文档库 最新最全的文档下载
当前位置:文档库 › 频谱分析仪使用注意

频谱分析仪使用注意

频谱分析仪使用注意
频谱分析仪使用注意

正确使用频谱分析仪需注意的几点

首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接法正确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。

其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。

三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。

一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。

当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。

频谱分析仪的工作原理

频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪

依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫瞄调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫瞄器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time).最常用的频谱分析仪是扫瞄调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系,信号流程架构如图1.3所示.影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(RBW,Resolution Bandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。

频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG 卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。

科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由

频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。

从技术实现来说,目前有两种方法对信号频率进行分析。

其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。

这种分析方法一般用于低频信号的分析,如声音,振动等。

另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

在工作中通常所用的HP-859X系列频谱仪都是此类的分析仪。其优点是扫描调谐分析法受器件的影响,只要我们把器件频率做得很高,其分析能力就会很强。目前的工艺水平,器件可达到100GHz,最高甚至可做到325GHz。其频率范围要比前一种分析方法大很多。只是在达到较高分辨率时,其分析测量的时间会有所增加。

在实际工作中,无线信号卫星信号的监督,由于其频率很高,都是采用扫描调谐的方式。它所能给我们的信息没有相位参数,只有幅度、频率。它是一种标量的分析方法。另外,这种方法有很高的灵敏度,它受到前端扫描调谐器件的控制,还有很高的动态范围。

下面我们着重介绍一下扫描调谐分析仪的基本原理,从图2中,我们不难看出,它是用超外差接收机的方式来实现频谱分析的。

最基本的核心部分是它的混频器。基本功能是将被测信号下变至中频21.4MHz,然后在中频上进行处理,得到幅度。在下变频的过程中,是由本振来实现下变频的。本振信号是扫描的,本振扫描的范围覆盖了所要分析信号的频率范围。所以调谐是在本振中进行的。全部要分析的信号都下变频到中频进行分析并得到谱频。这与日常所用的电视机、收音机的原理是一样的。

但是有线电视输出信号范围很广,比如有50个频道播放。这50个信号是同时进入接收机的,其总功率是迭加的。而所看的电视节目只能是其中之一。同理,送入频谱仪的输入端口信号是所采集信号的总和,其中包括所要分析的特定信号,所输入到频谱仪的功率是总功率。由此要引入一个参数-最大烧毁功率。这一值是1瓦或是+30dBm。也就是说输入到频谱仪的信号功率总和不能超过1瓦,否则将会烧毁仪器的衰减器和混频器。

例如,我们要监测一个卫星信号,假设其频率为12GHz,其功率可能只有-80dBm左右,这是很小的。但要知道输入信号是由很多信号迭加组成的,若是在其它某一频率上包括一个很强的信号,即使你没有看到这个大功率信号,若输入信号功率的总和大于1瓦,也是要烧毁频谱仪的,而其中的大功率信号并不是你所要分析的信号。这是我们在日常工作中需多加小心的,因为更换混频器的费用是很高的。

当然,频谱仪在输入信号时并没有直接将其接入混频器,而是首先接入一个衰减器。这不会影响最终的测量结果,完全是为了仪表内部的协调,如匹配、最佳工作点等等。它的衰减值是步进的,为0dB、5dB、10dB,最大为60dB。

还有的频谱仪是不能输入直流的,否则也会损坏器件。另外,还应注意不能有静电,因为静电的瞬时电压很高,容易把有源器件击穿。日常工作中把仪表接地就会有很好的效果,当然要有保护接地会更好。

在中频,所有信号的功率幅度值与输入信号的功率是线性关系。输入信号功率增大,它也增大,反之相同。所以我们检测中频信号是可行的。另外,为了有效检测,要有一个内部

中频信号放大。混频器本身有差落衰减,本频和射频混频之后它并不是只有一个单一中频出来,它的中频信号非常丰富,所有这些信号都会从混频器中输出。在众多的谐波分量中,只对一个中频感兴趣。这就是前面所说的21.4MHz。这是在仪器器件中已做好的,用一个带通滤波器把中心频率设在21.4MHz,滤除其它信号,提取21.4MHz的中频信号。通过中频滤波器输出的信号,才是我们所要检测的信号。

滤波器在工作中有几个因素:中心频率是21.4MHz,固定不变,其30dB带宽可以改变。比如对广播信号来说,其带宽一般是几十kHz,若信号带宽是25kHz,中频的带宽一定要大于25kHz。这样,才能使所有的信号全部进来。如果太宽,就会混入其它信号;如果太窄,信号才进来一部分,或是低频成份,或是高频成份。这样信号是解调不出来的。

中频带宽设置根据实际工作的需要来决定的。当然它会影响其它很多因素,如底噪声、信号解调的失真度等。

经过中频滤波器的中频信号功率就是反应了输入信号的功率。检测的方法就是用一个检波器,将它变为电压输出,体现在纵轴的幅度。当然还要经过D/A转换和一些数据处理,加一些修正和一些对数、线性变换。这足以给我们带来信号分析上的许多方便。

频谱分析是要分析频域的。一个信号要分析两个参数,一是幅度,二是频率。幅度已经得出,而频率和幅度要对应起来,在某一频率是什么幅度。下面介绍一下频率是如何测量的,如何与幅度对应起来。

其实很简单。它是通过本振与扫描电压对应起来的。本振是一个压流振荡器。本振信号是个扫描信号。扫描控制是由扫描控制器来完成的。它同时控制显示器的横坐标。从左到右当扫描电压在OV时,在显示器上是0点,对本振信号来说是F1点,即起始频率点。当扫描电压到10V时,在显示器上是终止频率点,本振电压就是在终止频率点,中间是线性的。通过这样的方法,使得显示器坐标的每一点与本振F1、F2的每一点对应起来(射频信号是本振信号减去中频信号21.4MHz。当我们操作频谱仪进行分析时,实际是在改变本振信号的频率)。

下面简单介绍一下用频谱分析仪来评价发射机的方法。先了解一下发射机最基本的框

图,见图3。首先是一个调制部分将基带信号调制到中频信号,然后将中频信号上变频到射频信号上,还有一个与之相对的本振信号,对射频信号进行预放,再进行功率放大之后送到天线上发射。

如何用频谱仪对这样一个发射机进行测量。首先对它的发射信号从测量端口进行测量(若是把发射信号直接送入频谱仪,必然会把仪器烧坏)。在这里我们要测其功放的失真,发射信号的频率、功率。对发射机内部预放失真、增益、噪声系数,混频器的输出功率,输入功率进行测量,得到混频器的差落损耗。对混频器的输出功率进行准确测量,了解其工作点。对混频器的本振信号进行测量,得出本振信号的输出频率,了解其频率精度。这个频率精度也就决定了发射机的精度。通过以上这些测量,可以得到对于发射机内部信号、器件和输出信号的多项参数,以描述这个发射机的性能。作为通讯的监测,一般不去检测其内部的器件,只检测其频率、功率。只要这两项指标正常,就可以判定这部发射机是正常工作。

了解频谱仪的功能,必须要考察频谱仪的内部噪声、失真等等。一个放大器,要测它的失真、三阶交调失真和谐波失真。三阶交调失真是当对一个放大器输入二个频率相近(如差10kHz)的信号,幅度一样,由于放大器是非线性器件,在对这两个信号进行功率放大时,也会产生一些其它信号,如2F1-F2和2F2- F1,这两种信号就是三阶交调失真(见图4上)。它的特性非常靠近中间的信号,上面和下面都相差10kHz均匀排开。假设这个信号的带宽是20kHz,这两个交调失真的信号肯定会进到信号的带宽内,对信号产生干扰。为了不干扰正常的通讯,我们必须测量这失真信号的大小。描述的方法是这失真信号的幅度与正常的信号幅度之差,称之为失真量。另外一种放大器的失真是谐波失真。当对放大器输入一个点频信号F1,这个放大器会造成F2、F3,两倍或三倍的多次谐波。若是正好在2F1等处有其它信号,就会造成干扰(见图4下)。

一个放大器存在以上两种失真。我们用频谱仪去测量这些失真的大小。定义三阶交调失真为载波信号与失真信号的功率差。定义谐波失真为载波信号与某次谐波的功率差。

输入被测放大器两个信号F1、F1+10kHz,然后送入频谱仪进行测量。用两个信号源通过混合器再经过衰减器进入一个带通滤波器,以确保进入放大器的信号只是F1和

F1+10kHz,没有其它成份。这个放大器产生交调失真的值是大于50dB,也就是失真信号与要放大的信号之间的差值幅度为50dB。它的二次谐波相差40dB,三次谐波相差50dB(测量谐波失真要关闭一个信号发生器的输出),见图5。

由于频谱仪内部含有混频器,其特点是与有源器件放大器一样的。当输入信号为两个信号或是点频信号时,这个混频器也会产生以上所述的失真,并在频谱仪上反应出来,给测量带来误差。如何把频谱仪误差降低变为可测?

对于一种测量,可以使它成为可测,也可以使它成为不可测。这完全取决于频谱仪的设置。包括对衰减器、频率范围、分辨率带宽的设置。

频谱仪的设置主要有频率范围、分辨率和动态范围,而动态范围又会涉及到最大的输入功率即烧毁功率,增益压缩使小于1W的输入信号如果超过线性工作区也会有误差。还有灵敏度。要从以上几个主要方面来考虑频谱仪对输入的信号是否可测。

现在来看第一项参数频率范围。这个参数要从两个方面看,一是频率范围的设置是否足够的窄,具有足够的频率分辨能力,也就是窄的扫频宽度(见图6)。二是频率范围是否有足够的宽度,是否可以测到二次、三次谐波。

当我们用一个频谱仪测量一个放大器的谐波失真的时候,若这个放大器工作点是1GHz,那么它的三次谐波就是3GHz。这就是要考虑频率范围的最大可测宽度。如果频谱仪是1.8GHz 的,那么就不能测量;如果是26.5GHz的频谱仪,当然可以测到它的三次,四次谐波。

第二类指标是分辨率。这是频谱分析仪中非常重要的参数设置。分辨率表示当要测量的是F1、而在F1的附近有另一个F2(见图7)。但它们的功率不一样,这时看能不能将它们区分开。将这个中频带宽设置成三种不同的宽度,下面所对应的就是在这一带宽设置时所看到的曲线(显示线)。很显然中频带宽越窄分辨率越高,中频带宽越宽分辨率越低。分辨率带宽直接影响到小信号的识别能力和测量的结果。

分辨率实际上就是分辨两个信号的能力,中频滤波器的3dB带宽就是分辨率带宽(见图8)。

对信号的分辨除了分辨率带宽会影响之外,还有一个参数,滤波器的形状因数(见图9),即滤波器60dB对3dB带宽之比值。形状因数越小越接近3dB带宽。越陡峭就越接近于矩形,这时分辨能力就越强。所以说形状因数越小,分辨能力越强。

模拟滤波器一般为15:1或是11:1,而数字滤波器是5:1。对于一个信号的分辨能力还有两个因素:剩余调频和噪声边带(见图10)。

剩余调频是本振信号的抖动,这是无法避免的工艺问题。这种抖动决定了它能分辨信号间的小频率范围。如果两个信号相差频率是小于这个抖动范围,那么就无法把这两个信号分辨出来。所以剩余调频这个指标就决定了频谱分析仪的最小可分辨的频率差。对于HP-859X 来说是20Hz,对于ESA来讲是10Hz。

噪声边带在信号响应基底上表现得不稳定,这个噪声可能掩盖近端(靠近载波)的低电平信号。这个噪声是由本振的抖动引起的,在频率域上的体现。这个边带噪声降低了分辨能力。

对于频谱分析仪来说要降低边带噪声是很困难的,这涉及到其压控振荡器的制作工艺。而把滤波器的形状因数做小是相对比较容易实现的。所以我们评定一个频谱仪的时候不仅要考虑它的边带噪声,也要考察它的形状因数。

对于HP-859X的频谱仪,当分辨率带宽变得很窄,在300Hz以下时,其滤波器就自动切换到数字滤波器上。对于859X的频谱仪其内部的滤波器全是模拟的,没有数字滤波器。数字滤波器的测量速度要高于模拟。

用不同设置的分辨率带宽去测量交调信号。如图11所示。

当测量F1和F1+10kHz(F2)信号时,分辨率带宽BW设置成10kHz,与两个信号频率差别是一样的,这种情况下我们看到的是最外面的曲线,正好将两个信号分开。但不太容易分辨,只是知道是有两个信号存在。我们将BW下调一级,变成3kHz,图11中的中间那条曲线,就可以将两个信号分辨得非常清楚。但它的交调失真还是看不出来。我们再把BW进一步降低成为1kHz(实际是提高了分辨率),我们就可以更清晰地看到F1和F2,同时也看到两个失真信号。

分辨率带宽降低能提高分辨率,但对测量来说分辨率降低会增加扫描时间。这时我们可以对扫描时间进行人为设置,加快其扫描速度,提高测量速度。但是,由于扫描时间的改变会造成测量上的误差,具体就是频率升高,而幅度降低(见图12)。

所以作为一种快速测量而不要求太高测量精度时,可以采用这种方法,但若要较高精度的测量,必须要使BW与测量时间置于自动联动,方可满足准确测量的要求。

频谱分析仪第三个重要指标-动态范围。动态范围表示当两个信号同时出现时,测量其幅度差的能力。影响它的因素有最大输入功率、非线性工作区域、1dB压缩点(有时为0.5dB)。

频谱仪内部的混频器有一定的线性工作区域,如果超过线性区域,输入功率的变化与输出功率的变化即呈非线性。输出功率的变化量比输入功率的变化量小,造成功率压缩。如果功率压缩存在,我们所测得的功率值就是不准确的。

那么我们如何判断是否存在压缩呢?可以利用频谱仪内部的衰减器或外接衰减器来进行判断。将衰减器的衰减量设置在10dB时,测量混频器的输出功率。再将衰减器的衰减量增加10dB,再去测量混频器输出功率也应线性地减小10dB。若变化量不是10dB,只有7或8dB,说明混频器已工作在非线性区域,存在功率压缩区。

即使当频谱仪工作在线性区域的时候,混频器仍然产生内部失真,因为它是有源的非线性器件。在最差的情况下,内部失真完全可以覆盖被测件的失真产物或是外来的谐波失真。即使当内部失真低于要测信号的失真,也会引起测量误差。因为当基波信号进入到频谱仪时,它同样会产生二次和三次谐波。这种失真是由频谱仪内部产生的。这一失真会与输入信号的失真混叠起来,最后输出的谐波分量要比真实的失真高。这就造成了一定的测量误差。这要求频谱仪所产生的内部失真要尽量地小,使最后迭加出来的信号,趋近于被测信号。如何降低频谱仪内部的谐波失真和交调失真。这可利用失真特性,二次或三次谐波在数学公式上都存在这样的特点,即若存在一个频率为F的信号,其二次谐波为2F,三次谐波为3F。当两个信号F1、F2存在,其交调失真有2F1-F2、2F2-F1等等,见图13。

当F信号功率变化1△时,2F功率会变化2△,它的三次谐波会变化3△。变化量分别是其2倍和3倍。也就是说当输入功率降低1dB,二次谐波和三次谐波分别会降低2dB和3dB。

交调失真是当F1、F2分别变化1△,2F1-F2和对应的2F2-F1均变化3△,这就是其特点。在测量时,频谱分析仪本身产生的二次谐波信号越高,它测量的范围越差。我们用输入信号F0的功率值和产生信号谐波功率值之差来进一步定义动态范围。凡是被测信号落在这一范围之内,都可以测出。

如何使动态范围增大(见图14),我们可以利用上面所说的数学特性,只要将F0的功率降低1dB,2F0会降低2dB。这就使动态范围增大了1dB。若F0的功率降低10dB,其动态范围也会随之增大10dB。三次失真的降低速度会更快。二次谐波和三次谐波的动态范围是呈线性变化的,只是斜率不一样。

我们用动态范围和功率值建立一个坐标系,可以得到图15的曲线,横坐标实际是混频器F0输入功率值,纵坐标就是内部失真电平。在动态范围的图上划出由基波产生的二次和三次失真产物与基波信号的相对关系。当一个混频器F0的功率为0dB,它的二次谐波失真信号的功率是固定的,差值也是固定的。可以看出,当功率降低越低,动态范围就越大。三次谐波更是如此。由此得出,混频器输入的功率越小,其动态范围就越大。

对于小信号的测量还有一个影响因素是它的噪声底。一个被测信号在仪器本身的失真范围之下是不可测的,若隐含在仪器本身的噪声底之下也是无法检测的。那么噪声底由谁来决定?噪声底的第一个因素是衰减量(见图16)。当衰减器的衰减量为10dB时,我们可以看到这些噪声曲线,同时看到一个小信号。当衰减量变成20dB,噪声底会抬高10dB,小信号就会被覆盖在平均噪声功率之下,变成不可测量。所以衰减量会影响仪器的噪声底,并降低了信噪比。所以要用尽可能小的输入衰减以获得最好的信噪比。

在实际的测量中,显示的信号电平不会随衰减的增加而下降。这是因为当衰减降低了加到检波器的信号电平时,中频放大器会增加10dB来补偿这个损失,这使荧光屏上的信号幅度保持不变。但噪声电平被放大、增加了10dB。

另一个因素是中频滤波器的带宽(见图17),带宽越宽,进来的噪声越多,功率当然也就越高。带宽降低10倍,噪声功率也会降低10倍;带宽降低100倍,噪声功率也会降低100倍。BW从100kHz变成10KHz,其噪声平均显示电平会降低10dB。

所以说频谱仪的噪声是在一定的分辨带宽下定义的。广义上说,频谱分析仪的最低噪声电平是在最小分辨率带宽下得到的。

当频谱仪设置的分辨带宽以及衰减量固定时,那么它的噪声底也就固定了。这时信号的检测能力也决定了。当小信号低于噪声底时就不可测量,高于噪声底就变得可测。这个测量范围就是被测信号与噪声底的比值。信号若比噪声底高10dB,可测范围就是10dB。这一信噪比我们置于纵坐标上,输入功率在横坐标上。(见图18)当噪声底固定的话,假设把BW 设置在1kHz时,衰减量不变,那么它的噪声是不变的,这时设输入功率为-40dB,信噪比是75dB。当输入功率为-30dB时,信噪比为85dB。从此看出,信号的降低,信噪比是降低的噪声底对动态范围的影响。把信号对噪声和信号对失真的曲线置于同一坐标系上,横坐标是输入功率,纵坐标是动态范围(见图19)。最大的动态范围处于曲线的交点。这时内部产生的失真电平等于显示的平均噪声电平。

频谱仪是否产生了失真?我们可以通过改变衰减器来判断。输入两个信号F1和F1+10k,当衰减量增大,混频器的输入功率降低,理论上失真也会降低。如果我们看到这些信号是降低的话,说明失真信号是频谱仪内部产生的;如果不变,那么它是外来的信号(见图20)。这是因为在调节衰减器的衰减量时,它后面有一个放大补偿(本文前面曾讲过)。所以频谱仪显示的外来失真信号是不变的,但自身的失真会有明显的变化。这个方法可简单明确的看出频谱仪是否工作在失真状态。

在测量时为了使噪声曲线平滑,在检波之后,放置了一个低通滤波器,即视频滤波器。这就是BW键中VBW软键的设置(见图21)。它的作用是将检测信号中的高频部分滤掉,使我们从显示屏上看到一个光滑的曲线。这对小信号的测量是非常有效的,它可使读数更为稳定。

最后谈一下灵敏度。简单地说,灵敏度就是最小可检测信号,定义为在一定分辨带宽下显示的平均噪声电平。“平均”就是足够窄的视频带宽VBW,去平均信号加噪声或噪声(见图22)。若一信号的电平等于显示的平均电平,它将以近似3dB突起显示在平均噪声电平之上。这一信号被认为是最小的可测量信号电平。

如果要使频谱分析仪得到最好的灵敏度,有以下三个方法:

(1)最窄的分辨率带宽;

(2)最小的输入衰减;

(3)视频带宽VBW应是分辨率带宽的百分之一。

但是最好的灵敏度可能与其它测量设置有矛盾,如测量时间大增,0dB的衰减会增加输入的驻波比,降低测量精度。总之,频谱仪的最佳工作状态是由诸多因素、参数决定的,不能片面追求某一指标的完美,需统筹考虑,对本文所述的基本因素和所要作的测量类型进行分析,尽力趋向于完美的组合。如对小信号测量,要提高灵敏度,对失真测量要调节衰减,同时要会判断频谱分析仪的工作状态等等。这在我们实际的工作中会遇到并要细心实践。

使用频谱分析仪的视频滤波带宽功能

使用频谱分析

仪的视频滤波带宽功能

频谱分析仪用户可能在没有完全了解视频滤波带宽(VFB)的情况下,已用过了这项功能。这项功能用于何处及如何用它得到最理想的结果,大多数用户可能仅有一个模糊的概念,因此,仍保留着视频滤波带宽的缺省设置,这一设置可能不是最坏的设置,但也可能不是最佳设置。理解视频滤波带宽的正确用法,大

多数频谱分析仪的测量结果会大大地改善。

如果视频滤波带宽设置不合造,就会引起明显的测量错误。因此,了解何时改变视频滤波带宽设置(即缺省设置导致故障出现的情况)是很重要的。视频滤波带宽的合理设置能使一个已经不错的测量结果进一

步改善。

频谱分析仪的视频滤波电路与电视机完全不同,更确切地说,它指的是分析仪屏幕上显示的示踪信息。视频滤波带宽指的是用来放大被测信号的电路或滤波器的带宽。一个更准确的定义是后置检波器电路,因为视频滤波器往往在检测器之后,而分辨率滤波器(这是为广大频谱分析仪用户所熟知的)则在检波器之

前。

一个较窄的后置检波器带宽相当于一个平均电路,因此,视频滤波器有时被当作是一个信号平均器。无论怎样描述和使用,都只能理解为视频滤波带宽与分辨率带宽(RB)有关,否则一个视频滤波带宽值是没什么意义的。例如,可以说l0KHz的视频滤波带宽窄,也可以说它宽,这要看分辨率滤波器。如果分辨率带宽滤波器设为1kHz,那么l0KHz的视频滤波带宽被认为是宽的。但是,如果分辨率带宽设为lMHz,那么10KHz的视频滤波带宽被认为是窄的。因此,总认为视频滤波带宽与分辨率带宽滤波器相关(是比率的关系),至于这个比率为多少,就要看显示的信号类型以及要对此信号做什么或测试什么。

一个常见的缺省设置就是使视频滤波带宽与分辨率带宽相等,其实分辨率带宽是单独改变的,而视频滤波带宽则与分辨率带宽的设置有关。所以,只要缺省的设置不变,分辨率带宽的任何变化都会影响到视频滤波带宽,而视频滤波带宽的变化则不会影响分辨率带宽的设置。一旦视频滤波带宽被单独改变,它就

不再处于缺省设置(糯合或自动定位),视频滤波带宽也不再随分辨率带宽的变化而变化。为什么要让视频滤波带宽比分辨率带宽宽或窄呢?有两个不同的因素——一个是满足特定类型的信号显示的需要,另一个与

高级频谱分析的过程有关。

频谱分析仪用来测量三种基本的信号类型一一正弦波、脉冲和随机信号,如使用码分多址(CDMA)、正交调幅(QAM)或其它随机或伪随机分布信号。视频滤波带宽的设置对于纯正弦信号并不重要,即使当视频滤波带宽减小而延长测量的时间,显示的波形都不会随视频滤波带宽的变化而变化。因此,除非理由合理,使视频滤波带宽小于分辨率带宽并不可取。这个理由可能是正弦信号伴有噪声信号。此时,一个很窄的视频滤波带宽会滤除噪声并使正弦信号显示得更好。通常,测正弦信号时,视频滤波带宽最好设为缺省状态。

为了得到最精确的测试结果和最好的显示效果,脉冲信号需要一个宽的视频滤波带宽。一些频谱分析仪用户认为视频滤波带宽与分辨率带宽之比为3:1就足够了,有的则要求10:1,笔者认为5:1的比例是足够的。不过,1:1比率的缺省的设置的测量结果可以接受,大多数用户保留了缺省设置。然而,视频滤波带宽应与分辨率带宽去桶,而且应设置得更宽些,

以获得最准确的频谱显示及测量结果。

随机信号因其不确定性给测量带来了问题。频谱随每次扫频而变化。得到一个稳定、重复显示的最简单的方法,就是使频谱信号通过一个梧的视频滤波带宽来使其平滑。这里的"窄"通常指分辨率带宽与视频滤波带宽之比至少是100:1。为使结果更准确,这一比率应为1000:1或更大。这就意味着当分辨率带宽为10KHz时,视频滤波带宽设在10Hz上是正常的。这样窄的视频滤波带宽会大大增加测量的时间,只有在必要的时候才能用。

在测试中,为了进行一个高精度的测量过程,视频滤波带宽有时会设得比缺省的设置更宽或更窄,每种情况都是独一无二的,一般情况下不考虑这种设置,而且要根据进行何种测

量而定,下面就两个例子解释一下。

一个十分窄的视频滤波带宽充当一个平均电路,脉冲信号的平均值取决于占空比,它是开-关的比率。这样,1μs宽的脉冲信号在1KHz的脉冲重复频率(PRF)时占空比为1000:1,

平均值将低于峰值201g(1000)=60dB。

另一个不同的脉冲信号的例子是一个较宽的视频滤波带宽设置。在这里,我们感兴趣的是显示并测量调制脉冲信息。这是在频谱分析仪的零档模式下测量,在这种模式下,分析仪只设一个跨跃整个显示屏幕的频率,这样就能得到一个检波或解调基于时基的显示结果。

频谱分析仪分辨率带宽、视频带宽辨析和设置

在测量无线信号系统指标中,常常要用到频谱仪,为了使测量结果准确,在频谱分析仪的使用上常涉及到一个分辨带宽设置的问题。要弄清这个问题,得要知道一些频谱仪的基本原理。图1是频谱分析仪的基本原理框图。图中的中频频率(输入信号通过与本振信号的和频或差频产生),本振受斜波发生器的控制,在斜波发生器的控制下,本振频率将从低到高的线性变化。这样在显示时,斜波发生器产生的斜波电压加到显示器的X轴上,检波器输出经低通滤波器后接到Y轴上,当斜波发生器对本振频率进行扫描时显示器上将自动绘出输入信号的频谱。检波器输出端的低通滤波器称为视频滤波器,用在分析扫描时对响应进行平滑。

1、分辨带宽

在频谱分析仪中,频率分辨率是一个非常重要的概念,它是由中频滤波器的带宽所确定的,这个带宽决定了仪器的分辨带宽。例如,滤波器的带宽是100KHZ。那么谱线频率就有100KHZ的不定性,也即在一个滤波器的带宽频率范围内,出现了两条谱线的话,则仪器不能检出这两条谱线,而只显示一条谱线,此时仪器所反映的谱线电平(功率)是这两条谱线的电平功率的叠加。因此会出现测量误差。所以,对于两条紧密相关的谱线,其分辨力取决于滤波器的带宽。

我们以测量载波电平为例,对仪器的分辨带宽设置加以比较,图2是分辨带宽分别是(由下到上)30KHZ、300KHZ、3MHZ的频谱曲线(输入为单个载波信号),

在设置分辨带宽时,我们考虑的是仪器在充分响应输入信号时是否有足够的带宽,正确的方法是展宽滤波器的带宽,当在屏幕上观察到信号载波幅度不再增加时,就表示中频滤波器对输入信号的响应已有足够的带宽了。在图中我们看到,当分辨带宽在300KHZ到3MHZ变化时,显示的信号幅度没有变化,这就可以认为300KHZ带宽已经足够了。另外,分辨带宽在300KHZ和3MHZ之间设置时,对于单个载波情况下的信号幅度没有变化,但是在实际测量CATV系统图象载波电平时却不能将分辨带宽设为3MHZ,这是因为在实际中图象载波附近存在相邻频道的伴音载波(相距1.5MHZ),3MHZ带宽则不能把相邻伴音载波的能量滤掉,这样相邻伴音载波的能量会加到正在测量的图象载波上,使测到的电平值比实际的高。

2、视频滤波器

在图1中的检波器之后的滤波器称为检波滤波器又叫视频滤波器,它是一个低通滤波器,它的作用可以减少检波器输出的噪声变化,揭示一些已被掩盖且接近本底噪声的信号,如果是测量噪声功率,它还有助于稳定测量。

检波器输出端往往存在直流分量和交流分量,直流分量代表着中频带宽内存在的能量,所以通过视频滤波器可达到提取直流分量去除一些交流分量,这样能给出更稳定的无噪声输出。图3是不同视频带宽下,检波器输出的信号图,图3a采用宽带视频滤波器,图3b采用窄带视频滤波器,由图中可看出,采用宽带滤波器时噪声的波动较大,采用窄带滤波器时波动显著减少,两者的噪声平均值却一样,也就是说滤波器不会降低平均噪声电平,但能减少噪声的峰值电平。因而能暴露出用较宽视频滤波器不能看到的低电平信号。但在某些情况下,如分析一些特殊的噪声信号时,我们则需要较宽的视频滤波器带宽,以便观察和分析,所以我们可根据不同的情况来设置视频滤波器的带宽。

视频滤波器的带宽和分辨带宽的关系是:检波前的噪声可以通过较窄的分辨带宽来降低,从而降低检波器的噪声输出电平;检波后的噪声则通过窄带视频滤波器来平滑减少噪声波动,但不能降低噪声的平均功率电平。

频谱分析低度的主要设置参数

由于频谱仪内部含有混频器,其特点是与有源器件放大器一样的。当输入信号为两个信号或是点频信号时,这个混频器也会产生以上所述的失真,并在频谱仪上反应出来,给测量带来误差。如何把频谱仪误差降低变为可测?

对于一种测量,可以使它成为可测,也可以使它成为不可测。这完全取决于频谱仪的设置。包括对衰减器、频率范围、分辨率带宽的设置。

频谱仪的设置主要有频率范围、分辨率和动态范围,而动态范围又会涉及到最大的输入功率即烧毁功率,增益压缩使小于1W的输入信号如果超过线性工作区也会有误差。还有灵敏度。要从以上几个主要方面来考虑频谱仪对输入的信号是否可测。

现在来看第一项参数频率范围。这个参数要从两个方面看,一是频率范围的设置是否足够的窄,具有足够的频率分辨能力,也就是窄的扫频宽度(见图6)。二是频率范围是否有足够的宽度,是否可以测到二次、三次谐波。

当我们用一个频谱仪测量一个放大器的谐波失真的时候,若这个放大器工作点是1GHz,那么它的三次谐波就是3GHz。这就是要考虑频率范围的最大可测宽度。如果频谱仪是1.8GHz的,那么就不能测量;如果是26.5GHz的频谱仪,当然可以测到它的三次,

四次谐波。

第二类指标是分辨率。这是频谱分析仪中非常重要的参数设置。分辨率表示当要测量的是F1、而在F1的附近有另一个F2(见图7)。但它们的功率不一样,这时看能不能将它们区分开。将这个中频带宽设置成三种不同的宽度,下面所对应的就是在这一带宽设置时所看到的曲线(显示线)。很显然中频带宽越窄分辨率越高,中频带宽越宽分辨率越低。分辨率带宽直接影响到小信号的识别能力和测量的结果。

分辨率实际上就是分辨两个信号的能力,中频滤波器的3dB带宽就是分辨率带宽

(见图8)。

对信号的分辨除了分辨率带宽会影响之外,还有一个参数,滤波器的形状因数(见图9),即滤波器60dB对3dB带宽之比值。形状因数越小越接近3dB带宽。越陡峭就越接近于矩形,这时分辨能力就越强。所以说形状因数越小,分辨能力越强。

模拟滤波器一般为15:1或是11:1,而数字滤波器是5:1。对于一个信号的分辨能力还有两个因素:剩余调频和噪声边带(见图10)。

剩余调频是本振信号的抖动,这是无法避免的工艺问题。这种抖动决定了它能分辨信号间的小频率范围。如果两个信号相差频率是小于这个抖动范围,那么就无法把这两个信号分辨出来。所以剩余调频这个指标就决定了频谱分析仪的最小可分辨的频率差。对于HP-859X来说是20Hz,对于ESA来讲是10Hz。

噪声边带在信号响应基底上表现得不稳定,这个噪声可能掩盖近端(靠近载波)的低电平信号。这个噪声是由本振的抖动引起的,在频率域上的体现。这个边带噪声降

低了分辨能力。

对于频谱分析仪来说要降低边带噪声是很困难的,这涉及到其压控振荡器的制作工艺。而把滤波器的形状因数做小是相对比较容易实现的。所以我们评定一个频谱仪的时候不仅要考虑它的边带噪声,也要考察它的形状因数。

对于HP-859X的频谱仪,当分辨率带宽变得很窄,在300Hz以下时,其滤波器就自动切换到数字滤波器上。对于859X的频谱仪其内部的滤波器全是模拟的,没有数字

滤波器。数字滤波器的测量速度要高于模拟。

用不同设置的分辨率带宽去测量交调信号。如图11所示。

当测量F1和F1+10kHz(F2)信号时,分辨率带宽BW设置成10kHz,与两个信号频率差别是一样的,这种情况下我们看到的是最外面的曲线,正好将两个信号分开。但不太容易分辨,只是知道是有两个信号存在。我们将BW下调一级,变成3kHz,图11中的中间那条曲线,就可以将两个信号分辨得非常清楚。但它的交调失真还是看不出来。我们再把BW进一步降低成为1kHz(实际是提高了分辨率),我们就可以更清晰地看到

F1和F2,同时也看到两个失真信号。

分辨率带宽降低能提高分辨率,但对测量来说分辨率降低会增加扫描时间。这时我们可以对扫描时间进行人为设置,加快其扫描速度,提高测量速度。但是,由于扫描时间的改变会造成测量上的误差,具体就是频率升高,而幅度降低(见图12)。

所以作为一种快速测量而不要求太高测量精度时,可以采用这种方法,但若要较高精度的测量,必须要使BW与测量时间置于自动联动,方可满足准确测量的要求。

频谱分析仪第三个重要指标-动态范围。动态范围表示当两个信号同时出现时,测量其幅度差的能力。影响它的因素有最大输入功率、非线性工作区域、1dB压缩点(有

时为0.5dB)。

频谱仪内部的混频器有一定的线性工作区域,如果超过线性区域,输入功率的变化与输出功率的变化即呈非线性。输出功率的变化量比输入功率的变化量小,造成功率压缩。如果功率压缩存在,我们所测得的功率值就是不准确的。

那么我们如何判断是否存在压缩呢?可以利用频谱仪内部的衰减器或外接衰减器来进行判断。将衰减器的衰减量设置在10dB时,测量混频器的输出功率。再将衰减器的衰减量增加10dB,再去测量混频器输出功率也应线性地减小10dB。若变化量不是10dB,只有7或8dB,说明混频器已工作在非线性区域,存在功率压缩区。

即使当频谱仪工作在线性区域的时候,混频器仍然产生内部失真,因为它是有源的非线性器件。在最差的情况下,内部失真完全可以覆盖被测件的失真产物或是外来的谐波失真。即使当内部失真低于要测信号的失真,也会引起测量误差。因为当基波信号进入到频谱仪时,它同样会产生二次和三次谐波。这种失真是由频谱仪内部产生的。这一失真会与输入信号的失真混叠起来,最后输出的谐波分量要比真实的失真高。这就造成了一定的测量误差。这要求频谱仪所产生的内部失真要尽量地小,使最后迭加出来的信号,趋近于被测信号。如何降低频谱仪内部的谐波失真和交调失真。这可利用失真特性,二次或三次谐波在数学公式上都存在这样的特点,即若存在一个频率为F的信号,其二次谐波为2F,三次谐波为3F。当两个信号F1、F2存在,其交调失真有2F1-F2、2F2-F1

等等,见图13。

当F信号功率变化1△时,2F功率会变化2△,它的三次谐波会变化3△。变化量分别是其2倍和3倍。也就是说当输入功率降低1dB,二次谐波和三次谐波分别会降低2dB 和3dB。交调失真是当F1、F2分别变化1△,2F1-F2和对应的2F2-F1均变化3△,这就是其特点。在测量时,频谱分析仪本身产生的二次谐波信号越高,它测量的范围越差。我们用输入信号F0的功率值和产生信号谐波功率值之差来进一步定义动态范围。凡是被

测信号落在这一范围之内,都可以测出。

如何使动态范围增大(见图14),我们可以利用上面所说的数学特性,只要将F0的功率降低1dB,2F0会降低2dB。这就使动态范围增大了1dB。若F0的功率降低10dB,其动态范围也会随之增大10dB。三次失真的降低速度会更快。二次谐波和三次谐波的动

态范围是呈线性变化的,只是斜率不一样。

我们用动态范围和功率值建立一个坐标系,可以得到图15的曲线,横坐标实际是混频器F0输入功率值,纵坐标就是内部失真电平。在动态范围的图上划出由基波产生的二次和三次失真产物与基波信号的相对关系。当一个混频器F0的功率为0dB,它的二次谐波失真信号的功率是固定的,差值也是固定的。可以看出,当功率降低越低,动态范围就越大。三次谐波更是如此。由此得出,混频器输入的功率越小,其动态范围就越

大。

频谱分析仪原理,主要指标及应用(4)

对于小信号的测量还有一个影响因素是它的噪声底。一个被测信号在仪器本身的失真范围之下是不可测的,若隐含在仪器本身的噪声底之下也是无法检测的。那么噪声底由谁来决定?噪声底的第一个因素是衰减量(见图16)。当衰减器的衰减量为10dB时,我们可以看到这些噪声曲线,同时看到一个小信号。当衰减量变成20dB,噪声底会抬高10dB,小信号就会被覆盖在平均噪声功率之下,变成不可测量。所以衰减量会影响仪器的噪声底,并降低了信噪比。所以要用尽可能小的输入衰减以获得最好的信噪比。

在实际的测量中,显示的信号电平不会随衰减的增加而下降。这是因为当衰减降低了加到检波器的信号电平时,中频放大器会增加10dB来补偿这个损失,这使荧光屏上的信号幅度保持不变。但噪声电平被放大、增加了10dB。

另一个因素是中频滤波器的带宽(见图17),带宽越宽,进来的噪声越多,功率当然也就越高。带宽降低10倍,噪声功率也会降低10倍;带宽降低100倍,噪声功率也会降低100倍。BW从100kHz变成10KHz,其噪声平均显示电平会降低10dB。

所以说频谱仪的噪声是在一定的分辨带宽下定义的。广义上说,频谱分析仪的最

低噪声电平是在最小分辨率带宽下得到的。

当频谱仪设置的分辨带宽以及衰减量固定时,那么它的噪声底也就固定了。这时信号的检测能力也决定了。当小信号低于噪声底时就不可测量,高于噪声底就变得可测。这个测量范围就是被测信号与噪声底的比值。信号若比噪声底高10dB,可测范围就是10dB。这一信噪比我们置于纵坐标上,输入功率在横坐标上。(见图18)当噪声底固定的话,假设把BW设置在1kHz时,衰减量不变,那么它的噪声是不变的,这时设输入功率为-40dB,信噪比是75dB。当输入功率为-30dB时,信噪比为85dB。从此看出,信

号的降低,信噪比是降低的。

噪声底对动态范围的影响。把信号对噪声和信号对失真的曲线置于同一坐标系上,横坐标是输入功率,纵坐标是动态范围(见图19)。最大的动态范围处于曲线的交点。

这时内部产生的失真电平等于显示的平均噪声电平。

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

频谱分析仪的原理及应用

频谱分析仪的原理及应用 (远程互动方式) 一、实验目的: 1、熟悉远程电子实验系统客户端程序的操作,了解如何控制远地服务器主机,操作与其连接的电子综合实验板和PCI-1200数据采集卡,具体可参照实验操作说明。 2、了解FFT 快速傅立叶变换理论及数字式频谱分析仪的工作原理,同时了解信号波形的数字合成方法以及程控信号源的工作原理。 3、在客户端程序上进行远程实验操作,由程控信号源分别产生正弦波、方波、三角波等几种典型电压波形,并由数字频谱分析仪对这几种典型电压波形进行频谱分析,并对测量结果做记录。 二、实验原理: 1、理论概要 数字式频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处理器系统或计算机来处理和显示,与模拟仪器相比,数据的量化更精确,而且很容易实现存储、传输、控制等智能化的功能。电压测量的分辨率取决于A/D 采样器件的位数,例如12位A/D 采样的分辨率是1/4096。在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越接近原始信号,在频谱上展现的频带就越宽。 本实验系统基于虚拟仪器构建,数字频谱分析仪是通过PCI-1200数据采集卡来实现的。通过虚拟仪器软件提供的网络通信功能,实现客户端与服务器之间的远程通信。由客户端程序发出操作请求,由服务器接受并按照要求控制硬件实验系统,然后将采集到的实验数据发给客户端,由客户端程序进行处理。 频谱分析仪是在频域进行信号分析测量的仪器之一,它采用滤波或傅立叶变换的方法,分析信号中所含各个频率份量的幅值、功率、能量和相位关系。频谱仪按工作原理,大致可分为滤波法和计算法两大类,本实验所用的数字频谱分析仪采用的是计算法。 计算法频谱分析仪的构成如图1所示: 图1 计算法频谱分析仪构成方框图 数据采集部分由数据采集部分由抗混低通滤波(LP )、采样保持(S/H )和模数转换(A/D )几个部分组成。 数字信号处理(DSP )部分的核心是FFT 运算。 有限离散序列Xn 和它的频谱X m 之间的傅立叶变换可表示如下: N-1 nm X m = ∑ Xn ·W N n=0 -j2π/N 式中W N = C n,m = 0,1,……,N-1 1 N-1 -nm Xn = - ∑ X m ·W N N m=0 X m 有N 个复数值,由它可获得振幅和相位谱∣X m ∣,φm 。由于时间信号Xn 总是实函数,X m 的N 个值的前后半部分共轭对称。 由于数据采集进行的是有限时间内的信号采集,而不是无限时间信号,在进行FFT 变

安立频谱仪使用说明

安立频谱仪介绍

安立频谱仪使用章程 频谱分析仪的正面图如下: 下面介绍这些按键的功能: 第三章按键功能 硬键 硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。 功能硬键 模式 按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选 择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模 式。 FREQ/SPAN (频率/频宽)

按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、 FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截 至频率)的选项。我们可以通过相应的软键来选择相应的功能。AMPLITUDE (幅度) 按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、 SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、 和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。BW/SWEEP (带宽/扫描) 按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、 MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检 测)”选项,我们可以通过相应的软键来选择相应的功能。KEYPAD HARD KEYS (面板上的硬键) 下面的这些按键是用黑色字体标注的 0~9 是当需要进行测量或修改数据时用来输入数据的。 +/- 这个键可以使被操作的数值的符号发生变化即正负变化。 . 入小数点。 ESCAPE CLEAR 这个键的功能是退出当前操作或清楚显示。如果您在进行参数修改时 按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按 一次该键则关闭该参数的设置窗口。再正常的前向移动(就是进入下 层目录)中,按一下这个键则返回上层目录。如果在开该仪器的时候 一直按下该键则仪器将恢复出厂时的设置。 UP/DOWN ARROWS

Lab1 Spectrum Analyzer频谱分析仪的使用

LAB # 1 – ANALYZING SIGNALS IN THE FREQUENCY DOMAIN INTRODUCTION You have probably connected various equipment to an oscilloscope in order to test various characteristics; if so, you know that the oscilloscope display shows the user a graph of amplitude (voltage) vs. time. Amplitude is on the vertical axis and time is on the horizontal axis. In telecommunications, when dealing with radio frequency (RF) waves, it is often beneficial to view signals in the frequency domain, rather than in the time domain. In the frequency domain, the vertical axis is still amplitude (usually power), but the horizontal axis is frequency instead of time. TIME DOMAIN: Amplitude vs. Time FREQUENCY DOMAIN: Amplitude vs. Frequency In this experiment, we will look at the characteristics of an RF signal using an oscilloscope (time domain) and using a spectrum analyzer (frequency domain). This will prepare you for future labs that deal with frequency-domain signals. MATERIALS & SETUP ? 1 MHz Signal Generator ? Oscilloscope ?HP Spectrum Analyzer ?BNC T-Connector ? Coaxial Cables ?RF adapters Fig. 1-1

频谱分析仪的设计方案及实际应用案例汇总

频谱分析仪的设计方案及实际应用案例汇总 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1 赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。 基于MSP430 的FM 音频频谱分析仪的设计方案 本文中主要提出了以MSP43 处理器为核心的音频频谱分析仪的设计方案。以数字信号处理的相关理论知识为指导,利用MSP430 处理器的优势来进行音频频谱的设计与改进,并最终实现了在TFT 液晶HD66772 上面显示。 基于NIOS II 的频谱分析仪的设计与研制 本设计完全利用FPGA 实现FFT,在FPGA 上实现整个系统构建。其中CPU 选用Altera 公司的Nios II 软核处理器进行开发, 硬件平台关键模块使用Altera 公司的EDA 软件QuartusIIV8.0 完成设计。整个系统利用Nios II 软核处理器通过Avalon 总线进行系统的控制。 基于频谱分析仪二代身份证读卡器测量 本文所介绍使用频谱仪检测RFID 读卡器的应用实例也是一种通用检测 方案,可广泛应用在RFID 读卡器和主动式电子标签研发过程中的调试、产线 的检验等多个方面。 基于频谱分析仪分析手机无线测试 本文将对手机无线通信中遇到的问题提出相应的解决方案。手机在进行通信时存在着频段控制、通信质量检测和信号大小控制等问题。被射频工程师

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

AdobeAudition系列教程二频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用Adobe Audition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

Adobe-Audition-系列教程(二):频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真!? 1. 频谱显示模式? Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

v1E8000频谱分析仪使用说明书

目录 1仪器的一般性说明 ..................... 错误!未定义书签。 1.1仪器的主要功能简介 ......... 错误!未定义书签。 1.2选择机型介绍 ..................... 错误!未定义书签。 1.3可供选购功能附件的介绍 . 错误!未定义书签。 1.4随机标准配置附件的说明 . 错误!未定义书签。 1.5预防性护理 ......................... 错误!未定义书签。 1.6年检和校准说明 ................. 错误!未定义书签。 1.7静电放电(ESD)的保护方法错误!未定义书签。 1.8电池的更换 ......................... 错误!未定义书签。 1.9使用软背包 ......................... 错误!未定义书签。 1.10有关的技术支持和服务信息错误!未定义书签。 2熟悉仪器 (3) 2.1打开频谱分析仪 (3) 2.1.1频谱分析仪前面板介绍 (3) 2.1.2测试面板介绍 (5) 2.2人机交互界面介绍 (5) 2.2.1屏幕显示信息介绍 (5) 2.2.2菜单操作 (6) 2.2.3符号与指示 (7) 2.2.4数据输入 (7) 2.3测量模式选择 (8) 2.4菜单详解 (8) 2.4.1AMP按键 (8) 2.4.2CPL按键 (10) 2.4.3FREQ按键 (10) 2.4.4MARK按键 (11) 2.4.5MEAS按键 (12) 2.4.6MEAS/SETUP按键 (13) 2.4.7PEAK按键 (14) 2.4.8SAVE按键 (15) 2.4.9SYS按键 (16) 3频谱测量 (17) 3.1测量类型选择 (17) 3.2频谱扫描的功能和使用 (17) 3.2.1基础测量 (17) 3.2.2基本参数设置 (27) 3.2.3测量参数设置 (31) 3.2.4基本使用 (37) 3.3通道功率 (45) 3.3.1基础测量 (45) 3.3.2基本参数设置 (49) 3.3.3测量参数设置 (49) 3.3.4基本使用 (51) 3.4邻道功率 (52) 3.4.1基础测量 (52) 3.4.2基本参数设置 (53) 3.4.3测量参数设置 (54) 3.4.4基本使用 (56) 3.5占用带宽 (57) 目录-1

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

频谱分析仪at5010使用方法

频谱分析仪 Spectrum Analyzer 系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer). 即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time). 最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系. 影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(RBW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念. (9)中频带宽选择(400kHz、20kHz):选在20kHz带宽时,噪声电平降低,选择性提高,能分隔开频率更近的谱线。此时,若扫频宽度过宽,则由于需要更长的扫描时间,从而造成信号过渡过程中信号幅度降低,使测量不正确。此时“校准失效”LED发亮即表明这一点。 (10)视频滤波器选择(VIDEOFILTER):可用来降低屏幕上的噪声,它使得正常情况下,平均噪声电平刚好高出其信号(小信号)谱线,以便于观察。该滤波器带宽是4kHz。 (11)Y移位调节(Y-POS):调节射速垂直方向移动。 (12)BNC 5011输入端口(1NPUT 5011):在不用输入衰减时,不允许超出的最大允许输入电压为+25V(DC)和十10dBm(AC)。当加上40dB最大输入衰减时,最大输入电压为+20dBm。 (13)衰减器按钮:输入衰减器包括有4个10dB衰减器,在信号进入第一混频器之前,利用衰减器按钮可降低信号幅度。按键压下时衰减器接人。

安捷伦-Agilent-E4402B-频谱分析仪使用说明简介

Agilent E4402B ESA-ESeries SpectrumAn alyzer 使用方法简介 宁波之猫 2009-6-17

?目录 1简介............................................................................................. 错误!未定义书签。 2.面板............................................................................................. 错误!未定义书签。 2.1操作区?错误!未定义书签。 2.2 屏幕显示......................................................................... 错误!未定义书签。3.各功能区的使用....................................................................... 错误!未定义书签。 3.1 Control(控制)功能区 ............................................ 错误!未定义书签。 3.1.1 FrequencyChannel:?错误!未定义书签。 3.1.2Span X Scale?错误!未定义书签。 3.1.3Amplitude YScale .......................... 错误!未定义书签。 3.1.4 Input/Output ................................................... 错误!未定义书签。 3.1.5 View/Trace?错误!未定义书签。 3.1.6 Display?错误!未定义书签。 3.1.7 Mode ..................................................................... 错误!未定义书签。 3.1.8 Det/Demod?错误!未定义书签。 3.1.9Auto Cuple?8 3.1.10BW/Avg?错误!未定义书签。 3.1.11 Trig ............................................................. 错误!未定义书签。 3.1.12 Single?错误!未定义书签。 3.1.13Sweep?错误!未定义书签。 3.1.14Source?错误!未定义书签。 3.2 Measure(测量)功能区?错误!未定义书签。 3.2.1Measure?错误!未定义书签。 3.2.2 Meas Setup .............................................. 错误!未定义书签。 3.2.3 Meas Control ................................................ 错误!未定义书签。 3.3 System(系统)功能区............................................... 错误!未定义书签。 3.3.1System ......................................................... 错误!未定义书签。 3.3.2 Preset?错误!未定义书签。 3.3.3 File?错误!未定义书签。 3.3.4 Print Setup&Print .................................. 错误!未定义书签。 3.4Marker(标记)功能区?错误!未定义书签。 3.4.1 Marker........................................................... 错误!未定义书签。 3.4.2 Peak Search ................................................... 错误!未定义书签。 3.4.3 Freq Count?错误!未定义书签。 3.4.4Marker→?错误!未定义书签。 4.测试步骤举例............................................................................. 错误!未定义书签。

预习实验5频谱分析仪的使用

课程 电子测量 学号 姓名 成绩 实验名称 实验五 频谱分析仪的使用 一、 实验目的 正确设置频谱分析仪的各项参数,观测输入的各种波形信号的幅度谱,达到熟练使用频谱仪的目的。 二、实验原理 1、频谱分析仪原理 现代频谱分析仪是一种“外差式FFT 分析仪”,其组成如图5.1所示。被测信号经输入衰减之后进入混频电路,在扫描本振信号的作用下,被测信号的各种频率成分被依次混频,然后以固定的中频频率通过中频滤波器,被选择出来进行后续处理。在数字中频处理电路中,被测信号的各个频率分量被量化、正交分解、时-频域变换,最后送入显示器。 图5.1 现代频谱分析仪的组成 2、 被测信号的频谱 本实验将使用频谱分析仪观测正弦波、方波、三角波信号的幅度谱。 (1)正弦波的频谱 对一个周期为T ,幅度为A 的连续余弦波,其表达式为:t A t u 0cos )(ω=,其中T π ω20= (2)方波的频谱(类似图5.2) 图5.2方波的频谱图 对周期为T 高为1的方波,付氏展开:)3cos 3 1 (cos 1 )(00 +-= t t t u ωωπ 信号 输入

可见,方波偶数项为0。基波幅度最大,奇次项幅度随谐波次数的增加而递减。 (3)三角波的频谱(类似图5.3) 对周期为T 高为1的三角波, 付氏展开:)3cos 3 1 (cos 8 )(0202 +- = t t t u ωωπ 图5.3三角波的频谱图 三角波的频谱与方波类似,仅有奇次分量,谐波幅度也随谐波次数的增加而递减。但三角波的谐波幅度收敛更快,因为幅度值与谐波次数的平方成反比。 三、频谱仪的操作 影响频谱仪幅度谱迹线显示的因素有频率(横轴)、幅度(纵轴)两方面。 1、 频率 (1)与频率显示有关的频谱仪指标 ● 频率范围:频谱仪能够进行正常工作的最大频率区间。 ● 扫描宽度:表示频谱仪在一次测量过程中所显示的频率范围,可以小于或 等于输入频率范围。通常根据测试需要自动调节,或手动设置。 ● 频率分辨率:能够将两个相邻频谱分量(两条相邻谱线)分辨出来的能力。 频率分辨率由中频滤波器带宽和选择性决定,还受本振频率稳定度影响。 ● 扫描时间:进行一次全频率范围的扫描、并完成测量所需的时间。通常希 望扫描时间越短越好,但为了保证测量精度,扫描时间必须适当。 (2)与频率显示有关的频谱仪功能设置键 ● Span :设置当前测量的频率范围。 ● 中心频率:设置当前测量的中心频率。 ● RBW :设置分辨率带宽。通常RBW 的设置与Span 联动。 2、 幅度 (1)与幅度显示有关的频谱仪指标 ● 动态范围:同时可测的最大与最小信号的幅度之比。通常是指从不加衰减 时的输入信号电平起,直到最小可用信号电平为止的信号幅度变化范围。

相关文档