文档库 最新最全的文档下载
当前位置:文档库 › 方波三角波波形发生器的设计

方波三角波波形发生器的设计

方波三角波波形发生器的设计
方波三角波波形发生器的设计

方波三角波波形发生器的

设计

The Standardization Office was revised on the afternoon of December 13, 2020

西安文理学院物理与机械电子工程学院

课程设计报告

专业班级

课程电子技术课程设计

题目方波三角波波形发生器的设计

学号

学生姓名

指导教师

2013年12

西安文理学院机械电子工程系

课程设计任务书

学生姓名专业班级学号

指导教师职称教研室自动化

课程电子技术课程设计

题目方波、三角波波形发生器的设计

任务与要求

任务:

设计能产生方波、三角波波形信号输出的波形发生器。

1.输出的各种波形工作频率范围~10k Hz连续可调;

2.方波幅值10V;

3.三角波峰-峰值20V;各种输出波形幅值均连续可调;

4.设计电路所需的直流电源。

要求:

1.根据设计任务和指标,初选电路;

2.通过调查研究、设计计算,确定电路方案。

开始日期完成日期

2013年 12 月 27 日

目录

设计目的 (4)

设计任务和要求 (4)

总体设计方案 (5)

功能模块设计与分析 (10)

电路的安装与调试 (14)

实验仪器及元器件清单 (14)

心得体会 (16)

一、设计目的

1.掌握方波—三角波产生电路的设计方法及工作原理;

2.掌握电子系统的一般设计方法;

3.掌握常用原件的识别和测试;

4.掌握模拟电路的安装测量与调试的基本技能;

5.培养实事求是,严谨的工作态度和严肃的工作作风。

二、设计任务和要求

任务:

设计能产生方波、三角波波形信号输出的波形发生器。

1.方波幅值10V;

2.输出的各种波形工作频率范围~10k Hz连续可调;

3.三角波峰-峰值20;各种输出波形幅值均连续可调;

4.设计电路所需的直流电源。

要求:

1.根据设计任务和指标,初选电路;

2.通过调查研究、设计计算,确定电路方案。三.总体设计方案

方案一,框图如下图1所示:

正弦波信号

方波信号

三角波信号

图1 多种波形发生器原理框图(方案一)

文氏桥振荡器(RC串-并联正弦振荡器)产生正弦波输出,其主要特点是采用

RC串-并联网络作为选频和反馈网络,其振荡频率为f

=1/(2πRC),改变RC的值,可得到不同频率的正弦信号输出。为了使输出电压稳定,需采用稳幅措施。用集成运放构成电压比较器,将正弦波信号变换成方波信号输出。用运放构成积分电路,将方波信号变换成三角波

方案二,框图如下图2所示:

三角波信号

图中利用滞回比较器的开关作用和具有延时作用的RC反馈网络构成多谐振器,用积分电路将方波变换成三角波信号输出。

方案三,由5G8038组成的多量程、多功能信号发生器。其电路的输出信号频率可以在1Hz以下至几百KHz范围内调节,压控信号可内部选择,也可外接。输出信号可直接从2、3、9角高阻输出,也可以通过5G353低阻输出。图中利用

滞回比较器的开关作用和具有延时作用的RC反馈网络构成多谐振器,用积分电路将方波变换成三角波信号.

论证:经分析方案一结构复杂,不易于调试,不能很快的得到电路波形。方案三可同时产生方波、三角波,该信号发生器电路简单、成本低廉、调整方便。555定时器接成多谐振荡器工作形式,C2为定时电容,C2的充电回路是R2→R3→RP→C2;C2的放电回路是C2→RP→R3→IC的7脚(放电管)。由于R3+RP》R2,所以充电时间常数与放电时间常数近似相等,由IC的3脚输出的是近似对称方波。按图所示元件参数,其频率为1KHZ左右,调节电位器RP可改变振荡器的频率。方波信号经R4、C5积分网络后,输出三角波。三角波再经R5、C6积分网络,输出近似的正弦波。C1是电源滤波电容。发光二极管VD用作电源。方案二操作简便,方案一同方案二比较,对于三角波的产生有一定的麻烦,因为题目需要频率为连续可调,但幅度稳定性难以达到要求;方案二由于采用运算放大器组成积分电路,因此可实现恒流充电,使三角波线性大为改善。由此,本设计采用方案二。能在简易环境下得到很清晰的波形。

综上,选择方案二。

四、功能模块设计与分析

1.总电路图设计

2.单元电路图的设计

⑴.滞回电压比较器

图10-1为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有

2

1o 1in

22

1o

2

in 1p 1111R R u R u R R R u R u R u ++=++= 根据翻转条件,令上式右方为零,得此时的输入电压

th Z 2

1o 21in U U R R

u R R u m m ===

U th称为阈值电压。滞回电压比较器的直流传递特性如图10-2所示。设输入电压初始值小于-U th,此时u o= -U Z ;增大u in,当u in=U th时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in= -U th时,运放则开始进入负饱和区。

图10-1 滞回电压比较器图10-2 滞回电压比较器的直流传递特性如果给图10-1所示电路输入三角波电压,其幅值大于U th ,设t = 0时,u o= -U Z

其输出波形如图10-3所示。可见,输出为方波。

图10-3 输入为三角波时滞回电压比较器的输出波形.

⑵.方波——三角波发生器

给图10-1所示的滞回电压比较器级联一积分器,再将积分器的输出作为比较器的输入,如图10-4所示。由于积分器可将方波变为三角波,而比较器的输入又正好为三角波,因此可定性判断出,图10-4电路的输出电压u o1为方波,u o2为三角波,如图10-5所示。下面分析其振荡周期。

图10-4 方波——三角波发生器

积分器输出电压从-U th 增加到+U th 所需的时间为振荡周期T 的一半,由积分器关系式

2Z th

th 00

d )(1T t t t U RC

U U +=

2

12Z th T U RC U =

注意到Z 2

1

th U R R U =

,故 2

1

4R RCR T =

振荡频率则为

1

241RCR R T f ==

图10-5 方波——三角波发生器的输出波形

⑶. .方波——三角波发生器的设计

1) 双稳压二极管的稳定电压根据方波幅值选取,电阻R 3根据双稳压二极管

的最大电流确定。

2) 电阻R 1和R 2根据三角波的幅值确定。

3) 电阻R 和电容C 则根据振荡频率要求确定,电容C 的值不宜太大,以减

小积分误差。

⑷.电源的设计

1) 设计思路

直流稳压电压电路设计

要得到正负12伏的电源,首先使用变压器将220伏的交流电变成合适的值。在通过整流电路,将正弦波变成较为稳定的直流电压。在通过滤波和稳压电路,最终得到满足要求的直流电路。通过接上负载电阻,满足输出电流的要求。 电路图如下:

图10-6 直流电源

2)其相关参数的确定

a)设稳压器输出电压为Uo,变压器副边的输出电压有效值为Ui,因为要保

证三端稳压器的功耗不太大,所以3≤VUi-Uo≤5V 即当取Ui-Uo=时,满足上述要求,即Ui=﹤35V 此时,变压器的变化K=220/=1/

b)当电压器副边电压的有效值为时,其最大值为Umax=?=.

c)题目要求在满载的情况下,取5倍工频的半周期,即时间常数τ=RC=1/×=.

经过测试R≈18Ω.所以C=18=.为了增强滤波的效果,选取了的电解电

容。

d)为了防止自激振荡,在稳压器的输入端并联了一个大小为的电容。

e)为了消除高频噪声和改善输出的瞬态特性,输出端接了一个1uf的电容。

f)在稳压器两端输出12V电压的情况下,要输出1A的电流,根据欧姆定

律,应该串联的电阻大小为R=12/1=12Ω.

五、电路的安装与调试

1.电源的安装与调试

I.仿真图式

①变压器副边电压波形

图10-7 变压器副边电压波形

通过变压器的变压作用,变压器副边得到的有效值为伏的正弦交流电压。

②整流后的波形

图10-8 整流后的波形

③滤波之后的波形

图10-9 滤波之后的波形

④稳压后的波形(正)

图10-10 稳压后的波形(正)

⑤稳压后的波形(负)

图10-11 稳压后的波形(负)

输出为正负12伏的直流电源。

图10-12 输出为正负12伏的直流电源。II.安装与调试

①按图所示查找元件在面包板上安装。

②注意布局及元件的正负极。

2.方波——三角波电路的安装与调试

仿真结果

图10-13 方波——三角波仿真结果

I.安装方波——三角波电路

1.将两块LM324N集成块插入面包板,注意布局。

2.分别把各电阻放入适当的位置,尤其注意电位器的接法。

3.按图接线,注意直流源的正负极及接地端。

II.调试方波——三角波电路

1.接入电源后,用示波器进行双踪观察。

2.调节R2和R3使峰峰值满足要求。

3.调节滑动变阻器R5使周期满足要求。

4.观察示波器,各项指标达标后进行下一步安装。

六、实验仪器及元器件清单

1.方波——三角波电路部分

LM324N 两个

1N4047A 两个

电阻( 5K 15K 20K )各一个

滑动变阻器(500K)一个

电容(200nf)一个

示波器一个

2.电源部分

变压器(1:)两个

1B4B42 两个

LM7812KC UPC7912 各一个

电容( 330nf 1uf)各两个

电阻(12k)一个

万用表一个

七、心得体会

通过此次课程设计,使我更加扎实的掌握了有关模拟电子线路方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。过而能改,善莫大焉。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获龋最终的检测调试环节,本身就是在践行“过而能改,善莫大焉”的知行观。在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可! 课程设计诚然是一门专业课,给我很多专业知识以及专业技能上的提升,同时又是一门讲道课,一门辩思课,给了我许多道,给了我很多思,给了我莫大的空间。同时,设计让我感触很深。使我对抽象的理论有了具体的认识。

通过这次课程设计,我了解了电路的连线方法;以及如何提高电路的性能等等,通过查询资料,也了解了波形发生器的构造及原理。回顾起此课程设计,至今我仍感慨颇多,从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。

此次设计也让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识,收获颇丰。

西安文理学院物理与机械电子工程学院

自动化专业电子课程设计评分表

学生姓

班级:学号:

名:

方波、三角波波形发生器的设计

目:

方波三角波转换

一方波、三角波发生器 设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 二、 设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V 或±15V 直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 7实现方波和三角波输出电压:方波输出幅值110o p p U V -≤, 28o p p U V -≤。能够输出确定频率的三角波 三、 原理图 四、 设计说明书

1、设计题目 方波、三角波发生器 2设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 3、设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V或±15V直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 4、设计过程 实验器材 1)uA741 2片

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师

二〇一二年七月 模拟电子技术课程设计指导书 一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1 课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。

2.2 课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3 技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调; (3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。

方波-三角波波形发生器设计

电子技术课程设计 题目方波、三角波信号发生器 学院名称电气工程学院 指导教师 职称 班级自动化071班 学号 学生姓名 2009年01 月14日

目录 摘要---------------------------------------------------------------------------2 关键词------------------------------------------------------------------------2 一、设计任务与要求------------------------------------------------------2 1.1 设计任务------------------------------------------------------------------------------2 1.2 设计要求-----------------------------------------------------------------------------2 二、方案设计与论证------------------------------------------------------3 2.1 方案一--------------------------------------------------------------------------------3 2.2 方案二--------------------------------------------------------------------------------3 2.3 两种方案比较------------------------------------------------------------------------4 三、单元电路设计与参数计算------------------------------------------4 3.1 方波产生电路-----------------------------------------------------------------------4 3.2 三角波发生电路--------------------------------------------------------------------5 3.3 参数计算------------------------------------------------------------------------------5 四、仿真过程仿真结果----------------------------------------------------5 4.1仿真调试输出波形-------------------------------------------------------------------5 4.2 调试输出波形------------------------------------------------------------------------6 4.3 数据记录------------------------------------------------------------------------------6 五、总原理图及元件清单------------------------------------------------7 5.1 电路设计原理------------------------------------------------------------------------7 5.2 总原理图------------------------------------------------------------------------------7 5.3 PCB图-------------------------------------------------------------------------------7 5.4 元件清单------------------------------------------------------------------------------8 六、电路调试与分析------------------------------------------------------8 6.1 电路的装调--------------------------------------------------8 6.2 调试结论------------------------------------------------------------------------------8 6.3 误差分析------------------------------------------------------------------------------9 七、设计心得---------------------------------------------------------------9 八、参考文献---------------------------------------------------------------9

三角波、方波、正弦波发生电路

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。 因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比 例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率 围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

三角波发生器实验

XXXX XXXX 一、设计方案与原理 图一三角波发生器电路图(Multisim) 图一为电路设计方案。电路结构分为两部分,左侧电路为迟滞比较器能在R3右端形成方波信号;右端电路为积分电路,即对方波信号进行积分得到三角波信号。 以下对照图一再次说明下书上写的三角波发生器原理。运放A1(左侧)输入端无信号,输出端Uo1随机输出高电位或低电位。设先输出高电位(在稳压器的作用下,高电位数值较恒定),则高电位接于电阻R4左侧,由于运放A2(右侧)反相输入端虚地(以理想运放为分析 模型)。因此流入电容C1的电流 f i表达式: 1 4 o f U i R = (1-1) R4右端接入的是反相输入端,所以电容的电流与电压关系: 1 141 11 O f O U i dt U dt C R C =-=- ? ?? (1-2)故当Uo1为高电位时,Uo由初始零电位呈斜率为负的直线下降。另用叠加法得如下关系: 12 11 1212 O O R R U U U R R R R + =+ ++ (1-3) 当U1+随Uo的减小恰好越过0V时,运放A1输出电位Uo1转为低电位,故Uo开始呈斜率为正的直线上升,直到U1+随Uo上升为0V,此时Uo由负转正。如此循环下去,就形成了输出端电位Uo变化呈三角波形式。 二、实验步骤及结果

实验步骤: 1. 用multisim 搭建电路,运行结果得到图像及数据 2. 理论计算出各数据并与实验值比较 3. 对实验室搭建的实际电路得出的数据进行分析。 仿真及理论结果: Multisim 得出的输出三角波Uo 及方波Uo1图像如下: 图二 Multisim 仿真得出的输出三角波图像 对于理论计算,有如下公式(同实验指导书): *1/2t z U U R R = (2-1) 4*1*4*C/R 2T R R = (2-2) 2/(4*R1*R 4*C)f R = (2-3) 三角波 周期(ms) 频率(Hz) 幅值(V) 理论计算结果 227 Multisim 仿真结果 215 表一 三角波数据理论值与Multisim 仿真值比较 可看出理论值与仿真值比较接近。 实验得出的实际电路结果分析: 周期 频率 幅值 对照(2-1)、(2-2)、(2-3)理论计算公式,由于电路电阻及电容的数值在仿真及实验室实际电路中是一样的,故周期和频率与仿真结果较接近。而三角波的幅值受到稳压器稳压值的影响,故实验室实际电路数据与理论值及仿真值有较大差别。 三、拓展分析

集成运放构成正弦波方波和三角波发生器

实验十一集成运算放大器的基本应用(Ⅳ) ─波形发生器─ 一、实验目的 1、学习用集成运放构成正弦波、方波和三角波发生器。 2、学习波形发生器的调整和主要性能指标的测试方法。 二、实验原理 由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。 1、RC 桥式正弦波振荡器(文氏电桥振荡器) 图11-1为RC 桥式正弦波振荡器。其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率 起振的幅值条件 1 f R R ≥2 式中R f =R W +R 2+(R 3//r D ),r D —二极管正向导通电阻。 调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。如不能起振,则说明负反馈太强,应适当加大R f 。如波形失真严重,则应适当减小R f 。 改变选频网络的参数C 或R ,即可调节振荡频率。一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。 图11-1RC 桥式正弦波振荡器

2、方波发生器 由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。它的特点是线路简单,但三角波的线性度较差。主要用于产生方波,或对三角波要求不高的场合。 电路振荡频率 式中 R 1=R 1'+R W 'R 2=R 2'+R W " 方波输出幅值 U om =±U Z 三角波输出幅值 调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三角波的幅值也随之变化。如要互不影响,则可通过改变R f (或C f )来实现振荡频率的调节。 图11-2方波发生器 3、 三角波和方波发生器 如把滞回比较器和积分器首尾相接形成正反馈闭环系统,如图11-3所示,则比较器A 1输出的方波经积分器A 2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。图11-4为方波、三角波发生器输出波形图。由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。 图11-3三角波、方波发生器 电路振荡频率 f W f 12 O )C R (R 4R R f += 方波幅值 U ′om =±U Z 三角波幅值 Z 2 1 om U R R U = 调节R W 可以改变振荡频率,改变比值 2 1 R R 可调节三角波的幅值。 图11-4 方波、三角波发生器输出波形图

方波三角波产生电路方案

方波-三角波产生电路的设计 1 技术指标 设计一个方波- 三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6- 6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生 器。构成迟滞比较器,用于输出方波;构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位由和决定。利用叠加定理可得: 当时,U1输出为正,即 当时,U1输出为负,即 构成反相积分器,为负时,正向变化。为正时,负向变化。 当时,可得: 当上升使略高于0v时,U1的输出翻转到 同样,时,当下降使略低于0时,。 这样不断重复就可以得到方波和三角波,输出方波的幅值由稳压管决定,被限制在之间。 积分电路的输入电压是滞回比较器的输出电压,而且不是,就是,所以输出电压的表达式为:

方波-三角波产生电路的设计.

方波-三角波产生电路的设计 1 技术指标 设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz ,方波脉冲幅度为6-6.5V ,三角波为1.5-2V ,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL 与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC 电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC 积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。1U 构成迟滞比较器,用于输出方波;2U 构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位p V 由1O V 和2O V 决定。利用叠加定理可得: 21211211211) ()(O V V O V P V R R R R R V R R R R V ?++++?++= 当0>P V 时,U1输出为正,即Z O V V +=1 当0

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

用集成运放组成的正弦波、方波、三角波产生电路

物理与电子工程学院《模拟电路》课程设计 题目:用集成运放组成的正弦波、方波、三 角波产生电路 专业电子信息工程专业 班级 14级电信1班 学号 1430140227 学生姓名邓清凤 指导教师黄川

完成日期: 2015 年 12 月 目录 1 设计任务与要求 (3) 2 设计方案 (3) 3设计原理分析 (5) 4实验设备与器件 (8) 4.1元器件的引脚及其个数 (8) 4.2其它器件与设备 (8) 5实验内容 (9) 5.1 RC正弦波振荡器 (9) 5.2方波发生器 (11) 5.3三角波发生器 (13) 6 总结思考 (14) 7 参考文献 (15)

用集成运放组成的正弦波、方波、三角波产生电路 姓名:邓清凤 电子信息工程专业 [摘要]本设计是用12V直流电源提供一个输入信号,函数信号发生器一般是指自动产生正弦波、方波、三角波的电压波形的电路或仪器。电路形式可采用由运放及分立元件构成:也可以采用单片机集成函数发生器。根据用途不同,有产生三种或多种波形的函数发生器,本课题采用UA741芯片搭建电路来实现方波、三角波、正弦波的电路。 [关键词]直流稳压电源12V UA741集成芯片波形函数信号发生器 1 设计任务与要求 (1)并且在proteus中仿真出来在同一个示波器中展示正弦波、方波、三角波。 (2)在面包板上搭建电路,并完成电路的测试。 (3)撰写课程设计报告。 (4)答辩、并提交课程设计报告书 2 设计方案 方案一:采用UA741芯片用集成运放组成的正弦波、方波、三角波产生电路优点:分立元件结构简单,可用常用分立元器件,容易实现,技术成熟,完全能够达到技术参数的要求,造价成本低。 缺点:设计、调试难度太大,周期太长,精确度不是太高。

方波-三角波波形发生器的设计

模拟电子技术课程设计报告 题目名称:方波-三角波波形发生器 姓名: 学号: 班级:

目录 摘要---------------------------------------------------------------------2 关键词------------------------------------------------------------------2 一设计任务与要求--------------------------------------------------2 1.1设计任务-----------------------------------------------------------------------------------2 1.2 设计要求----------------------------------------------------------------------------------2 二电路设计----------------------------------------------------------2 2.1 方案设计与论证-------------------------------------------------------------------------2 2.2 电路设计原理----------------------------------------------------------------------------3 2.2.1 电路原理框图-------------------------------------------------------------------------3 2.2.2 单元电路设计与计算说明----------------------------------------------------------3 2.3 原理图--------------------------------------------------------------------------------------4 2.3.1 总体原理图----------------------------------------------------------------------------4 2.3.2 PCB图--------------------------------------------------------------------------------4 2.3.3 EWB仿真调试------------------------------------------------------------------------4 2.4 元器件选择与验证器材-----------------------------------------------------------------5 2.4.1元器件选择------------------------------------------------------------------------------5 2.4.2 LM741管脚排列-----------------------------------------------------------------------5 2.4.3 参数计算-------------------------------------------------------------------------------5 三制作与调试--------------------------------------------------------5 3.1 PCB板的制作-------------------------------------------------------------------------------6 3.2 电路的装调----------------------------------------------------------------------------------6 四调试结论与误差分析----------------------------------------------6 4.1调试结论-------------------------------------------------------------------------------------6 4.2 误差分析------------------------------------------------------------------------------------6 五设计心得-----------------------------------------------------------------7 六参考文献-----------------------------------------------------------7

方波和三角波发生器电路

方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当 Vp>0时 A1输出为正,即VO1 = +Vz;当 Vp<0时, A1输出为负即 VO1 = -Vz A2构成反相积分器 VO1为负时, VO2 向正向变化, VO1 为正时, VO2 向负向变化。假设电源接通时VO1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2 (2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02 (注意标注图形尺寸),并测量Rp及频率值。 表11-3 方波V01及三角波V02 波形 Rp= (中间) , f= (3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中 (记录不失真波形参数)。 表11-4 F ( KHz ) Rp ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。将 测量结果填入表11-4中。 表11-5 F (KHz ) R1 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (5)电位器Rp保持中间位置,R1接10K电阻,改变R2为100K可调电位计,观察对V01和V02 幅值和频率的影响。将测量结果填入表11-5中。(记录有波形的测试参数) 表11-6 F ( KHz ) R2 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高

方波和三角波发生器电路

创作编号:BG7531400019813488897SX 创作者:别如克* 方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6. 5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -Vz A2构成反相积分器 VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。假设电源接通时VO 1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率范围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

实验 方波、三角波发生器的设计

实验5.4 波形发生器的设计 1.实验目的 (1)学会用集成运算放大器组成方波与三角波发生器。 (2)掌握方波与三角波发生器电路的调试与测量方法。 2.预备知识 (1)LM324 介绍 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中 “+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo ”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。LM324的引脚排列见图5.4.1。 (2) 方波发生器 基本方波发生器如图5.4.2电路(R 1 = 90k Ω,R 2 = 22k Ω,R 3 = 10k Ω,R 0 = 2.2k Ω,C = 0.01μF 。D 1和D 2采用稳压管,其稳压值为5V ,正向压降为0.7V 。)所示。其中电阻R 2 与R 3 组成正反馈支路;电阻R 1 与电容C 组成的充放电回路是运算放大器的负反馈支路。为了防止放大器输出电流太大而过载,在放大器的输出端串联一个限流电阻R 0。另外为 预习与思考 ① 在方波发生器中,要改变方波的频率,可改变那些元件的值? 方波的频率改变时,方波的幅度会不会改变? ②在方波、三角波发生器中,若要保持三角波的幅度不变,又要改变三角波的频率,应改变电路中那一个元件的值? 图 5.4.1 LM324的引脚排列 图 5.4.1 LM324的引脚排列 图 5.4.2基本方波发生器

三角波发生电路设计

三角波发生器设计 制作人:朱立超 西安建筑科技大学

一、工作原理: 1. 基本原理图: 2.工作原理: 1)如图1,三角波发生器电路,有两部分组成。其中集成运放A1组成滞回比较器,A2组成积分电路。滞回比较器可以产生稳定的方波信号,再通过积分电路积分产生所需要的三角波。 由积分电路2031(z)dt T U R C --? 可知积分电路输出电压同u o1 反向。 设t=0时积分电路电容上的初始电压为零,而滞回比较器输出端u o1=+Uz 。又有电路图可以看出,两级电路分别都引入了反馈, A 1同相输入端的电压u p1同时与u o1和u o 有关,根据叠加定理 可得 121o1o 1212 u u u p R R R R R R =+++ 由积分回路同向和反向输入端“虚短”“虚断”u p2= u n2=0,从而可 图1 三角波发生电路图

知u o =u p2.由于t 0时电容两端电压为了零,所以 u o =0,而u 01=+Uz ,故u p1也为正。而当u o1=+Uz 时,经反向积分,输出电压u o 将随着时间往负方向线性增长,则u p1将随之逐渐减小,当减小至u p1=u n1=0时,滞回比较器的输出端电压发生跳变,使u o1由+Uz 跳变为-Uz ,此时u p1也将跳变成为一个负值。当u o1=-Uz 时,积分电路的输出电压u o 将随着时间往正方向线性增长,u p1将又逐渐增大,当增大至u p1= u n1=0时,滞回比较器的输出端再次发生跳变,u 01由-Uz 跳变为+Uz 。如此重复上述过程,于是滞回比较器的输出电压u 01成为周而复始的矩形波,从而积分电路的输出电压u o 也成为周期性重复的三角波。 滞回比较器和积分电路特性: 2)输出幅度: 在u o1=-Uz 期间,积分电路的输出电压u o 往正方向线性增长,此时u p1也随着增长,当增长至u p1= u n1=0时,滞回比较器的输出电压u o1发生跳变,而发生跳变时的u o 值即是三角波的最大值Uom 。将条图3 电路的波形图 图2 电压输出特性

相关文档
相关文档 最新文档