文档库 最新最全的文档下载
当前位置:文档库 › 超高层建筑的烟囱效应原理和实例

超高层建筑的烟囱效应原理和实例

超高层建筑的烟囱效应原理和实例
超高层建筑的烟囱效应原理和实例

超高层建筑的烟囱效应原理和实例

烟囱效应简介烟囱效应的产生。在有共享中庭、竖向通风(排烟)风道、楼梯间等具有类似烟囱特征——即从底部到顶部具有通畅的流通空间的建筑物、构筑物(如水塔)中,空气(包括烟气)靠密度差的作用,沿着通道很快进行扩散或排出建筑物的现象,即为烟囱效应。

是指户内空气沿著有垂直坡度的空间向上升或下降,造成空气加强对流的现象。最常见的烟囱效应是火炉、锅炉运作时,产生的热空气随著烟囱向上升,在烟囱的顶部离开。因为烟囱中的热空气散溢而造成的气流,将户外的空气抽入填补,令火炉的火更猛烈。

烟囱效应亦可以是逆向的。当户内的温度较户外为低(例如夏天使用空调时),气流可以在烟囱内向下流动,将户外空气从烟囱抽入室内。

烟囱效应的强度与烟囱的高度,户内及户外温度差距,和户内外空气流通的程度有关。在高楼大厦的环境内,烟囱效应可以是令火灾猛烈加剧的原因。在低层发生的火灾造成的热空气,因为密度较低,经电梯槽或走火通道内得以往上流动,使高热气体不断在通道的顶部积聚,结果是使火势透过这种空气的对流在大厦的顶层制造另一个火场。不单使扑救变得更困难,更会危及前往天台逃生的人员的生命安全。

高层建筑烟囱效应分析烟囱的主要作用是拔火拔烟,排走烟气,改善燃烧条件。高层建筑内部一般设置数量不等的楼梯间、排风道、送风道、排烟道、电梯井及管道井等竖向井道,当室内温度高于室外温度时,室内热空气因密度小,便沿着这些垂直通道自然上升,透过门窗缝隙及各种孔洞从高层部分渗出,室外冷空气因密度大,由低层渗入补充,这就形成烟囱效应。烟囱效应是室内外温差形成的热压及室外风压共同作用的结果,通常以前者为主,而热压值与室内外温差产生的空气密度差及进排风口的高度差成正比。这说明,室内温度越是高于室外温度,建筑物越高,烟囱效应也越明显,同时也说明,民用建筑的烟囱效应一般只是发生在冬季。就一栋建筑物而言,理论上视建筑物的一半高度位置为中和面,认为中和面以下房问从室外渗入空气,中和面以上房间从室内渗出空气。

在烟囱效应的作用下,室内有组织的自然通风、排烟排气得以实现,但其负面影响也是多方面的:首先,风沙通过低层部分各种孔洞、缝隙吹入室内,消耗热量并污染室内;其次,风通过电梯井由底层厅门人口被抽到顶层的过程中,导致梯门不能正常关闭;第三,当发生火灾时,随着室内空气温度的急剧升高,体积迅速增大,烟囱效应更加明显,此时,各种竖井成为拔火拔烟的垂直通道,是火灾垂直蔓延的主要途径,从而助长火势扩大灾情。有资料显示,烟气在竖向管井内的垂直扩散速度为3-4m /s,意味着高度为100m的高层建筑,烟

火由底层直接窜至顶层只需30s左右。如果燃烧条件具备,整个大楼顷刻问便可能形成一片火海。为有效减弱烟囱效应产生的负面影响,可采取以下一些措施:

1.在冬季,空气主要是通过各种外门从底层流入室内,最直接的方法是将建筑通向外界的所有门,尽可能地设置成两道门、旋转门、加装门斗或在外门内侧设置空气幕等,这对于大厅门尤为必要,对于那些次要通道连同地下停车场的外门口等,在冬季也要装门,至少应增挂厚门帘。在冬季,电梯井顶部的通风孔应适当向小调整或关闭。

2.对于已采暖的建筑物,尽量不使低层部分的室内温度高于高层部分。

3.当火灾发生时,不仅在任何季节通过各类竖井产生烟囱效应,而且还可能在小范围内

通过穿越楼板的空调管道,甚至是一些不引人注意的孔隙产生烟囱效应。对此,《高层民用建筑设计防火规范》(GB50045-1995 )有以下明确规定:

(1)当围护结构采用幕墙形式时,“与每层楼板、隔墙处的缝隙,应采用不燃烧材料严密

填实”。

(2)“建筑高度不超过100m 的高层建筑,其电缆井、管道井应每隔2~3 层在楼板处用相当于楼板耐火极限的不燃烧体作防火分隔;建筑高度超过100m 的高层建筑,应在每层楼板处用相当于

楼板耐火极限的不燃烧体作防火分隔”。因施工缺陷、桥架和管道根部形成的各种孔隙,必须用不燃烧材料填塞密实。

(3)“楼梯间和前室的门均为乙级防火门”,并“应具有自行关闭的功能”;各种竖向管井“井壁上的检查门应采用丙级防火门”:“电缆井、管道井与房间、走道等相连通的孔洞,其空隙应采用不燃烧材料填塞密实”:“垂直风管与每层水平风管交接处的水平管段上应设防火阀”:“厨房、浴室、厕所等的垂直排风管道,应采取防止回流的措施或在支管上设置防火阀”,以确保火灾时与走道及房间的分隔,防止各楼层之间通过竖井交叉蔓延。

实际案例一台湾汐止东方科学园区的大火,这场火在凌晨4:00 由三楼开始起火,火势一度获得控制,但接着火势跳跃中间的楼层,直接从十六楼又开始起火,据推测很可能就是所谓的烟囱效应造成此种延烧方式,接下来,就让我们来了解一下,何谓烟囱效应。

当火势在建筑物内部形成时,内部空气因受热而密度变低,烟流因浮力效应向上流动,而在高层建筑中,有楼梯间、电梯竖井及管路间等垂直通路,正好提供烟流垂直流动的管道,烟层于是向上蓄积,理想上烟层会到达楼顶后再以水平的方向漫延到楼层内部,而夹在起火层及烟层蓄积层间的楼层是不会有烟流漫延到楼层内部,一直要到烟层下降到该面的楼层,才会有烟流漫延。实际情形下,烟层是否会在楼顶蓄积要视楼层高度、外界温度、火场温度等决定,譬如说,大楼为30 层的建筑,由于上述条件的交互影响,烟层有可能到达不了楼顶,可能在楼层第20层开始蓄积,并向水平漫延,此时,20 层已上的楼层不会感受到有烟流的存在。

要防止烟囱效应对生命财产的危害,最重要的就是要做好各垂直通道、管道间的防火阻绝,不要有空隙让烟流可往水平方向流窜,就能将危害减到最小。另外也建议于垂直通道、管道间设置专用的侦测器,用以掌控藉烟囱效应流窜的烟流。

实际案例二

阿联酋迪拜市的纳赫勒港湾大楼(n akheel tower)是一座高度1000米以上的摩天大楼。

于它实在太高了,因此需要平面尺寸非常大(直径100米)。才能限制其高宽比不超过10,同时为了保证使用房间的采光要求,为止设计师采用的巨大的中庭直通上下,将有效房间布置在建筑物的四周,并将建筑体分割留出间隙,以利于减小横向效应和风荷载,这样还可以减小烟囱效应。一般的超高层设计中,比如500米左右的楼可能产生超过15 摄氏度的温度差,而纳赫勒港湾大楼(nakheel tower)的温度差异达到了25摄氏度以上,相当在大楼的顶底之间产生了接近800Pa 的压力,即底部或顶部具有400Pa左右的压力,这就大大超过了一般通用防火规范的要求,纳赫勒港湾大楼(n akheel tower)在实际设计中对于楼梯电梯井等空间采用了温度控制措施,以确保烟囱效应控制在合理的范围内。

实用案例

澳大利亚EnviroMission 公司正在准备建造一个规模庞大的太阳能风力发电站,即“太阳

塔”工程。该发电装置位于澳大利亚新南威尔士州(New South Wales)温特乌斯郡(Wentworth)的波朗格(Buronga)。

这座高达1000米的太阳塔”发电容量达到200MW,足够20万户家庭使用,相当于澳大利亚Tasmania 州首府Hobart 全市或者墨尔本主要郊区Geelong 全市的用电量。

“太阳塔”投入运行之后,每年可以减少至少90 万吨温室气体CO2 的产生,生命周期分析为2.5 年(名词解释:生命周期分析主要是针对产品进行的,是对某种产品从原料采掘到生产、到产品直至其最终处置的过程,考察其对环境的影响)。

澳大利亚“太阳塔”工程共分为六个阶段进行:设计优化(已完成)、商业可行性预测和探讨(已完成) 、可行性最终讨论(正在进行) 、设计和施工方案的最终审定、施工和调试、投入商业运作。EnviroMission 目前还处于第三阶段运作,主要包括项目协作和筹集资金。

技术原理

“太阳塔”技术原理如下:太阳对“太阳塔”底部圆盘状集热器中的空气加热,由于“烟囱效应”,集热区域的空气被太阳辐射加热后便向塔底部流去,在塔内集中并形成一股向上流动的强大空气流,热气流沿着“太阳塔”这根“烟囱”继续向上升,推动塔内特别设计的一组32 台每台发电容量为6.25MW的涡轮,产生电力。塔底入口处空气温度为70C,空气流速为

15m/s,塔顶空气出口温度为20C。到了晚上,白天积聚在热能存储单元中的热能,此时开

始释放出来,继续推动涡轮旋转,因而“太阳塔”可以一年365 天、一天24 小时不间断地工

作。

中试样机

为了确保澳大利亚“太阳塔”发电的成功,德国的设计者和建造工程公司Schlaich Bergermann and Partner联同西班牙政府,在西班牙的Manzanares建造了一个小型的样板装

置进行中试。中试样机在1982 至1989间的7年运行中产生了50KW 的电能。中试的研究结果验证了这种风道式太阳能发电的构想是可行的,过程中取得的数据为下一步扩大规模的设计提供了依据。

设计者

太阳塔”之设计出自于德国著名建筑工程师J?rg Schlaich教授的手笔。J、rg Schlaich教授是建造慕尼黑奥运场的德国公司Schlaich Bergermann and Partner 的始创合伙人之一,这德

国公司曾建造香港的汀九桥( Ting Kau Bridge )及加拿大蒙特利尔奥运场。

烟囱效应在暖通工程中的应用

1 、概述

(1)烟囱效应的产生。在有共享中庭、竖向通风(排烟)风道、楼梯间等具有类似烟囱特征—

——即从底部到顶部具有通畅的流通空间的建筑物、构筑物(如水塔)中,空气(包括烟气)靠

密度差的作用, 沿着通道很快进行扩散或排出建筑物的现象,即为烟囱效应。空气(烟气)从低处压入, 穿过建筑物向上流动, 这种现象被称为正热压作用。在中间某一高度, 内外压力相同, 即存在一个中性压力面, 由烟囱效应造成的压力差和气流分布, 以及中性压力面的位置,取决于建筑物内分隔物的开口对气体流动的限制程度。

(2)烟囱效应的危害。烟囱效应随建筑物的内外温度差以及建筑物高度的增加而增加, 在火灾发生于较低层时, 烟囱效应对竖井和较高层的影响尤为显著, 此时烟从低层上升至高层内的力更大。大楼里纵横交错的各种管道、高层建筑中垂直的楼梯间、电梯井、衣物滑槽以及封

堵不严的管道井, 火灾时由于燃烧放出大量热量,室内温度快速升高,使火灾的蔓延加快。烟气沿竖向井道上升的速度有时甚至可达8m/s, 火势沿外墙向上扩大,玻璃幕墙建筑遭受危险更大。

2、烟囱效应的防治

烟囱效应的防治主要是侧重于火灾中火焰与烟气沿“烟囱” 通道的传递与蔓延。对于普通的住宅与公共建筑,烟囱效应主要产生于楼梯间、共享大厅; 对于高档写字楼和宾馆等建筑空调、通风系统的风道也是烟囱效应的构成因素,这类通道较长、阻力大,相对于前者烟囱效应不是很明显。烟囱效应的另一个防治目标就是有毒气体的扩散。烟囱效应的防治办法有:

(1)通道与楼梯间之间要设置防火门,保证闭门器的完好。

(2)楼梯间和共享大厅内不能堆放易燃、易挥发的有毒气体、易产生烟气的材料与物体, 保证一定人员通行。

(3)通风道设置防火阀, 不利于人工操作的调节阀等应采取电动装置。(4) 充分利用建筑物的构造进行自然排烟。在自然作用力下, 室内外空气对流进行排烟,一般采用可开启的外窗、窗外阳台或凹

廊进行自然排烟。

3、烟囱效应的利用

烟囱效应的利用主要是达到夏季室内温度比较舒适、不消耗或尽量少消耗动力及电能进行通风换气的功效。

(1) 充分利用共享中庭, 以“堵”、“疏”方式合理组织通风。内中庭, 从底层一直通向屋顶, 一年当中,中庭会形成各种环境效应, 是一个可调节的开启空间, 能促使建筑形成良好的自然通风。中庭顶部有电动天窗, 两侧各有一排排烟和通风两用的排烟窗, 在空气热动力作用下, 新鲜空气从下向上自然运动, 形成“烟囱效应” ,使污浊空气和热气排出大楼。

(2) 住宅建筑推广字母式风道,扩大母风道截面积, 增大通风效果。旧式的子母风道的母风道截

面积小,内部粗糙度过大, 导致自然通风的阻力加大。母风道截面加大后, 自然通风能保持在层流状态,在温差的影响下,获得较大的流速,形成负压,室内空气顺利通过子风道进入母风道排出。(3)有些建筑采用了呼吸式双层玻璃幕墙系统, 在设计上打破了传统玻璃幕墙系统的结构形式。内外层窗中间增加了60 厘米的通道, 内置电动遮阳百叶, 外层底部设置可调节开启的通风口,上部间隔设有电动平行外推窗。根据室内外不同气候状况进行调节, 在空气动力作用下达到冬暖夏凉的最佳效果。整个幕墙系统实现自动调节, 最大程度满足人体的健康和舒适,

节约了暖通和照明设施的能耗。通过电动执行机构的组合控制, 有效利用自然气流、风力、

风量、照度及室内温差等自然条件, 达到节能效果。

4、结语

烟囱效应是因为有高、大的空间存在, 在热压的作用下, 产生了空气较强烈的流动。如何防止与消减烟囱效应, 以最大限度地减小对火灾的增强作用; 如何利用与制造烟囱效应,以改善建筑物内的环境,最大限度地增加通风换气, 应是建筑设计与施工中注意的问题

压电效应论文

中南大学 材料科学与工程学院 课程设计论文 题目:压电效应简析专业:材料加工 班级:1010 姓名:商伦阳 学号:0607101031 指导教师:余琨 二○一二年十一月

压电效应简析 一、压电效应(piezoelectric effect)概述 1.1 压电效应的定义 某些电介质,当沿着一定方向对其施力使它变形,其内部就会产生极化现 象,同时在它的两个表面上产生符号相反的电荷,当外力去掉后,它又重新恢复 到不带电的状态,我们把这种现象称为压电效应。 1.2 压电效应分类 压电效应分为正压电效应和负压电效应。 正压电效应:当晶体受到某固定方向外力的作用时,内部就产生电极化现象, 同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电 的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电 荷量与外力的大小成正比。通过此过程把机械能转化成电能的现象,称为正压电 效应 负压电效应:当在电介质极化方向施加电场,引起晶体机械变形的现象,称为负压电效应。它是压电效应的逆效应。其产生的原因是,压电晶体中的晶格在电场力的作用下产生较强的内应力而导致变形。压电晶体在交变电场的作用下,其内应力和形变都会发生周期性变化,从而产生机械振动。也称为电致伸缩效应。 1.3 压电效应的特性与作用:由压电效应原理可知,当作用力的方向改变时,电荷的极性也随之改变。因此,压电材料可实现机械能—电能量的相互转换。

1.4 压电效应的历史和发展 压电效应是1880年由法国著名物理学家,放射学先去皮埃尔?居里先生和雅克?保罗?居里发现的。他们发现某些晶体特别是石英等受到挤压或者拉伸力的作用后,会在相对的两个平面上产生异号电荷,且密度与电压成正比。一旦电荷出现,放点过程的发光便相伴而生。由此可知,当石英晶质体绵延几公里的时候,震前上百巴的应力变化足以造成百万伏的触发电压,低空的放点发光便在情理之中。 经过一百多年的研究,人们发现压电效应有两种,机械能转变为电能是正效应,相反为逆效应,而且有20多种晶体均含有压电效应。人工已经合成了大量的性能更佳的压电陶瓷材料,不仅发现压电材料在机械能,电能,热能,光能之间有相互转换的良好关系,还发现人体组织,毛发和骨骼都有生物压电效应。我们日常使用的打火机,音响,手机,电子表等等都使用了压电材料。目前这种材料制成的产品已广布于各个领域。 二、压电晶体 2.1 什么是压电晶体:有一类十分有趣的晶体,当你对它挤压或拉伸时,它的两端就会产生不同的电荷。这种效应被称为压电效应。能产生压电效应的晶体就叫压电晶体。水晶(α -石英)是一种有名的压电晶体。 2.2 晶体有无压电效应的判断:晶体不受外力作用时,晶体的正负电荷中心相重合,单位体积中的电矩(极化强度)等于零,晶体对外不呈现极性,而在外力作用下晶体变形时,正负电荷的中心发生分离,此时单位体积中的电矩不再为零,晶体表现出极性;另外一些晶体由于具有中心对称的结构,无论外力如何作用,晶体正负电荷的中心总是重合在一起,因此这些晶体不会出现压电效应。 具有压电效应的晶体 不具有压电效应的晶体

压电效应及其应用

压电效应及其应用 电介质在电场中可以极化,某些电介质,当沿着一定方向对它施力而使其变形时,在它的端面上产生符号相反的电荷。这种没有电场作用,只是由于形变而产生的极化电荷现象称为压电效应。能产生压电效应的晶体,称为压电晶体, 常见的压电晶体有石英晶体()、压电陶瓷、钛 2SiO 酸钡()、锆钛酸铅等。 3a B TiO 压电晶体具有以下功能: (1)压电效应:当外力加于晶体上时,晶体发生 形变,导致在受力的两个晶面上出现等量异号的电 荷。压力产生的极化电荷与拉力产生的极化电荷的方向相反,如图7-64所示。极化电荷的多少与外力引起的形变程度有关。压电效应产生的原因是,在外力作用的方向上,由于晶体发生形变造成晶格间距的变化,使得晶粒的正负电荷中心发生分离,从而产生极化现象。 (2)电致伸缩效应:压电晶体在电场力的作用下发生形变的现象,叫做电致伸缩效应。它是压电效应的逆效应。其产生的原因是,压电晶体中的晶格在电场力的作用下产生较强的内应力而导致变形。压电晶体在交变电场的作用下,其内应力和形变都会发生周期性变化,从而产生机械振动。 (3)热电效应:某些压电晶体通过温度的变化可以改变极化状态,从而在某些相对应的表面上产生极化电荷,这种现象叫做热释电效应。反之,这种晶体在外电场作用下,其温度会发生显著变化,这种现象叫做电生热效应。热释电效应的发生源于晶体的各向异性,是由于晶体在不同方向上的线膨胀系数不同而引起的。 由于压电晶体具有以上的特殊功能,因而在现代科技中有着广泛的应用,诸如压电晶体振荡器、压电电声换能器、压电变压器、压电传感器等。现举例说明如下: 压电晶体振荡器压电晶体振荡器是将机械振动变为同频率的电振荡的器件,由夹在两个电极之间的压电晶片构成。由于压电晶片的机械振动 有一个确定的固有频率,所以它对频率非常敏感。石英 晶体振荡器是目前应用最多的一种压电晶体振荡器,由 于它制造容易、性能稳定、精度高、体积小。因此广泛 应用于军事通讯和精密电子设备、小型电子计算机、微 处理机以及石英钟表内作为时间或频率的标准。有恒温 控制的石英晶体振荡器,频率稳定度可达量级,可 1310?作为原子频率标准而用于原子钟内。 石英晶体振荡器由信号源和石英晶体组成,如图7-65所示。 其中石英晶片是将石英晶

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

关注超高层建筑烟囱效应可能引发的安全问题_高甫生

关注超高层建筑烟囱效应 可能引发的安全问题* 哈尔滨工业大学 高甫生☆ 摘要 针对寒冷地区超高层建筑,分析了烟囱效应的作用原理与影响因素。指出热压与烟囱效应并非等同概念,烟囱效应的实际效果不仅取决于热压,还受围护结构的密闭性及建筑内部隔断影响。阐述了烟囱效应可能引发的安全问题。分析了提高围护结构的密闭性、增加建筑内部隔断对减小烟囱效应危害的实际效果。指出治理烟囱效应危害的最简单易行、最可靠的办法是从建筑设计开始,做好建筑内部的水平隔断、竖直隔断,使作用于建筑内的热压被层层分割,并被内部隔断的阻力所消耗。 关键词 超高层建筑 安全问题 烟囱效应 热压 疏散通道 火灾 围护结构密闭性 内部隔断 Safety issues caused by  stack effect insuper high-rise building sBy  Gao Fusheng★ Abstract In view of the super high-rise buildings in the cold region,analyses the principle andinfluencing factors of stack effect.Points out that the thermal pressure and the stack effect are not thesame concept.The actual effect of the stack effect depends on the thermal pressure and air tightness of theenvelopes and internal partitions of the building.Expounds the safety issues resulted in by the stack effect.Analyses the actual effect of increasing the air tightness of building envelope and inside partitions onreducing the risk of the stack effect.Considers that the easiest and the most reliable way of controlling thestack effect is to strengthen the horizontal and vertical partitions in buildings from building  design.So thatthe thermal pressure is divided gradually by internal partitions and consumed by  the internal resistance.Keywords super high-rise building,safety issue,stack effect,thermal pressure,exit passage way,fire,air tightness of building  envelope,internal partition★Harbin Institute of Technology ,Harbin,China * 中建股份科技资助项目(编号:CSCEC-2010-Z- 01)①超高层建筑_ 百度百科[EB/OL].[2012-07-08]∥baike.baidu.com ②全球摩天排行榜-世界高楼排名-高楼迷数据库[ EB/OL].[2012-07-08]∥top  gaoloumi.com0 引言 1972年8月, 在美国宾夕法尼亚州伯利恒市召开的国际高层建筑会议上,专门讨论并提出高层建筑的分类和定义,超高层建筑指40层以上、 高100m以上的建筑物①[1]。我国GB 50352—2005《民用建筑设计通则》规定:建筑高度超过100m时,不论住宅及公共建筑均为超高层建筑[ 2] 。上世纪70年代前, 由于建造技术、材料、资金和安全性等问题, 除了美国外,超高层建筑还较少见。此后,随着城市的发展,新材料、新技术的应用, 超高层建筑在亚洲的中国香港、新加坡、日本等地逐渐增多,特别是2000年以后,更是如雨后春笋般拔地而起,世界第一高楼的纪录不断被刷新。近年来,由于中国经济的崛起,超高层建筑在中国迅速发展。 据有关资料②,笔者作了统计,截至2011年, *☆ 高甫生,男,1938年5月生, 大学,教授,博士生导师150090哈尔滨工业大学二学区2644信箱(0451)86282604 E-mail:gfs@hit.edu.cn收稿日期:2012-08- 27

超高层建筑的烟囱效应原理和实例

超高层建筑的烟囱效应原理和实例 烟囱效应简介 烟囱效应的产生。在有共享中庭、竖向通风(排烟)风道、楼梯间等具有类似烟囱特征——即从底部到顶部具有通畅的流通空间的建筑物、构筑物(如水塔)中,空气(包括烟气)靠密度差的作用,沿着通道很快进行扩散或排出建筑物的现象,即为烟囱效应。 是指户内空气沿著有垂直坡度的空间向上升或下降,造成空气加强对流的现象。 最常见的烟囱效应是火炉、锅炉运作时,产生的热空气随著烟囱向上升,在烟囱的顶部离开。因为烟囱中的热空气散溢而造成的气流,将户外的空气抽入填补,令火炉的火更猛烈。 烟囱效应亦可以是逆向的。当户内的温度较户外为低(例如夏天使用空调时),气流可以在烟囱内向下流动,将户外空气从烟囱抽入室内。 烟囱效应的强度与烟囱的高度,户内及户外温度差距,和户内外空气流通的程度有关。 在高楼大厦的环境内,烟囱效应可以是令火灾猛烈加剧的原因。在低层发生的火灾造成的热空气,因为密度较低,经电梯槽或走火通道内得以往上流动,使高热气体不断在通道的顶部积聚,结果是使火势透过这种空气的对流在大厦的顶层制造另一个火场。不单使扑救变得更困难,更会危及前往天台逃生的人员的生命安全。 高层建筑烟囱效应分析 烟囱的主要作用是拔火拔烟,排走烟气,改善燃烧条件。高层建筑内部一般设置数量不等的楼梯间、排风道、送风道、排烟道、电梯井及管道井等竖向井道,当室内温度高于室外温度时,室内热空气因密度小,便沿着这些垂直通道自然上升,透过门窗缝隙及各种孔洞从高层部分渗出,室外冷空气因密度大,由低层渗入补充,这就形成烟囱效应。烟囱效应是室内外温差形成的热压及室外风压共同作用的结果,通常以前者为主,而热压值与室内外温差产生的空气密度差及进排风口的高度差成正比。这说明,室内温度越是高于室外温度,建筑物越高,烟囱效应也越明显,同时也说明,民用建筑的烟囱效应一般只是发生在冬季。就一栋建筑物而言,理论上视建筑物的一半高度位置为中和面,认为中和面以下房问从室外渗入空气,中和面以上房间从室内渗出空气。 在烟囱效应的作用下,室内有组织的自然通风、排烟排气得以实现,但其负面影响也是多方面的:首先,风沙通过低层部分各种孔洞、缝隙吹入室内,消耗热量并污染室内;其次,风通过电梯井由底层厅门人口被抽到顶层的过程中,导致梯门不能正常关闭;第三,当发生火灾时,随着室内空气温度的急剧升高,体积迅速增大,烟囱效应更加明显,此时,各种竖井成为拔火拔烟的垂直通道,是火灾垂直蔓延的主要途径,从而助长火势扩大灾情。有资料显示,烟气在竖向管井内的垂直扩散速度为3-4m/s,意味着高度为100m的高层建筑,烟火由底层直接窜至顶层只需30s左右。如果燃烧条件具备,整个大楼顷刻问便可能形成一片火海。为有效减弱烟囱效应产生的负面影响,可采取以下一些措施∶ 1.在冬季,空气主要是通过各种外门从底层流入室内,最直接的方法是将建筑通向外界的所有门,尽可能地设置成两道门、旋转门、加装门斗或在外门内侧设置空气幕等,这对于大厅门尤为必要,对于那些次要通道连同地下停车场的外门口等,在冬季也要装门,至少应增挂厚门帘。在冬季,电梯井顶部的通风孔应适当向小调整或关闭。 2.对于已采暖的建筑物,尽量不使低层部分的室内温度高于高层部分。 3.当火灾发生时,不仅在任何季节通过各类竖井产生烟囱效应,而且还可能在小范围内通过穿越楼板的空调管道,甚至是一些不引人注意的孔隙产生烟囱效应。对此,《高层民用建筑设计防火规范》(GB50045-1995)有以下明确规定∶ (1)当围护结构采用幕墙形式时,“与每层楼板、隔墙处的缝隙,应采用不燃烧材料严密填实”。

压电效应及应用

压电效应应用及现状 [编辑本段] 一、原理: 压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、应用: 压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。 1、换能器 换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件 压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。目前对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。 压电聚合物水声换能器研究初期均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。 压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。 2、压电驱动器 压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P (VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电效应及其原理

压电效应及其原理 压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。依据电介质压电效应研制的一类传感器称为为压电传感器。 压电效应可分为正压电效应和逆压电效应。 正压电效应 是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。大多是利用正压电效应制成的。 逆压电效应 是指对晶体施加交变电场引起晶体机械变形的现象。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型5种基本形式。是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 两种压电效应的关系 可以证明,正压电效应和逆压电效应中的系数是相等的,且具有正压电效 的材料必然具有逆压电效应。 依据电介质压电效应研制的一类传感器称为为压电传感器。 这里再介绍一下电致伸缩效应。电致伸缩效应,即电介质在电场的作用下,由于感应而产生应变,应变大小与电场平方成正比,与电场方向无关。压电效应仅存在于无对称中心的晶体中。而电致伸缩效应对所有的电介质均存在,不论是非晶体物质,还是晶体物质,不论是中心对称性的晶体,还是极性晶体。

电子产品散热中的“烟囱效应”

电子产品散热中的“烟囱效应” 在做一些无风扇产品设计的时候经常会听到一个词汇“烟囱效应”,很多**希望发挥“烟囱效应”的作用来增强电子产品的散热。将建筑排烟的原理应用于电子产品的散热不失是一个聪明的做法。但仔细分析起来此效应与彼效应又不尽相同。 对于“烟囱效应”的定义普遍的说法是指空气沿着有垂直坡度的空间上升或下降,造成空气加强对流的现象。因此从结果上讲,“烟囱效应”的作用是为了增强对流。不过建筑物利用强化对流来排烟/风,而电子产品利用强化对流来散热。 从成因上讲,有人解释为是热空气的上升,冷空气的下降,即密度差的推动产生了“烟囱效应”。这种说法其实只讲出了“烟囱效应”的一部分成因。 画一个烟囱来分析一下,如下图。 气流在烟囱中的流动可归为管道流动,应该遵循伯努利方程,即 或 方程中包含3项:静压项,重力势项和动能或称动压项。 前面提到的密度差的推动体现在重力势一项,在出口处空气密度大,垂直高度大,所以烟囱的出口处重力势大于入口处,这是“烟囱效应”产生的第一推动力。 另一方面,我们看到的烟囱往往高高矗立,那么在烟囱出口端通常或强或弱的受到空气流动(风)的影响,所以出口处得气流速度比较高。而入口端通常连接室内,空气流动较弱,也就是下图中的v2大于v1,这使得烟囱出口处的动压大于入口处的动压,这是“烟囱效应”产生的第二推动力。

综合两方面原因,气流在烟囱出口处的重力势和动能都大于入口处,导致入口处的静压要强于出口处的静压,受静压的推动,气流从烟囱底部流向顶部,产生了强化对流的效果。 对于自然对流散热的电子产品,我们通常能做到的是将风道设计为有一些垂直高度,这其实只利用了重力势的推动力,而无法利用到动压的推动力。这就是此效应(电子产品散热的烟囱效应)与彼效应(真实烟囱的效应)的差别。此效应其实并非完整意义上的“烟囱效应”。 当然也有完整意义的在电子产品散热中应用,如爱立信推出的管塔基站,其将基站置于一个高高的管塔内部,管塔产生的烟囱效应增强了内部的对流,从而为内部的基站散热。

国内外十大超高层建筑

国内外十大超高层建筑 1. 哈利法塔(BurjKhalifa T ower) 工程名称哈利法塔(BurjKhalifa Tower) 地点阿拉伯联合酋长国迪拜 建设方EMAAR Properties 设计美国SOM设计所 建造商Samsung Engineering & Construction, BESIX 开工时间2004年9月21日 竣工时间2010年1月4日 工程类别高层建筑 结构形式混凝土结构 建筑面积454249㎡ 占地面积104210㎡ 高度828m 层数160层 钢筋用量39000吨 结构钢用量4000吨 工程简介 哈利法塔(BurjKhalifa Tower)原名迪拜塔(Burj Dubai),又称迪拜大厦或比斯迪拜塔,是位于阿拉伯联合酋长国迪拜的一栋已经建成的摩天大楼,有160层,总高828米。迪拜塔由韩国三星公司负责营造,2004年9月21日开始动工,2010年1月4日竣工启用,同时正式更名哈利法塔。塔体采用钢筋混凝土结构,平面为Y形,采用成束筒结构,中部为六边形钢筋混凝土核芯,侧翼也设置钢筋混凝土核心筒,形成一扶壁式结构。混凝土采用特殊配方的高性能混凝土。尖塔可伸缩,总长200m,采用钢结构,用液压千斤顶顶升。基础采用桩筏基,筏板厚度3.7米,采用直径1.5米钻孔灌注桩,桩长43米。 2.台北101大楼 工程名称台北101大楼 地点中国台北 建设方台北金融大楼公司 设计建筑:台湾李祖原王重平建筑事务所结构:台湾永俊工程顾问股份有限公司 建造商KTRT Joint Venture(熊谷组、华熊营造、荣民工程、大友为营造) 建设情况建成 开工时间1998年1月 竣工时间2003年10月17日 工程类别高层建筑 结构形式钢结构 建筑面积412500㎡ 占地面积30277㎡

烟囱效应

闷顶 吊顶与屋盖或上部楼板之间的空间。 烟囱效应 烟囱效应的产生。在有共享中庭、竖向通风(排烟)风道、楼梯间等具有类似烟囱特征——即从底部到顶部具有通畅的流通空间的建筑物、构筑物(如水塔)中,空气(包括烟气)靠密度差的作用,沿着通道很快进行扩散或排出建筑物的现象,即为烟囱效应。 是指户内空气沿着有垂直坡度的空间向上升或下降,造成空气加强对流的现象。 最常见的烟囱效应是火炉、锅炉运作时,产生的热空气随著烟囱向上升,在烟囱的顶部离开。因为烟囱中的热空气散溢而造成的气流(Draft),将户外的空气抽入填补,令火炉的火更猛烈。 烟囱效应亦可以是逆向的。当户内的温度较户外为低(例如夏天使用空调时),气流可以在烟囱内向下流动,将户外空气从烟囱抽入室内。 烟囱效应的强度与烟囱的高度,户内及户外温度差距,和户内外空气流通的程度有关。

在高楼大厦的环境内,烟囱效应可以是令火灾猛烈加剧的原因。在低层发生的火灾造成的热空气,因为密度较低,经电梯槽或走火通道内得以往上流动,使高热气体不断在通道的顶部积聚,结果是使火势透过这种空气的对流在大厦的顶层制造另一个火场。不单使扑救变得更困难,更会危及前往天台逃生的人员的生命安全。 烟囱最初的应用形式就是筒状的物体,安装在厨房或锅炉房等进行燃料燃烧的地方,利用热空气上升的原理,从上部出风口排出热烟气,外面的新鲜冷空气从入口被卷入,增加了燃料燃烧所需要的氧气,使燃料更加充分的燃烧,增强了火势。在锅炉房等这些地方,烟囱起到了拔火拔烟,排走烟气,改善燃烧条件的作用。 目前,这种利用热空气上升,有拔风作用的烟囱效应,在建筑结构和建筑设备领域里被广泛的应用。 在建筑设计中,利用热压差实现自然通风就是利用的“烟囱效应”原理它是利用热空气上升的原理,在建筑上部设排风口可将污浊的热空气从室内排出,而室外新鲜的冷空气则从建筑底部被吸入。热压作用与进、出风口的高差和室内外的温差有关,

大电流离相封闭母线烟囱效应的对比分析

大电流离相封闭母线烟囱效应的对比分析 发表时间:2019-07-09T11:25:15.603Z 来源:《电力设备》2019年第6期作者:李冰洁 [导读] 摘要:本文结合某水电项目的离相封闭母线特点,对离相封闭母线的设计选型,通风散热特点进行了介绍分析和总结。 (中国电建集团西北勘测设计研究院有限公司陕西西安 710065) 摘要:本文结合某水电项目的离相封闭母线特点,对离相封闭母线的设计选型,通风散热特点进行了介绍分析和总结。同时,本文对比分析了目前国内外各个长垂直离相封闭母线的通风散热情况,对离相封闭母线的“烟囱效应”确实存在的现象进行了分析说明。 关键词:长垂直离相封闭母线;烟囱效应;设计选型 1背景环境介绍 目前,我国国内有对长垂直离相封闭母线的应用还在不断探索中,例如:水布垭水电站位于清江中游的巴东县,封闭母线垂直高差约118米,平均长度208米,额定电压24KV,额定电流16KA[1];彭水水电站位于乌江干流上的彭水县,电站采用垂直高度160米的离相封闭母线,是国内垂直段最长的离相封闭母线工程,平均长度204米,额定电压20KV,额定电流14KA[3]。三峡地下电站位于三峡右岸大坝“白石间”山体内,母线垂直高度约80米,是当前国内外电站工程中额定电流最大的垂直自冷式离相母线,首次采用两机一井的布置方式,母线额 定电压20KV,额定电流26KA[2]。世界上其他国家已运行的采用长垂直封闭母线的电站有瑞典尤克塔电站,日本喜撰山电站和瑞典seitevare 水电站,母线竖井高度分别为270米,265米和180米,额定电压电流分别为:20KV/11KA,24KV/9.5KA,15.75KV/8KA。 本文所提及的某水电站项目位于非洲津巴布韦,封闭母线垂直高度差147.5米,平均长度176米,采用两机一井的布置方式,额定电压24KV,额定电流10KA。若导线运行时正常散热,但母线处在封闭的空间内,这一热量不能及时散失,将使母线的温度升高,从而影响母线的工作性能,造成严重的后果。 由于长垂直离相封闭母线处在一段封闭的垂直空间内,因此分析认为,在离相封闭母线内可能产生“烟囱效应”。烟囱效应是指户内空气沿着有垂直坡度的空间向上升或下降,造成空气加强对流的现象。但对于离相封闭母线,由于母线运行时自身散热,且被布置在垂直的近似封闭空间内,这一热量若不能及时散失,将使母线的温度升高,根据烟囱效应的原理,热量会通过竖直封闭空间在封闭母线的顶端聚集,在封闭母线的顶端形成很大的热场,使得封闭母线的顶端温度超过允许温度,从而影响母线的工作性能,为避免上述问题的发生,需对母线的散热情况进行合理分析。 2大电流垂直封闭母线烟囱效应的影响因素 根据国内相关科研单位及制造厂家数据显示,我国已经具备成熟的长垂直封闭母线的换热计算分析能力,数据显示,在自然通风的情况下,竖井内垂直段封闭母线的散热条件比水平段差,损耗和温升也高于水平段的损耗和温升,文献3认为在长垂直离相封闭母线中不存在烟囱效应,但文献4中指出,在三峡水电站中确实存在烟囱效应,综合分析,本文认为在母线竖井内,母线运行时产生的热量,由于空气对流现象,使得温度随高度上升而升高,热量不断聚集,若期间热量不能及时逸散,便会形成明显的垂直母线“烟囱效应”。但通过必要的措施可以降低竖井内温度,使得离相封闭母线运行在合理温度范围内。 合封闭母线的特性,根据分析认为在自然通风的情况下,影响封闭母线烟囱效应的可能因素有如下几点:母线垂直段长度(即竖井高度),母线载流量,母线截面积,外壳截面积和竖井截面积,外壳形状和竖井形状,周围环境情况(包括空气温度,岩土温度等),母线排列方式,以及温度上升是否会加剧导线热平衡的紊乱,从而进一步影响温升等。其中自然环境情况为客观存在的影响因素,其余因素可通过设计,选型,合理布置进行改变,减小影响,规避风险。 3母线竖井内温度及烟囱效应的研究 在文献5中给出了垂直段母线的外壳温度和导体温度的计算方法,根据本文的结果,可知对于垂直段导体和外壳来说,温度的最高点均分布在垂直母线的中间,并非顶端,虽然本文分析的垂直段母线长度仅为6米,但这种现象在彭水水电站和水布垭水电站中都得到了很好的验证,因此分析认为这种现象是由于周围空气为层流状态时,温度随相对高度的增加而增加,然而,当相对高度到达一定高度时,周围空气的状态会由层流状态转变为紊流状态,从而加速空气流动,加速散热,因此温度反而下降。但是,这并不能说明在垂直封闭母线布置中不存在“烟囱效应”。对于垂直高度仅有80米的三峡地下水电站来说,母线外壳温度和竖井内温度呈现都随高度增加温度逐渐上升的趋势,呈现明显的“烟囱效应”。这就说明,当顶端散热小于母线产热时,竖井内热量不能逸散,此时竖井内温度便会随着竖井高度的增高而增加,热量不断聚集,更不会出现文献5中所述的拐点温度,而是形成垂直离相封闭母线的“烟囱效应”,最终破坏母线运行。 对比水布垭水电站,彭水水电站和三峡地下水电站,发现三峡地下水电站一个特殊的布置方式,其采用了两机一井的布置方式,而水布垭水电站和彭水水电站均采用一机一井的布置方式。分析认为,对于三峡地下电站,由于竖井内同时布置着两组母线,竖井内热源强度较高,使得母线热量聚集较多,温差较大,使得空间内产生的浮力大于出口处冷空气对产生的热流影响,在竖井内不具备换流条件,因此若不采取任何措施,竖井内温度会不断上升,造成的后果将不堪设想。 而对于本文所述水电站垂直母线段同样采用两机一井的布置方式,并且相比于三峡地下水电站,离相封闭母线垂直高度147.5米,因此必须采取必要的措施——采用强迫风冷或通过热平衡计算适当增大导体截面,以消除竖井内烟囱效应产生的温度过高的现象。若采用自冷方式,通常会通过增大封闭母线截面积,减小电阻,降低电能损耗,降低产热,此时由于产热量降低,在竖井内热量可通过热交换能及时逸散,而不会在顶端聚集,此时竖井内便不具备烟囱效应的产生条件。但封闭母线的尺寸大,耗材相应增大此,时制造费用不可避免的增大。但综合来看,强迫风冷系统不仅涉及冷却设备的费用,还涉及后期昂贵的维护运行费用,设备折旧费和专业人员培训等,同时由于风冷设备的安装需增大母线竖井的建造尺寸,其总费用远高于仅增加截面积所带来的耗材费用。因此,通过增加封闭离相母线的截面积,减小电阻,降低热量的方式,避免母线竖井内的“烟囱效应”的方法相比强迫风冷的通风散热方式更具有经济价值,同时,此方法也在该项目中得到了认可。 4总结 分析各电站的情况,封闭母线采用强迫风冷和自冷的方式都可通过设计解决烟囱效应的现象,因此,封闭母线的冷却方式必须通过电站的实际情况,且结合技术角度和经济角度两方面综合考虑。同时在风冷的情况下,应考虑到机械风冷设备故障时,封闭母线竖井内会不会发生温度急剧上升,损坏电力设备的情况,并且在增加安装工作量的同时也增加了运行时检修,调试的工作量。因此,国际上越来越多的公司采用自然冷却的封闭母线。同时考虑到各种设备的折旧费用,后期的运行费用等,认为自冷方式的封闭母线更具有使用前景。

烟囱效应

烟囱效应 烟囱效应的产生。在有共享中庭、竖向通风(排烟)风道、楼梯间等具有类似烟囱特征——即从底部到顶部具有通畅的流通空间的建筑物、构筑物(如水塔)中,空气(包括烟气)靠密度差的作用,沿着通道很快进行扩散或排出建筑物的现象,即为烟囱效应。 是指户内空气沿着有垂直坡度的空间向上升或下降,造成空气加强对流的现象。 最常见的烟囱效应是火炉、锅炉运作时,产生的热空气随著烟囱向上升,在烟囱的顶部离开。因为烟囱中的热空气散溢而造成的气流(Draft),将户外的空气抽入填补,令火炉的火更猛烈。 烟囱效应亦可以是逆向的。当户内的温度较户外为低(例如夏天使用空调时),气流可以在烟囱内向下流动,将户外空气从烟囱抽入室内。 烟囱效应的强度与烟囱的高度,户内及户外温度差距,和户内外空气流通的程度有关。 在高楼大厦的环境内,烟囱效应可以是令火灾猛烈加剧的原因。在低层发生的火灾造成的热空气,因为密度较低,经电梯槽或走火通道内得以往上流动,使高热气体不断在通道的顶部积聚,结果是使火势透过这种空气的对流在大厦的顶层制造另一个火场。不单使扑救变得更困难,更会危及前往天台逃生的人员的生命安全。

烟囱最初的应用形式就是筒状的物体,安装在厨房或锅炉房等进行燃料燃烧的地方,利用热空气上升的原理,从上部出风口排出热烟气,外面的新鲜冷空气从入口被卷入,增加了燃料燃烧所需要的氧气,使燃料更加充分的燃烧,增强了火势。在锅炉房等这些地方,烟囱起到了拔火拔烟,排走烟气,改善燃烧条件的作用。 目前,这种利用热空气上升,有拔风作用的烟囱效应,在建筑结构和建筑设备领域里被广泛的应用。 在建筑设计中,利用热压差实现自然通风就是利用的“烟囱效应”原理它是利用热空气上升的原理,在建筑上部设排风口可将污浊的热空气从室内排出,而室外新鲜的冷空气则从建筑底部被吸入。热压作用与进、出风口的高差和室内外的温差有关,室内外温差和进、出风口的高差越大,则热压作用越明显。在建筑设计中,可利用建筑物内部贯穿多层的竖向空腔———如楼梯间、中庭、拔风井等满足进排风口的高差要求,并在顶部设置可以控制的开口,将建筑各层的热空气排出,达到自然通风的目的。与风压式自然通风不同,热压式自然通风更能适应常变的外部风环境和不良的外部风环境。 烟囱效应不仅实现了自然通风,它在双层玻璃幕墙中的使用,还有效的阻挡了热量的传递,降低建筑墙体的传热系数,达到了节约建筑能耗的作用。 高层建筑烟囱效应分析

压电效应及其原理

压电效应及其原理 压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。依据电介质压电效应研制的一类传感器称为为压电传感器。 压电效应可分为正压电效应与逆压电效应。 正压电效应 就是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所 产生的电荷量与外力的大小成正比。压电式传感器大多就是利用正压电效应制成的。 逆压电效应 就是指对晶体施加交变电场引起晶体机械变形的现象。用逆压电效应制造的变送器可用于电声与超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型5种基本形式。压电晶体就是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形与长度变形压电效应。 两种压电效应的关系 可以证明,正压电效应与逆压电效应中的系数就是相等的,且具有正压电效的材料必然具有逆压电效应。 依据电介质压电效应研制的一类传感器称为为压电传感器。 这里再介绍一下电致伸缩效应。电致伸缩效应,即电介质在电场的作用下,由于感应极化作用而产生应变,应变大小与电场平方成正比,与电场方向无关。压电效应仅存在于无对称中心的晶体中。而电致伸缩效应对所有的电介质均存在,不论就是非晶体物质,还就是晶体物质,不论就是中心对称性的晶体,还就是极性晶体。

压电效应原理及在陶瓷方面的应用

压电效应原理及在陶瓷方面的应用 粉体一班郭开旋1103011026 内容摘要:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷,是信息时代的新型材料压电陶瓷是功能陶瓷中的一种。关键词:压电效应、正压电效应、逆压电效应、原理、应用、陶瓷材料、压电陶瓷、铁电陶瓷、功能陶瓷、新型材料、电极化 一、压电效应的原理: 压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的

应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 1.压电效应的发现 1880年皮埃尔·居里和雅克·居里兄弟发现电气石具有压电效应。1881年,他们通过实验验证了逆压电效应,并得出了正逆压电常数。1984年,德国物理学家沃德马·沃伊特(德语:Woldemar V oigt),推论出只有无对称中心的20中点群的晶体才可能具有压电效应。2.压电材料 压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。根据材料的种类,压电材料可以分成压电单晶体、压电多晶体(压电陶瓷)、压电聚合物和压电复合材料四种。根据具体的材料形态,则可以分为压电体材料和压电薄膜两大类。3.压电单晶体 压电单晶体大多数为铁晶体管。另外还包括石英、硫化镉、氧化锌、氮化铝等晶体。这些铁电晶体包括: 含氧八面体的铁晶体管,例如钛酸钡晶体、具有铌酸锂结构的铌酸锂、铌酸钽和具有钨青铜结构的铌酸锶钡晶体。 含有氢键的铁晶体管,例如磷酸二氢钾、磷酸二氢铵、和磷酸氢铅(及磷酸氘铅)晶体。 含层状结构的钛酸铋晶体等。 目前应用最广泛的非铁电性的石英压晶体管、铁典型压晶体管铌酸锂

相关文档
相关文档 最新文档