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级08152学号31 姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与 指导老师张教雄谢应然调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

四、实验制作 在这里强调一点就是,实验制作的整个过程可以看作是焊接一个霍尔集成电路起传感作用的电路(需要外加磁场)。 实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。 整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。 焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。这些都是在焊接的整个过程中要注意的事情。 比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。综合这些因素再去插放焊接元件,效果会好很多。 又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。 最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。 五、实验心得体会 (1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。 (2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。 (3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。 (4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。 六、实验收获 从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。 在此,我具体地说说。首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在

霍尔传感器及其应用

霍尔传感器及其应用 一、霍尔传感器介绍 (一)简介 霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。 (二)霍尔传感器的工作原理 磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。 霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。

1-霍尔半导体元件2-永久磁铁3-挡隔磁力线的叶片 (三)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (四)优势和特点 1、霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。副边电流忠实地反应原边电流的波形。而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波; 2、原边电路与副边电路之间有良好的电气隔离,隔离电压可达9600Vrms; 3、精度高:在工作温度区内精度优于1%,该精度适合于任何波形的测量; 4、线性度好:优于0.1%; 5、宽带宽:高带宽的电流传感器上升时间可小于1μs;但是,电压传感器带宽较窄,一般在15kHz以内,6400Vrms的高压电压传感器上升时间约500uS,带宽约700Hz。

霍尔传感器位移特性实验

实验14直流激励时霍尔传感器位移特性实验 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H =K H IB,当霍尔元件处在梯度磁场中运动时,它的电势 会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出Vo1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V 档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加记下一个读数,将读数填入表14。 表14 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2 (1)由上图可知灵敏度为S=ΔV/ΔX=mm (2)由上图可得非线性误差: 当x=1mm时, Y=×1+= Δm== yFS= δf=Δm/yFS×100%=% 当x=3mm时: Y=×3+= Δm=Y-()= yFS= δf=Δm/yFS×100%=% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。 实验15 交流激励时霍尔传感器位移特性实验 一、实验目的: 了解交流激励时霍尔式传感器的特性。

霍尔传感器介绍

霍尔传感元器件及A44E介绍 1 引言 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 2 霍尔效应和霍尔器件 2.1 霍尔效应 如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。 在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 (1)(2)(3) 在上述(1)、(2)、(3)式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,

霍尔传感器测位移课程设计

传感器课程设计说明书线性霍尔元件位移传感器 学号: 学院名称: 专业班级: 学生姓名: 教师姓名: 教师职称: 2015 年 1 月

线性霍尔元件位移传感器设计任务书 一、设计题目 线性霍尔元件位移传感器 二、设计目的 课程设计是工科各专业的主要实践性教学环节之一,是围绕一门主要基础课或专业课,运用所学课程的知识,结合实际应用设计而进行的一次综合分析设计能力的训练。《传感器技术》是测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的问题是本专业学生的基本素质。本次课程设计旨在培养学生运用所学过的理论知识,初步掌握解决实际应用问题时所应具有的查阅资料、综合运用所学知识的能力,为课程设计及今后从事专业学习工作打下坚实的基础。 三、设计内容及要求 1.掌握传感器工作原理 2.掌握信号处理电路的作用与原理 3.画出各电路处理后的信号波形 4.对位移进行测量(正负位移均三次以上) 5.算出传感器的迟滞误差、线性度 6.写出说明书。 四、设计方法和基本原理 1.问题描述 设计一个既能测量位移的大小,也能判别方向的线性霍尔元件位移传感器。 2.解决方案 ①搜集资料,确定电路原理图(包括激励信号电路、消除不等位电势补偿电路、放大电路、移相电路、相敏检波电路和低通滤波电路等信号处理电路) ②搭建实物测量系统,调试各部分电路。 ③测试得出相应的实验数据,给出相应的波形,计算出传感器的量程、线性度和灵敏度、迟滞误差。写出说明书,答辩。

目录 第一章引言 (2) 第二章霍尔传感器工作原理 (2) 2.1霍尔效应 (2) 2.2霍尔元件的主要特性 (4) 2.3霍尔传感器的应用 (4) 第三章测量系统组成 (7) 3.1霍尔元件的误差及补偿 (7) 3.1.1霍尔元件的零位误差与补偿 (7) 3.1.2霍尔元件的温度误差及补偿 (7) 3.2 直流激励的霍尔传感器电路 (8) 3.3交流激励的霍尔传感器电路 (8) 3.3.1传感器补偿放大电路 (8) 3.3.2移相电路 (9) 3.3.2相敏检波电路 (10) 3.3.4低通滤波电路 (10) 第四章电路测试与结果 (11) 4.1进行各部分电路线路元件的连接组装 (11) 4.2移相电路的测试 (12) 4.3相敏检波电路的测试 (13) 4.4低通滤波电路测试 (15) 第五章传感器测试与数据处理 (16) 5.1传感器的回程差 (16) 5.2传感器的灵敏度 (17) 5.3传感器的线性度 (18)

上海交通大学物理实验报告(大一下)集成霍尔传感器的特征测量与应用

集成霍尔传感器的特征测量与应用 【实验目的】 1.了解霍耳效应原理和集成霍耳传感器的工作原理。 2.通过测量螺线管励磁电流与集成霍耳传感器输出电压的关系,证明霍耳电势差与磁感应强度成正比。3.用通电螺线管中心点处磁感应强度的理论计算值校准集成霍耳传感器的灵敏度。 4.测量螺线管内磁感应强度沿螺线管中轴线的分布,并与相应的理论曲线比较。 【实验原理】 1、霍耳效应 将一导电体(金属或半导体)薄片放在磁场中,并使薄片平面垂直于磁场方向。当薄片纵向端面有电流I流过时,在与电流I和磁场B垂直的薄片横向端面a、b间就会产生一电势差,这种现象称为霍耳效应(Hall effect),所产生的电势差叫做霍耳电势差或霍耳电压,用U H表示。 霍耳效应是由运动电荷(载流子)在磁场中受到洛伦兹力的作用引起的。洛伦兹力使载流子发生偏转,在薄片横向端面上聚积电荷形成不断增大的横向电场(称为霍耳电场),从而使载流子又受到一个与洛伦兹力反向的电场力,直到两力相等,载流子不再发生偏转,在a、b间形成一个稳定的霍耳电场。这时,两横向端面a、b间的霍耳电压就达到一个稳定值。端面a、b间霍耳电压的符合与载流子电荷的正负有关。因此,通过测量霍耳电压的正负,即可判断半导体材料的导电类型。 实验表明,在外磁场不太强时,霍耳电压与工作电流和磁感应强度成正比,与薄片厚度成反比,即 ( 1) 式中比例系数和分别为霍耳系数和霍耳元件的灵敏度。用霍耳效应测量磁场是在霍耳元件的灵敏度和工作电流已知的情况下,通过测量霍耳电压,再由公式(1)求出磁感应强度。 2、集成霍耳传感器

SS495A型集成霍耳传感器(线性测量范围0-67mT,灵敏度31.25V/T)由霍耳元件、放大器和薄膜电阻剩余电压补偿器组成。测量时输出信号大,不必考虑剩余电压的影响。工作电压Vs=5V,在磁感应强度为零时,输出电压为。它的输出电压U与磁感应强度B成线性关系。该关系可用下式表示 (2) 式中U为集成霍耳传感器输出电压,K为该传感器的灵敏度。 3、螺线管内磁场分布 单层螺线管内磁感应强度沿螺线管中轴线的分布可由下式计算 (3) 式中N为线圈匝数,L为螺线管长度,Im为励磁电流,D为线圈直径,x为以螺线管中心 作为坐标原点时的位置,亨/米为真空磁导率。 实验中所用的螺线管是由10层绕线组成。根据每层绕线的实际位置,用公式(3)可以计算每层绕线的B (x)值,将10层绕线的B(x)值求和,即可得到螺线管内的磁场分布。书中表1给出了励磁电流 (100mA)时螺线管内磁感应强度的理论计算值。由它可以容易得到不通励磁电流时螺线管内磁感应强度的理论计算值。(对于同一点x来说,C(x)是相同的,也就是说, 即B和成正比关系,即螺线管内任意一固定点的磁场的理论计算值和励磁电流成正比关系)。 表1 . 励磁电流I M =0.1A时螺线管内磁感应强度的理论计算值

实验十四--直流激励时霍尔式传感器位移特性实验

实验十四直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、±15V、测微头、数显单元、相敏检波、移相、滤波模板、双线示波器。 四、实验步骤: (一)直流激励时霍尔式传感器 1、将霍尔传感器按图5-1安装。霍尔传感器与实验模板的连接按图5-2进行。1、3为电源±4V, 2、4为输出。 图5-1 霍尔传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节R W1使数显表指示为零。

图5-2 霍尔传感器位移直流激励实验接线图 3、旋转测微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数 近似不变,将读数填入表5-1。 X(mm) 9.700 9.500 9.300 9.100 8.900 8.700 8.500 8.300 8.100 7.900 V(v) 0 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 X(mm) 7.700 7.500 7.300 7.100 6.900 6.700 6.500 6.300 6.100 5.900 V(v) 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18 0.19 X(mm) 5.700 5.500 5.300 5.100 4.900 4.700 V(v) 0.20 0.21 0.22 0.23 0.24 0.24 作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

相关文档
相关文档 最新文档