文档库 最新最全的文档下载
当前位置:文档库 › 碎屑岩储层分类表

碎屑岩储层分类表

碎屑岩储层分类表

火成岩

流纹岩Phyolite 斑状结构 流纹岩是一种火成岩,是火山的酸性喷出岩石,其化学成分与花岗岩相同(为同种岩浆形成的侵入岩和喷出岩)。灰白色或浅粉红色。常见有流纹构造和斑状结构、玻璃质结构、球粒结构、霏细结构等。斑晶常为石英、碱性长石,有时有少量斜长石;基质一般为致密的隐晶质或玻璃质。产状多为岩丘。流纹岩在中国东南沿海各省有广泛分布,北方辽宁、内蒙古、河北、山西、山东、吉林、黑龙江也都有分布。与之有关的矿产有高岭石、蒙脱石、叶蜡石、明矾和黄铁矿等。 成因:喷出 粒度:细粒 分类:酸性 颜色:浅色 产状:火山

玄武岩Basalt 似间粒结构 玄武岩是一种基性喷出岩,其主要成份是二氧化硅、三氧化二铝、氧化铁、氧化钙、氧化镁(还有少量的氧化钾、氧化钠),其中二氧化硅含量最多,约占百分之四十五至五十左右。矿物成份主要由基性长石和辉石组成,次要矿物有橄榄石,角闪石及黑云母等,岩石均为暗色,一般为黑色,有时呈灰绿以及暗紫色等。呈斑状结构,气孔构造和杏仁构造普遍。玄武岩是地球洋壳和月球月海的最主要组成物质,也是地球陆壳和月球月陆的重要组成物质。1546年,G.阿格里科拉首次在地质文献中,用basalt这个词描述德国萨克森的黑色岩石。汉语玄武岩一词,引自日文。日本在兵库县玄武洞发现黑色橄榄玄武岩,故得名。 成因:喷出 粒度:细粒 分类:基性 颜色:暗色 产状:火山

浮岩Pumice 斑状结构-基质似填间结构、气孔状构造 浮岩是一种多孔状的喷出岩。由火山玻璃、矿物和气泡所组成,是一种轻的、多气泡的、类似海棉状的火山岩。孔隙率达40%~70%,质轻可浮于水,俗称浮石,蜂窝石、水浮石等。浮岩的矿物多为半玻璃质或全玻璃质岩石。化学成分变化较大,含二氧化硅53%~75%以上、三氧化二铝9%~20%。常呈灰、灰白、白、黄白、肉红等色。化学工业中用作过滤剂、干燥剂、催化剂、填充剂以及农用杀虫剂的载体和肥料的控制剂。用作水泥的混合料或配制无熟料水泥,也可直接用作建筑材料。也可用作中药。 成因:喷出 粒度:细粒 分类:基性 颜色:暗色 产状:火山

储层微观特征及分类评价

4.储层微观特征及分类评价 4.1孔隙类型 本次孔隙分类采用以孔隙产状为主,并考虑溶蚀作用,结合本区实际,将孔隙分类如下: 1. 粒间孔隙 粒间孔隙是指位于碎屑颗粒之间的孔隙。它可以是原生粒间孔隙或残余原生粒间孔隙,即原生粒间孔隙在遭受机械压实作用、胶结作用等一系列成岩作用破坏后而保留下来的那一部分孔隙。多呈三角形,无溶蚀标志。另一方面它也可以是粒间溶蚀孔隙,即原生粒间孔隙经溶蚀作用强烈改造而成,或者是颗粒间由于强烈溶蚀作用的结果。粒间空隙一般个体较大,连通性较好。粒间孔隙是本区主要的孔隙类型。 2. 粒内(晶内)孔隙 这类孔隙主要是砂岩中的长石、岩屑等非稳定组分的深部溶蚀形成的,在研究区深层砂岩中普遍存在。长石等非稳定组分的溶蚀空隙可以进一步分为粒内溶孔和晶溶孔。晶内溶孔是指长石颗粒内的溶孔,而粒内溶孔是指岩屑等碎屑内部的易溶组分在深部酸性流体作用下形成。常常沿长石的解理缝、双晶纹和岩屑内矿物之间的接触部位等薄弱带进行溶蚀并逐渐扩展,因而常见沿解理缝和双晶结合面溶蚀形成的栅状溶孔。长石、岩屑等非稳定组分的溶蚀孔的发育常常使彼此孤立的、或很少有喉管项链的次生加大晶间孔的连通性大为改进,而且,这类孔隙的孔径相对较大,从而优化了深部储层的储集性能。 3. 填隙物孔隙 填隙物孔隙包括杂基内孔隙、自生矿物晶间孔和晶内溶孔。 杂基内孔隙多发育与杂基含量较高的(>10%)砂岩中,孔隙数量多,个体细小,连通性差。自生矿物晶间孔隙发育在深埋条件下自生矿物,如石英、方解石、沸石、碳酸岩小晶体以及石盐晶体之间,个体小,数量多随埋深有增加之趋势。但由于常生长于粒间孔隙中,连通性较好,又由于其晶体小,比表面积大,孔隙结构复杂,影响流体渗流。因此在埋深3500米以下,孔隙度降低较慢,而渗透率降低很快。这类晶间孔隙在徐东-唐庄地区相对发育。另外,杜桥白地区深层还可见到丰富的碳酸盐晶内溶孔和石盐晶内溶孔。 4. 裂隙 裂缝在黄河南地区较不发育,在桥24井沙三段3547.5米砂岩中见一构造裂缝,此外多见泥质粉砂岩或细砂岩中泥质细条带收缩缝。一般绕裂缝在构造活动强烈部位发育,对储层物性改善很有作用。 4.2孔隙结构特征 1.孔隙结构分析 岩石的储集空间不是由单一的孔隙类型组成,而是由多种孔隙类型构成的变化多样的复杂的孔喉系统。

火成岩

科技名词定义 中文名称: 火成岩 英文名称: igneous rock 其他名称: 岩浆岩;岩浆岩(magrnatic rock) 定义1: 地球深处的岩浆侵入地壳内或喷出地表后冷凝而形成的岩石。 所属学科: 水利科技(一级学科);水利勘测、工程地质(二级学科);工程地质(水利)(三级学科)定义2: 地下深处的岩浆侵入或喷出地表冷凝而成的岩石。 所属学科: 资源科技(一级学科);资源地学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 火成岩景观 火成岩或称岩浆岩,是指岩冷却后(地壳里喷出的岩浆,或者被融化的现存岩石),成形的一种岩石。现在已经发现700多种岩浆岩,大部分是在地壳里面的岩石。常见的岩浆岩有花岗岩、安山岩及玄武岩等。一般来说,岩浆岩易出现于板块交界地带的火山区。 目录 简介 分类 形成地点 纹理 粒度 晶体结构 化学成分 物质组成 产状和相 岩石种类 岩石成因

玄武岩浆 花岗岩浆 安山岩浆 橄榄岩浆 岩石演化 岩浆分异作用同化混染作用组合概念 岩浆岩杂岩体岩浆岩建造 岩套和岩浆旋回成岩结构 岩基 岩株 岩墙或岩脉 岩床 岩盖 岩盆 研究意义 简介 分类 形成地点 纹理 粒度 晶体结构 化学成分 物质组成 产状和相 岩石种类 岩石成因 起源 玄武岩浆 花岗岩浆 安山岩浆 橄榄岩浆 岩石演化 岩浆分异作用同化混染作用组合概念 岩浆岩杂岩体岩浆岩建造 岩套和岩浆旋回成岩结构

岩株 岩墙或岩脉 岩床 岩盖 岩盆 研究意义 展开 编辑本段 简介 火成岩(IgneousRock)由岩浆(Magma)直接凝固而成。高温之岩浆在从 火成岩标本(图1) 液态冷却中结品成多种矿物,矿物再紧密结合成火成岩。化学成分各异之岩浆,最後成为矿物成分各异之火成岩,种类繁多,细分之有数百种。如依其含矽量之高低做最简明之分类,火成岩有酸性(Acidic)、中性(Intermediate)、基性(Basic),及超基性(Ultrabasic)四大类。同时火成岩之晶体,因结晶时在地下之深度不一亦有粗细之别;将此分别代表深浅之粗细做为矿物成分以外之另一分类依据。 火成岩可分成如次之种类:晶体粗大之酸性火成岩为花冈岩(Granite),细小至肉眼不能辨识者为流纹岩(Rhyolite);晶体粗大之中性火成岩为闪长岩(Diorite)细小者为安山岩(Andesite);晶体粗大之基性火成岩为辉长岩(Gabbro),细小者为玄武岩(Basalt);晶体粗大之超基性火成岩为橄榄岩(Peridotite),此种火成岩无晶体细小者。晶体特大之火成岩统称伟晶岩(Pegmatite),但应指明其为伟晶花冈岩、伟晶闪长岩,或伟晶辉长岩。此外,不论其成分如何,岩浆在地面凝固时通常不暇结晶。此等不结晶火成岩均为火山岩,或成块状无结构之玻璃,酸性及中性者成黑耀石(Obsidian)或浮石(Pumice),基性者成玻璃质玄武岩(BasalticGlass),或在喷发时破碎成火山角砾岩(V olcanicBreccia)或凝灰岩(Tuff)。火成岩以岩基或岩脉形体侵入较古岩层,倘再穿至地面,则成火山。火成岩不仅为一切其他岩石之原料及多种矿产之母体,且为全球水分之来源。不论在深处或浅处,火成岩通常仅在地壳正有犟烈活动之时之地出现,并非一时处处或一处时时有为火成岩前身之岩浆活跃。岩浆在地下或喷出地表后冷凝形成的岩石。又称岩浆岩。大部分火成岩是结晶质的,小部分是玻璃质。火成岩的形成温度较高,一般介于700~1500℃之间。岩浆在地下冷凝固结形成的岩石称侵入岩;喷出地表冷凝固结形成的岩石称喷出岩。火成岩主要由硅酸盐矿物组成,在地壳中具有一定的产状、形态。许多金属矿产与非金属矿产都与火成岩有关,有时它本身就是重要的矿产资源。 编辑本段 分类 岩浆岩以形成地点,纹理,化学成分和岩石形状分类。 编辑本段

原油物性、碎屑岩储层分类简表

气藏采收率大致范围表单位:f 注:来源于《天然气储量规范》 气藏采收率大致范围表单位:f 注:来源于加拿大学者G.J狄索尔斯(Desorcy)归纳的世界不同类型气藏的采收率

1. 石油 (1) 按产能大小划分单井工业油流高产—特低产标准 千米井深的稳定日产量[t/(km.d)] 高产中产低产特低产 >15 >5-15 1-5 <1 (2)按地质储量丰度划分作为油田评价的标准: 地质储量丰度(1x104t/km2) 高丰度中丰度低丰度特低丰度 >300 >100-300 50-100 <50 (3)按油田地质储量大小划分等级标准: 石油地质储量(1x108t) 特大油田大型油田中型油田小型油田 >10 >1-10 0.1-1 <0.1 (4)按油气藏埋藏深度划分标准: 油气藏埋藏深度(m) 浅层油气世故(田) 中深层深层超深层<2000 2000-3000 >3200-4000 4000 此外,还有几种特殊石油储层的划分标准: 稠油储量指地下粘度大于50mPa·S的石油储量。 高凝油储量指原油凝固点在40℃以上的石油储量。

低经济储量指达到工业油流标准,但在目前技术条件下,开发难度大,经济效益低的石油储量。又有称为边界经济储量。 超深层储量指井深大于4 000m,开采工艺要求高的石油储量。 2.天然气 (1)按千米井深的单井稳定天然气产量划分标准: 千米井深稳定产量[104m3/(km·d)]高产中产低产 >10 3-10 <3 (2)天然气田储量丰度划分标准: 天然气储量丰度(108 m3/km2) 高丰度中丰度低丰度 >10 2-10 <2 (3)天然气田总储量划分大小标准: 田天然气田总储量(108m3) 大气田中气田小气田 >300 50-300 <50 (4)按气藏埋藏深度划分标准: 天然气藏埋深(m) 浅层气藏(田) 中深层深层超深层

岩浆岩试题

判断题 1.岩石可划分为岩浆岩、沉积岩及变质岩三大类。() 2.岩石是固态物质的集合体。() 3.常见造岩矿物按其成因和化学成分特点可以分为三类:主要矿物、次要矿物和副矿物。 ()4.岩石就是结晶质矿物的结合体。() 5.按岩石的结晶程度可分为全晶质、半晶质和玻璃质结构。() 6.凡全部由结晶质矿物组成的岩石的结构,无论其颗粒大小如何都称为全晶质结构。()7.斑状和似斑状结构是根据斑晶矿物的种类来划分的。() 8.根据岩浆岩的矿物共生组合,可以了解岩浆岩的化学成分特点。() 9.岩浆作用是岩浆的产生到完全冷凝固结成岩的全过程。() 10.岩浆中的主要矿物和次要矿物统称为岩浆矿物。() 11.成分相同的岩浆在不同冷凝条件下,其结晶程度、颗粒大小相同。() 12.火山岩的产状可以是整合的或不整合的。() 13.自然界中原生岩浆仅为有限的几种,但通过岩浆的分异、同化和混合作用,可以形成复杂多样的岩浆岩。() 14.成分相同的岩浆在不同冷凝条件下,其结晶程度和矿物颗粒大小相同。() 15.组成岩浆岩的所有矿物称为岩浆矿物。() 16.原生岩浆是上地幔物质和下部地壳物质局部熔融的产物。() 17.岩浆是由地幔岩石地部分熔融形成的熔融体。() 18.根据岩浆的化学成分可以了解岩浆岩的矿物组合特征。() 19.目前公认的主要原生岩浆为玄武岩、花岗岩、安山岩浆和超基性岩浆等。()20.岩浆是由下地幔的部分熔融形成的熔融体。() 21.岩浆的粘度与岩浆的氧化物、挥发组分、温度和压力有关。() 22.岩浆作用是指高温的熔浆侵入围岩引起的一系列变质作用。() 23.岩浆中挥发组分的存在可以降低岩浆的粘度。() 24.地下深处的含水岩浆比同成分的熔岩流的固结温度要高得多。() 25.岩浆岩中的主要矿物成分是岩石大类划分和命名的主要依据。() 26.岩浆岩的酸度是以岩浆中Al2O3、K2O、Na2O的含量为标准划分的。() 27.岩浆岩矿物共生组合取决于岩浆的化学成分和岩石形成的物理化学条件。()28.岩浆与岩浆岩在成分上的主要差别是岩浆中所含的挥发组分较岩浆岩高。()29.岩浆岩的矿物成分仅受岩浆中化学成分的控制。() 30.基性岩浆的粘度比酸性岩浆的粘度低,主要是由于前者SiO2含量低,岩浆温度也较高之故。()

原油物性、碎屑岩储层分类简表

原油物性分类简表 碎屑岩储层分类表(石油天然气储量计算规范,DZ/T 0217-2005 ) f

1.石油 (1)按产能大小划分单井工业油流高产—特低产标准千米井深的稳定日产量[t/(km.d)] 高产中产低产特低产 >15 >5-15 1-5 <1 (2)按地质储量丰度划分作为油田评价的标准: 地质储量丰度(1x104t/km2) 高丰度中丰度低丰度特低丰度 >300 >100-300 50-100 <50 (3)按油田地质储量大小划分等级标准: 石油地质储量(1x108t) 特大油田大型油田中型油田小型油田 >10 >1-10 0.1-1 <0.1 (4)按油气藏埋藏深度划分标准: 油气藏埋藏深度(m) 浅层油气世故(田) 中深层深层超深层 <2000 2000-3000 >3200-4000 4000 此外,还有几种特殊石油储层的划分标准: 稠油储量指地下粘度大于50mPa ? S的石油储量。 高凝油储量指原油凝固点在40C以上的石油储量

低经济储量指达到工业油流标准,但在目前技术条件下,开发难度大, 经济效益低的石油储量。又有称为边界经济储量。 超深层储量指井深大于4 000m,开采工艺要求高的石油储量。 2.天然气 (1)按千米井深的单井稳定天然气产量划分标准: 千米井深稳定产量]104m3/(km ? d)] 高产中产低产 >10 3-10 <3 (2)天然气田储量丰度划分标准: 天然气储量丰度(108 m3/km2) 高丰度中丰度低丰度 >10 2-10 <2 (3)天然气田总储量划分大小标准: 田天然气田总储量(108m3) 大气田中气田小气田 >300 50-300 <50 (4)按气藏埋藏深度划分标准: 天然气藏埋深(m) 浅层气藏(田) 中深层深层超深层

岩浆岩中矿物成分分类

岩浆岩中矿物成分分类 岩浆岩的矿物成分,对于了解岩石的化学成分,生成条件,以及岩石成因都有重大的意义。同时它也是岩浆岩分类和定名的主要依据。 组成岩浆岩的矿物,常见的不过二十多种,这些构成岩石的矿物通称为造岩矿物(rock-forming mineral)。 (一)硅铝矿物和铁镁矿物 常见造岩矿物,根据其化学成分特点,可以分为两类: (1)硅铝矿物SiO2与Al2O3的含量较高,不含FeO、MgO,其中包括石英类,长石类及似长石类。这些矿物的颜色较浅,所以又称为浅色或淡色矿物。 (2)铁镁矿物FeO与MgO的含量较高,SiO2含量较低。其中宝矿橄榄石类、辉石类、角闪石类及黑云母类等。这些矿物的颜色一般较深,所以又称为深色或 暗色矿物。 暗色矿物和浅色矿物在岩浆岩中的比例,是岩浆岩中的比例,是岩浆岩鉴定和分类的重要标志之一。岩浆岩中暗色矿物的含量(体积百分数)通常称色率,又称颜色指数。根据岩浆岩中德色率可大致推知岩石的化学性质,并可判断它们大概是属于哪一类岩石。 (二)主要矿物、次要矿物、副矿物 不同类型的岩石中出现的矿物含量不同。按照矿物在岩浆岩中的含量和在岩浆岩分类中的作用,可分为主要、次要和副矿物三类。 (1)主要矿物(essential mineral)只在岩石中含量多,并在确定岩石大类名称上起主要作用的矿物。例如,一般花岗岩的主要矿物是石英和尝试,没有石英 或石英含量不够,则岩石为正长岩类;没有长石则为石英岩或脉石英。所以 对花岗岩来说,石英和长石都是主要矿物。 (2)次要矿物(subordinate mineral)指在岩石中含量少于主要矿物的矿物。对于划分岩石大类虽不起作用,但对确定岩石种属起一定作用的矿物,含量一般 小于15%。如闪长岩类中,石英是次要矿物。闪长岩中有石英(含量达5%) 可称石英闪长岩,无石英,或石英含量〈5%,则称闪长岩,但二者均属闪 长岩大类。所以对闪长岩来说,石英不影响大类名称,是次要矿物。 次要矿物的存在是岩石化学特征的反映,如石英闪长岩比闪长岩SiO2含量 要高些,是中性岩中偏酸性的变种。所以次要矿物在详细划分岩石种属的时 候是有意义的。 (3)副矿物(accessory mineral)在岩石中含量很少,通常不到1%。因此,在一般岩石分类命名中不起作用。如磷灰石、榍石、磁铁矿等都是副矿物。虽然 如此,一个岩石中副矿物的种类、含量、表型特征、所含微量元素等等,对 于了解一个岩体的形成条件,对比不同岩体,确定岩体时代,以及对于某些 稀闪元素的普查找矿等,都有很重要的意义。当然在研究这类问题时,需要 对岩石做专门的岩矿工作。 (三)矿物的成因类型 岩浆岩矿物按其形成的阶段及形成时的物理化学条件,可划分出不同的成因类型。 (1)原生矿物(岩浆矿物magmatic mineral)是在岩浆冷凝过程中形成的矿物。 按成因特点有可分为正常矿物(正岩浆矿物)、残余矿物和反应矿物三个亚 类。 正常矿物(正岩浆矿物orthomagmatic mineral):是直接从岩浆中结晶出来, 而且在岩石形成过程中相对稳定的矿物。如喷出岩中新鲜透长石斑晶。

岩石的分类

岩石的分类 自然界有各种各样的岩石,按成因可分为岩浆岩、沉积岩和变质岩三大类。 一、岩浆岩 岩浆岩的形成: 地壳下部,由于放射性元素的集中,不断地蜕变而放出大量的热能,使物质处于高温(1000"C 以上)、高压(上部岩石的重量产生的巨大压力)的过热可塑状态。成分复杂,但主要是硅酸盐,并含有大量的水汽和各种其他的气体。当地壳变动时,上部岩层压力一旦减低,过热可塑性状态的物质就立即转变为高温的熔融体,称为岩浆。岩浆内部压力很大,不断向地壳压力低的地方移动,以致冲破地壳深部的岩层,沿着裂缝上升。上升到一定高度,温度、压力都要减低。当岩浆的内部压力小于上部岩层压力时,迫使岩浆停留下,冷凝成岩浆岩。 岩浆的成分: 主要有SiO2、TiO2、A1203、Fe203、FeO、MgO、MnO、CaO、K2O、Na2O等。 依其含SiO2量的多少,分为: 基性岩浆:特点是富含钙、镁和铁,而贫钾和钠,粘度较小,流动性较大。 酸性岩浆:富含钾、钠和硅,而贫镁、铁、钙,粘度大,流动性较小。 岩浆岩的分类:(成岩的地质环境) (1)深成岩: 岩浆侵入地壳某深处(约距地表3km)冷凝而成的岩石。由于岩浆压力和温度较高,温度降低缓

慢,组成岩石的矿物结晶良好。 (2)浅成岩: 岩浆沿地壳裂缝上升距地表较浅处冷凝而成的岩石。由于岩浆压力小,温度降低较快,组成岩石的矿物结晶较细小。 (3)喷出岩: 岩浆沿地表裂缝一直上升喷出地表,这种活动叫火山喷发,对地表产生的一切影响叫火山 作用,形成的岩石叫喷出岩。在地表的条件下,温度降低迅速,矿物来不及结晶或结晶较差。肉眼不易看清楚。 岩浆岩的产状: 是反映岩体空间位置与围岩的相互关系及其形态特征。由于岩浆本身成分的不同,受地质条件的影响,岩浆岩的产状大致有下列几种: 岩基: 深成巨大的侵入岩体,范围很大,常与硅铝层连在 一起。形状不规则,表面起伏不平。与围岩成不谐和接 触,露出地面大小决定当地的剥蚀深度。 岩株: 与围岩接触较陡,面积达几平方公里或几十平方公

岩浆岩变质岩沉积岩的分类

岩浆岩、沉积岩、变质岩的成因及其分类 二、岩浆岩、沉积岩、变质岩的成因及其分类 岩石按成因可分为三大类:岩浆岩(火成岩)、沉积岩和变质岩。 (一)岩浆岩 岩浆岩又称火成岩,是由地壳下面的岩浆沿地壳薄弱地带上升侵入地壳或喷出地表后冷凝而成的。岩浆是存在于地壳下面高温、高压的熔融状态的硅酸盐物质(它的主要成分是SiO2,还有其他元素、化合物和挥发成分)。岩浆内部的压力很大,不断向压力低的地方移动,以至冲破地壳深部的岩层,沿着裂缝上升,喷出地表;或者当岩浆内部压力小于上部岩层压力时迫使岩浆停留下,冷凝成岩。 依冷凝成岩时的地质环境的不同,将岩浆岩分为三类: 喷出岩(火山岩):岩浆喷出地表后冷凝形成的岩浆岩称为喷出岩。在地表的条件下,温度下降迅速,矿物来不及结晶或者结晶差,肉眼不易看清楚。如流纹岩、安山岩、玄武岩等。 浅成岩:岩浆沿地壳裂缝上升至距地表较浅处冷凝形成的岩浆岩。由于岩浆压力小,温度下降较快,矿物结晶较细小。如花岗斑岩、正长斑岩、辉绿岩等。 深成岩:岩浆侵入地壳深处(约距地表3公里)冷凝形成的岩浆岩。由于岩浆压力大,温度下降缓慢,矿物结晶良好。如花岗岩、正长岩、辉长岩等。 深成岩和浅成岩又统称侵入岩。 岩浆的化学成分相当复杂,其中影响最大的是SiO2。根据SiO2的含量,岩浆岩可以分为以下四类: 酸性岩类(SiO2含量>65%),如花岗岩、花岗斑岩、流纹岩等。 中性岩类(SiO2含量65%~52%),如正长岩、正长斑岩、粗面岩、闪长岩、安山岩等。 基性岩类(SiO2含量52%~45%),如辉长岩、辉绿岩、玄武岩等。 超基性岩类(SiO2含量<45%),如橄榄岩、辉岩等。 岩石中SiO2的含量越大,其颜色越浅,比重也越小。 岩浆岩的分类简表参见表10-1-2。 【例题7】岩浆岩中含量最多的成分是()。 A.SiO2

火成岩

火成岩(IgneousRock)由岩浆(Magma)直接凝固而成。高温之岩浆在从液态冷却中结晶成多种矿物,矿物再紧密结合成火成岩。化学成分各异之岩浆,最後成为矿物成分各异之火成岩,种类繁多,细分之有数百种。如依其含矽量之高低做最简明之分类,火成岩有酸性(Felsic)、中性(Intermediate)、碱性(Mafic),及超基性(Ultrabasic)四大类。同时火成岩之晶体,因结晶时在地下之深度不一亦有粗细之别;将此分别代表深浅之粗细做为矿物成分以外之另一分类依据。

火山岩在火山爆发岩浆喷出地面之后,再经冷却形成,所以又名喷出岩,由于冷却较快,所以一般形成细粒或玻璃质的岩石。 纹理 岩浆岩最明显的分别是纹理,主要与组成晶子(粒子)的大小和形状相关。 粒度 根据晶子粒的大小,岩浆岩分成五类: 伟晶岩质,有非常大的颗粒 晶岩质,只有大的颗粒 斑状,有一些大颗粒和一些小颗粒 非显晶质,只有小颗粒 玻璃状,没有颗粒 火成岩标本(图3) 晶体结构 晶体形状也是纹理的一个重要因素,以此分成三类: 全角:晶体形状完全保存。半角:晶体形状部分保存。他形:认不出晶体方向。其中以第3项居多

火成岩标本(图4) 化学成分 岩浆岩以两种化学成分分类: 二氧化硅的含量: 酸性火成岩含量>66% 中性火成岩含量66%~52% 基性火成岩含量52%~45% 超基性火成岩含量45%~40% 石英,碱长石和似长石的含量:长英质:含量很高,一般颜色较浅,密度较低。铁镁质:含量低,颜色深,而且密度较高。 火成岩标本(图5) 物质组成 ①化学成分。主要由氧、硅、铝、铁、钙、钠、钾、镁、钛、锰、氢、磷等12种元素组成。它们被称为造岩元素,约占火成岩总重量的99%以上,尤以氧最多,占总重量的46%以上。其余所有元素的重量总和还不到1%。它们常用氧化物百分数表示(表1)。SiO2是岩浆岩中最重要的一种氧化物,其含量是岩石分类的一个主要参数。如SiO2含量大于65%的火成岩称酸性岩,含量52%~65%者为

毛管压力曲线分类标准

1.根据毛管压力曲线形态对储层定性分类 (1)大孔粗喉型储层 特点:孔隙个体大,喉道粗,分选连通好,歪度偏大,孔隙度、渗透率均好。 (2)小孔粗喉型储层 特点:喉道粗,孔隙个体小,分选连通较好,孔隙度低--中,渗透率中等--低。 (3)大孔细喉型储层 特点:孔隙个体大,喉道偏细,孔隙度中等,渗透率偏低。 (4)小孔细喉型储层 特点:孔隙个体小,喉道偏细,细歪度,孔隙度低,渗透率低。 粗喉、中喉、细喉、微喉的分级: 级别主要流动喉道直径um 特粗喉>30um 粗喉20~30 中喉10~20 细喉1~10 微喉<1 美国岩心实验室(Core Laboratories)根据孔喉半径大小将孔喉分为三种类型: 1.大孔喉(Macropores)—孔喉半径大于1.5μm; 2粗微孔喉(Coarse micropores)—孔喉半径在0.5~1.5μm; 3.细微孔喉(Fine micropores)—孔喉半径小于0.5μm。 于是该实验室在压汞毛管压力资料分析时计算这三类孔喉在岩石中所连通的孔隙体积百分数, 即: 1.大孔喉(>1.5μm)的孔隙体积百分数; 2.粗微孔喉(0.5~1.5μm)的孔隙体积百分数; 3.细微孔喉(<0.5μm)的孔隙体积百分数。 根据 E.S.米赛尔和W.V.安琪哈尔特的研究,吸附水膜的厚度一般可达0.1μm(有时可以变厚)。这就意味着, 在自然条件下, 水膜可以把半径≤0.1μm的管道全部堵死, 使石油无法进入。马丁·雷克曼也曾明确宣称:应当把半径<0.1μm 的孔隙当成岩石固体部分看待, 祝总祺等建议扬弃了半径<0.1μm的孔隙之后, 其余的半径大于0.1μm的孔隙空间代表石油能够进入的孔隙空间, 并将这部分空间体积称为“有用孔隙体积”。笔者认为, 可将半径小于0.1μm的孔喉称作极细微孔喉, 可从压汞毛管压力曲线上计算出极细微孔喉连通的孔隙体积百分数, 把

火成岩分类

火成岩的分类 火成岩也叫岩浆岩,顾名思义,它就是由岩浆凝固而成的岩石。它们是各种各样的结晶质或玻璃质岩石。有的火成岩在地下就凝固了,有的则是在喷出地表面后凝固的。火成岩是组成地壳的主要岩石,许多金属和非金属矿藏的生成也都与火成岩有关系,所以人们很重视对它的研究。需要说明的是,火成岩并不完全是岩浆形成的,如有一部分花岗岩,它们是在高温度下,由其他岩石在固态下发生一些物理和化学变化而形成的。 绝大多数火成岩中只有9种元素,这9种元素又大多以氧化物(某一元素与氧元素发生化学反应后形成的新物质叫氧化物)的形式存在于岩石中,其中最多的是二氧化硅。 二氧化硅是最重要的形成岩石的材料,它与其他材料结合会形成橄榄石、辉石、云母、长石、闪石等多种造岩矿物。矿物是组成岩石的最小单位。在形成这些矿物后二氧化硅仍有多余(即过饱和)时,就会出现石英;如果二氧化硅含量不足就可能出现橄榄石或似长石类矿物(如霞石)等;当二氧化硅与其他造岩组分的含量适中,则不出现上述两类矿物,而形成辉石、角闪石和长石等矿物。这些矿物我们也可以叫它们为矿石。各种岩石其实就是由这样一些矿物组合而成的。单纯的一种矿物不能称作岩石。地下深处好像一个大熔炉,岩浆中的不同成分在那里进行一系列的

变化,当它们流动到一些地方,如侵入到岩石的空隙时,便会逐渐冷却下来。这时,那些矿物们就开始出现结晶,再加上其他各种原因,如温度、压力、成分等等,有的结晶会大些,有的会小些,有的是这样几种矿物结合在一起,有的是那样几种矿物结合在一起。知道了这一点,我们就基本明白了,地球上所以会有那多种不同的岩石,其实就是在于这些元素或造岩物质的不同组合而形成的。 长石、石英、云母、角闪石、辉石和橄榄石等都叫硅酸盐矿物,它们都是形成岩石的主要物质,被称为造岩矿物。火成岩就是由它们再加上一些少量的磁铁矿、钛铁矿、锆石、磷灰石和榍石等组成。这些造岩矿物的化学成分和颜色都各不相同,人们把它们分成两类:硅铝矿物和铁镁矿物。硅铝矿物颜色浅,铁镁矿物颜色深。颜色深的岩石,比重也较大,人们往往根据火成岩的颜色来推断岩石的化学成分和它们的性质。也就是说,颜色深的比颜色浅的岩石要重一些。 火成岩的种类很多,不同学者从不同角度和标准提出许多分类方案,有的根据岩石的产状、结构和构造,有的根据矿物成分,有的根据化学成分。通行的分类有3种:按产出和形成的条件分为深成岩(就是在地面以下很深的地方形成的岩石),如花岗岩、正长岩、闪长岩、辉长岩和橄榄岩等;浅成岩(就是在地面以下

储层精细划分

油田进入开发后期,进一步提高采收率、挖掘剩余油潜力的难度越来越大,必须 进行精细的地层划分、对比工作。建立在地震地层学、层序地层学基础之上的高分辨 率层序地层学1995 年引入我国油气勘探领域后,其地层划分与对比方法在油田开发 中得以应用并取得了很好的效果;20 世纪60 年代,我国的石油地质工作者依据陆相 盆地多级次震荡运动学说和湖平面变化原理,在大庆油田会战中创造出了适用于湖相 沉积储层精细描述的“旋回对比、分级控制、组为基础”的小层对比技术,80 年代 中期,在小层沉积相研究的基础上,又将这一方法进一步发展为“旋回对比、分级控 制、不同相带区别对待”的相控旋回等时对比技术[56-58],使之更加适用于湖盆中的河 流-三角洲沉积,这项技术以其精细性和实用性,成为我国陆相油田精细油藏描述的 技术基础,得到了广泛应用。高分辨率层序地层对比与大庆油田的相控旋回等时对比 技术,一种理论性强,一种实用性强,均属于地层学中的精细地层划分、对比技术, 有许多相似之处,也各有其优缺点。本章首先简要介绍了高分辨率层序地层学的基本 原理和大庆油田的相控旋回等时对比技术,然后对这两种方法的作了比较,最后综合 应用两种方法,对商河油田南部沙二段地层进行了划分与对比,建立了研究区沙二段 的精细等时地层格架。 3.1 高分辨率层序地层学基本原理 层序地层学作为地层划分与对比的方法广泛应用于油气勘探的各个阶段。层序地 层学已发展成三个不同的学派,即Exxon 沉积层序、Galloway 成因层序及Cross 高分辨率层序地层学,它们已成为层序研究的三种基本方法。其共性是都与事件地层学相 关联,并且都是基于岩石地层旋回性以及相对地层格架的测定。主要差别在于旋回之 间界面的确定。Galloway 成因地层学使用了最大海(湖)泛面,Exxon 沉积层序使用 了不整合面,而Cross 的高分辨率测序地层则采用地层基准面原理。Cross 的高分辨 率层序地层与Galloway 成因地层和Exxon 沉积层序之间的差别在于前者采用二分时 间单元(地层基准面旋回),而后者采用的是三分时间单元。这三种方法各有其优缺 点,只要弄清楚用的是哪一种方法,或是在同一研究中使用几种方法都是可以的[59] 。由美国科罗拉多区矿业学院Cross 教授提出的高分辨率层序地层学理论,是近年 来新掘起的层序地层学新学派[33]。该理论经邓宏文、徐怀大等传入我国后,在我国 第三章地层的精细划分与对比 24 陆相盆地储层预测研究中发挥着重要的作用[22,60],极大地提高了陆相盆地的储层预 测精度。高分辨率层序地层学是在现代层序地层学的基础上发展起来的,它所依据的 仍然是层序地层学的基本原理。它与盆地或区域规模的层序分析不同在于,它以露头、 岩心、测井和高分辨率地震反射剖面资料为基础,运用精细层序划分和对比技术,建 立油田乃至油藏级储层的成因地层对比骨架。这里所谓的“高分辨率”是指“对不同 级次地层基准面旋回进行划分和等时对比的高精度时间分辨率,也即高分辨率的时间 -地层单元既可应用于油气田勘探阶段长时间尺度的层序单元划分和等时对比,也适 合开发阶段短时间尺度的砂层组、砂层和单砂体层序单元划分和等时对比”[24]。 以郑荣才、邓宏文两位教授为代表的高分辨率层序地层专家将高分辨层序地层的 理论运用于我国含油气盆地储层预测的实践中,极大地丰富和发展了高分辨率层序地 层学理论。高分辨层序地层应用于陆相盆地层序分析中的关键技术之一是识别和划分 不同成因的界面与不同级次的基准面旋回[20-26]。郑荣才教授根据他在辽河、胜利、长庆、大庆及滇黔桂等油田的实践,将不同构造性质的湖盆在盆地构造-沉积演化序列 中的控制因素进行分类,根据界面成因特征提出了“巨旋回,超长周期旋回、长周期 旋回、中期旋回、短期旋回、超短期旋回”的划分方案,建立了各级次旋回的划分标

中国国家标准《石油天然气资源储量分类》

附件3 中国国家标准《石油天然气资源/储量分类》 (GB/T 19492-2004)与《联合国化石 能源和矿产储量与资源分类 框架》(2009)对接文件 2018年1月

目录 I.前言 (1) II.级别和亚级的直接对应 (13) III.GB/T 19492-2004级别细分为多个UNFC-2009亚级 (17) IV.GB/T 19492-2004勘探开发阶段划分与UNFC-2009项目划分对应的说明 (24) V.GB/T 19492-2004未界定和无分类数量的说明 (26)

I.前言 1.对接文件是说明在《联合国化石能源和矿产储量与资源分类框 架》(2009)(以下简称“UNFC-2009”)与资源分类专家组(EGRC)认可作为并行体系的另一分类体系之间关系的文件。文件提供了相应的说明和指南,指导用户利用UNFC-2009数字代码对并行体系产生的估算值进行分类。利用UNFC-2009数字代码报告估算值时,应明确相关的对接文件。 2.本文件对中国国家标准《石油天然气资源/储量分类》(GB/T 19492-2004)(以下简称“GB/T 19492-2004”)和UNFC-2009有关储量和资源量类别和级别进行了对比。 3.GB/T 19492-2004是指中华人民共和国国家质量监督检验检疫 总局中国国家标准化管理委员会于2004年4月30日发布,于2004年10月1日实施的《石油天然气资源/储量分类》(GB/T 19492 -2004)。该分类为中国的石油、天然气(游离气、气顶气和原油溶解气)和凝析油资源/储量的计算、评审和统计设立了统一的指导原则(图1)。

岩浆岩的分类与结构构造

岩浆岩的结构构造 一、岩浆岩的结晶程度 玻璃质结构:全部由玻璃质所组成的结构,它是由于岩浆温度在快速下降条件下,各种组分来不及作有规律的排列而冷却。 全晶质结构:全部由结晶矿物所组成的一种岩石结构, 半晶质结构:由部分结晶矿物和部分非晶质玻璃质说组成,多见于喷出岩及部分浅成、超浅成侵入体边部。 二、岩石中矿物颗粒的大小 矿物的绝对大小:粗粒结构直径>5mm,中粒直径5—1mm,细粒直径1—0.1mm 微粒<0.1mm 矿物的相对大小:等粒结构(岩石中同种主要矿物颗粒大小大致相等),不等粒结构⑴、连续不等粒结构:同种矿物颗粒大小不同,粒度依次降低,形成一个连续的变化系列。⑵板状结构:岩石由两类大小明显不同的颗粒组成,大的颗粒散步或玻璃之中,大的叫斑晶,小的叫基质,基质为微晶、隐晶或玻璃质结构。斑状结构是浅成岩和喷出岩的重要特征。这里的斑晶和基质是不同世代的产物。⑶似斑状结构:岩石由两类不同大小额矿物颗粒组成,但颗粒大小相差不悬殊。斑晶颗粒粗大基质为显晶质(粗粒、中粒)结构,且斑晶与基质成分一致。是同一个世代产物。见于部分中深成或浅成侵入岩。 三、岩石中矿物的自形程度 岩石矿物自形程度:组成岩石的矿物形态,它主要取决于矿物的结晶习性、演 讲结晶的物理化学条件、结晶的时间、空间等。 四、岩石中矿物颗粒间的相互关系 1交生结构:两种矿物相互穿插、有规则地生长在一起。根据矿物交生的形态可分为(文象结构:石英晶体呈尖棱状、象形文字状有规则地镶嵌在钾长石中。条纹结构:钾长是和钠长石油规律地交生。蠕虫结构:蠕虫状石英穿插生长在长石边部,并且石英的消失位一致)2、反应边结构:早期生成的矿物与残于熔浆发生反应,当这种反应不彻底时,在早期生成的矿物外围形成另一种成分完全不同的新矿物, 3、环带结构 4、包含结构或镶嵌结构 5、填隙结构。 岩浆岩的构造 一、侵入岩的构造 1、块状构造:组成岩石的矿物,在整块岩石中呈各项均匀地分布,岩石各部分在成分或结构上都是一致的 2、带状构造:游雨岩石各部分的成分、颜色或粒度有差异并相间成带状分布。常见于基性岩、超基性岩中。 3、斑杂构造;岩石的不同部位,颜色、矿物成分或结构差异很大,整个岩石呈不均匀的斑斑块块,杂乱无章。 4、流动构造:包刮流面、流线。流线是柱状矿物和长形析离体、 5、原生片麻状构造 二、喷出岩的构造 1、气孔和杏仁构造:气孔构造主要是见于熔岩层的顶部,是由于熔岩流在冷凝过程中,尚未逸出的气体上升汇集于岩流顶部冷凝后留下气孔。气孔被拉长石方向指示岩浆流动的方向。气孔构造常见于玄武岩。当气孔被岩浆期后矿物充填,叫杏仁构造

火成岩化学组分分类指数

碱值=(Na2O+K2O)/Al2O3(wt%) 碱度率AR=(Al2O3+CaO+(Na2O+K2O))/(Al2O3+CaO-(Na2O+K2O))(wt%) 铝饱和指数A/CNK=Al2O3/(CaO+Na2O+K2O)(分子比) NK/A=(Na2O+K2O)/Al2O3(wt%) 氧化指数OX= FeO/(FeO+Fe2O3)(wt%) 分异指数DI=Q+Or+Ab+Ne+Lc+Kp(CIPW计算数据) 固结指数SI=100×MgO/(MgO+Fe2O3+FeO+Na2O+K2O)(wt%) 长英指数FL=100(Na2O+K2O)/(Na2O+K2O +CaO)(wt%) 镁铁指数MF=100×(Fe2O3 + FeO)/(Fe2O3+ FeO+MgO)(wt%)。 CIPW标准矿物计算(Norm mineral calculation) CIPW标准矿物计算是根据岩石的化学分析结果计算出岩石中的矿物组成。此方法是目前最常用的矿物计算方法。由美国的三位岩石学家Cross, Iddings和Pirrson以及一位地球化学家Washington (1903)共同设计,为纪念他们的贡献就以他们姓名的第一个字母组合CIPW表示该计算方法。 Norm (标准矿物)is a calculated “idealized” mineralogy Mode (实际矿物)is the volume % of minerals seen 表1-4 用于CIPW标准矿物计算的标准矿物分子式,分子量和氧化物的分子量

CIPW计算方法和步骤: 1)、氧化物重量百分数除以分子量,得到分子数; 2)、将MnO加到FeO中,作为一个整体,因为Mn≒Fe易成类质同象置换; 3)、用3.33倍P2O5的CaO与P2O5形成磷灰石; 4)、如果FeO>TiO2 ,用等量的FeO和TiO2形成钛铁矿;如果FeO < TiO2,过量的TiO2和相同量的CaO先形成榍石(在形成钙长石后);如果仍有过量的TiO2,就形成金红石。 5)、用与K2O等量的Al2O3与其(K2O)结合形成正长石。 6)、剩余的Al2O3与等量的Na2O形成钠长石;若Al2O3不足,则进行(10)。 7)、如果仍有Al2O3剩余,则与等量的CaO形成钙长石。 8)、还有Al2O3多余,形成刚玉。 9)、如果CaO 与Al2O3形成钙长石后有CaO剩余,形成透辉石中的硅灰石。 10)、多于Al2O3的Na2O用以形成锥辉石;这时无An,Fe2O3与Na2O结合 11)、如果Fe2O3 > Na2O,则剩余的Fe2O3与FeO结合形成磁铁矿。 12)、如果与FeO形成磁铁矿后,仍有Fe2O3剩余,则剩余部分形成赤铁矿。 13)、将MgO与剩余的FeO计算出他们的相对比例。

常见岩浆岩的认识

常见岩浆岩的认识目的:1.学会观察和描述岩浆岩的颜色、结构、构造、主要矿物成分;2.掌握岩浆岩的肉眼鉴定方法和分类命名原则;3.能肉眼鉴定常见的岩浆岩,并根据岩浆岩的鉴定特征,对未知岩石进行分类命名。 一、岩浆岩的成分1.化学成分:组成岩浆岩的主要化学成分为 SiO2 ,此外, 还含有一些次要成分,如金属硫化物、金属氧化物、一些痕量元素、挥发组分等。 2。矿物成分:组成岩浆岩的矿物可分为浅色矿物和暗色矿物两类:石英 浅色矿物钾长石Si、Al 含量高、不含铁镁斜长石橄榄石 辉石 角闪石 黑云母 3.岩浆的类型 根据SiO2 的含量,可将岩浆分为以下四种类型,相应地构 成四种基本的岩浆岩。 化学成分矿物成分颜色 酸性岩浆SiO2 :> 66%: 中性岩浆SiO2 : 53?66% 基性岩浆SiO2 : 45?53% 超基性岩浆SiO2 :<45%

二、岩浆岩的构造 是组成岩浆岩的矿物集合体之间的排列和充填方式所反映 出来的形态特征。岩浆岩的构造除与岩浆本身的性质有关外,还取决于形成环境,常见的岩浆岩构造有:块状构造:矿物分布均匀,岩石致密,无孔洞,是侵入岩常见的构造。 气孔构造和杏仁构造:是喷出岩常见的构造,如果岩石中分布有大小不同、分布不均的圆形或椭圆形孔洞称气孔构造,如气孔被钙质或硅质充填,称杏仁构造。这种构造是融浆冷却时,尚未溢出的气体保留在岩石中形成的。 流纹构造:由不同颜色、不同成分或拉长的气孔定向排列表现出来的一种流动构造。是酸性喷出岩常见的构造。 三、岩浆岩的结构 是指岩浆岩的结晶程度、颗粒大小和自形程度。 1.据矿物的结晶程度和颗粒的绝对大小: 粗粒结构:d>5mm 显晶质结构(多见于侵入岩)中粒结构:2?5mm 细粒结构:<2mm 隐晶质结构(多见于喷出岩) (2)玻璃质结构:全部由非晶质矿物组成,由于熔浆迅速冷却形成的一种较均匀的玻璃状态物质

按SiO2 岩浆岩分类

岩石主要按成因分为三种:一、岩浆岩(也称火成岩),它是通过火山喷发等原因形成的,简单一点说就是,火山喷发出来的岩浆冷却之后形成的岩石。二、沉积岩是岩浆岩经过风化、水蚀等形成小颗粒,在地面堆积成一层,在经过一系列的地壳变动等外力作用下形成的。三、变质岩是沉积岩在火山喷发是与岩浆相互融合、变质冷却后形成。 对岩石观察时可以观察颜色\结晶状况\各种晶体的大小\岩石的构造,如喷出岩的气孔构造\流纹构造,沉积岩的层理结构等 补充一点 岩浆岩主要由硅酸盐矿物组成,此外,还常含微量磁铁矿等副矿物。根据岩石SiO2含量,岩浆岩可分为四大类:超基性岩:SiO2<45%;基性岩:SiO2=45~52%;中性、碱性岩:SiO2=52~65%;酸性岩:SiO2>65%。 岩石的碱度即指岩石中碱的饱和程度,岩石的碱度与碱含量多少有一定关系。通常把Na2O+K2O的重量百分比之和,称为全碱含量。Na2O+K2O含量越高,岩石的碱度越大。 A.Rittmann 1957年考虑SiO2和Na2O+K2O之间的关系,提出了确定岩石碱度比较常用的组合指数(σ)。σ值越大,岩石的碱性程度越强。每一大类岩石都可以根据碱度大小划分出钙碱性、碱性和过碱性岩三种类型。σ< 3.3时,为钙碱性岩;σ= 3.3-9.0时,为碱性岩;σ> 9时,为过碱性岩。 除了岩石化学成分之外,矿物成分也是岩浆岩分类的依据之一。在岩浆岩中常见的一些矿物,它们的成分和含量由于岩石类型不同而随之发生有规律的变化。如石英、长石呈白色或肉色,被称为浅色矿物;橄榄石、辉石、角闪石和云母呈暗绿色、暗褐色,被称为暗色矿物。通常,超基性岩中没有石英,长石也很少,主要由暗色矿物组成;而酸性岩中暗色矿物很少,主要由浅色矿物组成;基性岩和中性岩的矿物组成位于两者之间,浅色矿物和暗色矿物各占有一定的比例。 根据产状,也就是根据岩石侵入到地下还是喷出到地表,岩浆岩又可以分为侵入岩和喷出岩。侵入岩根据形成深度的不同,又细分为深成岩和浅成岩。每个大类的侵入岩和喷出岩在化学成分上是一致的,也就是说岩浆成分是相似的,但是由于形成环境不同,造成它们的结构和构造有明显的差别。深成岩位于地下深处,岩浆冷凝速度慢,岩石多为全晶质、矿物结晶颗粒也比较大,常常形成大的斑晶;浅成岩靠近地表,常具细粒结构和斑状结构;而喷出岩由于冷凝速度快,矿物来不及结晶,常形成隐晶质和玻璃质的岩石。 根据上述原则,首先把岩浆岩按酸度分成四大类,然后再按碱度把每大类岩石分出几个岩类,它们就是构成岩浆岩大家族的主要成员。比如超基性岩大类:钙碱性系列的岩石是橄榄岩-苦橄岩类;偏碱性的岩石是含金刚石的金伯利岩;过碱性岩石为霓霞岩-霞石岩类和碳酸岩类。基性岩大类:钙碱性系列的岩石是辉长岩-玄武岩类;相应的碱性岩类是碱性辉长岩和碱性玄武岩。中性岩大类:钙碱性系列为闪长岩-安山岩类;碱性系列为正长岩-粗面岩类;过碱性岩石为霞石正长岩-响岩类。酸性岩类:主要为钙碱性系列的花岗岩-流纹岩类。

相关文档