文档库 最新最全的文档下载
当前位置:文档库 › 镍钛形状记忆合金在医学中的应用

镍钛形状记忆合金在医学中的应用

镍钛形状记忆合金在医学中的应用
镍钛形状记忆合金在医学中的应用

镍钛形状记忆合金在医学中的应用

Application of nickel-titanium shape memory alloy in

Medicine

摘要:介绍了形状记忆合金几种重要特性及主要类型,重点综述了医用Ni-Ti形状记忆合金的发展现状及应用。资料表明,现有记忆合金中仅有Ni-Ti合金能够同时满足化学和生物学可靠性要求,是目前医学上使用的唯一一种记忆合金。因其具有奇特的形状记忆效应、生物相容性、超弹性及优良的耐磨性,它在临床和医疗器械等方面获得了广泛的应用。但由于缺乏系统的研究,对于可靠而有效的表面处理还缺乏统一的认识,因此,这方面的工作还亟待补充和完善。

关键词:形状记忆合金;Ni-Ti;医疗器械

Abstract: This paper describes several important characteristics of shape memory alloys and the main types, focusing on the development status and application reviewed medical Ni-Ti shape memory alloys. Data indicate that only the existing memory alloys Ni-Ti alloy can meet reliability requirements of chemistry and biology, is the only kind of memory alloy for use in medicine. Because of its peculiar shape memory effect, bio-compatibility, super-elastic and excellent abrasion resistance, it has been widely applied in clinical and medical equipment. However, due to lack of systematic research, for reliable and effective surface treatment also lacks a unified understanding, so this work also needs to complement and complete.

Keywords: shape memory alloy; Ni-Ti; Medical Devices

0 引言

形状记忆合金(Shape Memory Alloy,SMA)是近几十年发展起来的一种新型功能材料。这种材料最主要的特征是具有形状记忆效应,即材料经变形后再加热,当加热超过一定温度时,材料会自动恢复到它变形前的形状[1]。自1951年人们首次在Au-Cd合金上发现独特的记忆效应,1963年美国海军武器实验室发现TiNi合金具有形状记忆效应以来,经过30多年的研究与开发,形状记忆合金(SMA)已走向商品化阶段,目前已被广泛应用于工业自动化、能源、航空航天、医疗卫生、汽车、家电、土木工程、仪器仪表及机械制造等领域[2]。

1 形状记忆合金的记忆原理及基本特性

1.1 形状记忆合金的记忆原理

将在高温下处理成一定形状的金属急冷下来,在低温相状态下经塑性变形成另一种形状,然后再加热到高温相,即能成为稳定状态的温度时,通过马氏体逆相变恢复到低温塑性变形前形状的现象称为形状记忆效应。具有这种效应的金属,通常是由2种或2种以上的金属元素构成的合金,故称为形状记忆合金。形状记忆效应是由马氏体相变导致的,参与马氏体相变的高温相和低温相分别称为母相和马氏体相。形状恢复的驱动力是在加热温度下母相和马氏体相的自由能之差。

1.2 形状记忆合金的性能特点

与其他合金相比,形状记忆合金具有优良的形状记忆效应、卓越的超弹性、良好的阻尼特性及耐磨耐腐蚀等特性[4]。普通金属材料弹性一般不超过0.15%,而形状记忆合金则达20%或更高,故形状记忆合金又称为超弹性合金。目前关于SMA阻尼性能的研究还不够深入,从现有的研究成果可知,SMA具有优良的阻尼性能,其中具有马氏体、奥氏体混合组织的SMA 阻尼性能最好。

2 形状记忆合金的发展概况

徐祖耀于1993年对形状记忆合金的发展史作过回顾。早在20世纪30年代就有发现形状记忆效应的报道。1951年Chang和Read在等原子比Au-Cd合金中用光学显微镜直接观察到马氏体随着温度变化而迁动。数年后Burkart又在TiNi合金中观察到同样的现象。然而,由于早期发现的具有SME的合金十分昂贵而几乎没有工业价值,人们把观察到的SME只是

作为个别材料的特殊现象来对待而未引起足够的兴趣和重视。直到1963年美国海军军械实验室(Naval Ordance Laboratory)的Buehler博士在一次偶然的情况下发现近等原子比TiNi合金具有SME,并推出商品Nitinol合金,对SMA的研究才进入了一个新阶段。

20世纪70年代前后,在Cu基合金中发现了SME。Otsuka等人发现该类合金中的SME 与热弹性马氏体相变密切相关。

进入20世纪70年代,在Fe基合金研究中也相继发现了SME。Kajiwara在1973年发现,母相无序的Fe,Pt合金在FccyBcc马氏体相变中C/A界面存在可逆运动,从而呈现SME。Enami 在1975年报道,不锈钢中存在SME。同年在对Fe,Mn合金的研究中也发现SME。Kajiwara 等人在对Fe,Ni,C合金的系统研究中发现,合金中的薄片状马氏体只要在变形时不发生塑性变形,就会呈现SME。20世纪80年代开发成功了FeMnSi系SMA,引发了人们对SMA的极大关注。到20世纪90年代,随着科技发展的需要,高温形状记忆合金、宽滞后形状记忆合金及合金薄膜等成为研究的热点。

对形状记忆合金的开发离不开机理的研究。大量的事实表明,SME与马氏体相变存在着不可分割的关系,且绝大部分材料具有记忆原始形状的特性应归功于发生热弹性相变。所谓热弹性马氏体相变是指在相变中化学驱动力仅克服弹性应变能,往往以相界面的正迁动形式实现正逆相变。因此,Wayman提出了三准则,即热弹性马氏体相变、母相有序及马氏体的孪晶亚结构或层错。然而,近年来开发的铁系(如FeMnSi系合金)等少数合金通过在无序母相中发生非弹性马氏体相变可显示出SME对Wayman三准则的挑战。FeMnSi系合金中C/E界面或Shockley不全位错a/6能作右逆迁动,但热滞高达100 K,因而FeMnSi系合金的CyE马氏体相变不完全符合热弹性马氏体相变特征。徐祖耀将其称为半热弹性马氏体相变。随着对SME机制的逐步深入研究,学术界对相变过程的晶体学可逆性、马氏体变体组合及其协调动作所形成的自协作方式等的认识取得了基本统一。已经表明,相变过程的晶体学可逆性不仅指通过逆相变达到晶格回复,而且相变过程中产生的各种缺陷随之消失。相变在晶体学上的可逆性是产生SME的必要条件。马氏体变体的自协作是减少相变应变能的普遍现象。变体协调的越好,越有利于SME。

形状记忆合金作为一种集感知和驱动为一体的新型功能材料,是智能材料结构的重要组员,具有重要的理论及应用研究价值。目前形状记忆合金研究论文数目已居马氏体相变研究领域之首,而且该材料的应用已涉及诸如电子、机械、能源、宇航、医疗及日常生活等领域,显示出强劲的发展势头。

3 医学领域中的形状记忆合金

目前在工业中具有实用价值的SMA按成分可分为TiNi基记忆合金、Cu基记忆合金及Fe基记忆合金3类,但最具有医用开发前景的只有镍钛基(TiNi基)记忆合金[3]。镍钛基合金除具有其他形状记忆合金共同具有的特性外,还具有优良的生物相容性、耐磨性及耐蚀性。虽然关于TiNi基合金的生物相容性的系统研究甚少,如一些研究只是把TiNi基合金埋植在动物(鼠、兔、狗)体内进行生物相容性实验和在体外进行细胞毒性实验,理论研究更少,然而一些研究结果表明,TiNi合金皮下埋植导致的生物组织反应最小,可以认为TiNi合金丝的生物相容性和不锈钢相同,并具有能埋植于深部组织的可能性。优良的特性使得TiNi基合金在医学领域中得到了广泛应用。

用于医学领域中的记忆合金必须满足化学和生物学等方面可靠性的要求。实验证明,现有记忆合金中仅有TiNi形状记忆合金满足上述条件,因此它是目前医学上使用的唯一一种记忆合金。因其具有奇特的形状记忆效应、生物相容性、超弹性及优良的耐磨性,所以它在临床和医疗器械等方面获得了广泛的应用。

3.1 TiNi形状记忆合金在治疗机械中的应用

从目前的研究成果来看,TiNi形状记忆合金元件的形状恢复力与其特征尺寸2次方成正比,且特征尺寸减小后其表面积增加,冷却加快,这些特性使得其在医疗器械领域中得到了较广泛的应用,主要表现在以下几个方面。

1.管道镜用TiNi形状记忆合金作驱动力的管道镜可通过远程控制实现在各种复杂的人体管道内的运动,利用这种管道镜,外科医生可对血管等进行显微外科手术。

2.药物释放器研究人员发明了可置入人体内的药物释放器,解决了需长期注射而给病人带来的各种痛苦与麻烦。其中药物释放器上的微型阀是用TiNi形状记忆合金元件作驱动器的。通过加热或冷却TiNi记忆合金元件控制微型阀的开闭。

3.触觉手套由美国学者研制的利用TiNi形状记忆合金制造的能反映触觉和接触力大小的触觉手套,避免了在用微机械或机器人进行显微外科手术时,医生在控制过程中因手上没有一点感觉而常出错的现象。其主要原理:将传感器输出的信号转换成一定大小的加热电流,通过控制TiNi形状记忆合金元件的温度来控制作用在医生手上力的大小。

4.微型外科手术钳用TiNi形状记忆合金制作的微型外科手术钳是由美国研究人员发明的,它可用于对脑瘤进行手术治疗,以防发生中风。

5.毛细管用TiNi形状记忆合金做成的毛细管非常柔软,易弯曲,能在血管壁的导向作用下深入到人体各部位去,从而可对人体某个特定部位进行注射等治疗。此功能利用了TiNi形状记忆合金超弹性和低弹性模量的特点。

6.康复器械人体四肢上的肌电信号与其想要实现的动作间存在一定的对应关系,然而四肢有残疾的人如何利用这种信号来控制假肢的运动?利用TiNi形状记忆合金做成的这类假肢就可解决这一问题。其基本原理是先将肌电信号转换成与其有一定对应关系的TiNi形状记忆合金加热电流,再控制加热电流就可控制TiNi形状记忆合金元件的温度,从而控制其形状。

7.人工脏器用微型泵需不断注入抗凝剂、中和剂等药物携带式人工肾脏系统,要求药物注入泵流量极其微小可靠,用TiNi形状记忆合金制成的这种泵不仅结构简单小巧、控制方便,而且非常可靠。

3.2 形状记忆合金在临床各科中的应用

1.口腔科TiNi合金在口腔科的应用主要有正畸丝、种植牙和卡环等。例如:用SMA加压骑缝钉来治疗隐裂牙的研究。

2.胆道外科目前,采用螺旋升角较大的网状结构SMA胆道内支撑,在治疗胆道狭窄或梗阻手术切除中可保持胆道的通畅,延长患者的存活时间并能提高生存质量。

3.血管外科血管外科在医学临床中常见的病症为动脉瘤,它是指血管局部直径变大、壁厚变薄,如此长期发展可能会导致血管破裂,引起大出血。TiNi形状记忆合金在血管外科中的作用主要有:对各种异常血管通道进行堵塞;在各种血管狭窄处或动脉瘤处形成血液流通通道。因此,可用TiNi形状记忆合金制成SMA血管内支架代替长有动脉瘤部分的血管,用以治疗动脉瘤。

4.骨科TiNi形状记忆合金在骨科中主要用于制作脊柱矫形棒、锔钉(U形,Y形)、接骨板、聚膑器、内固定器和人工关节等。

5.五官科上海钢研所和上海卢湾牙防所联合研制的SMA止鼾器和日本学者研制成的SMA 听小骨,都是利用了SMA的形状记忆效应和超弹性。SMA止鼾器是用于固定患者的舌或小舌,防止患者在睡眠时堵塞呼吸通道的装置;SMA听小骨能有效传递耳内的振动,它与SMA止鼾器的共同特点是安装方便,作用力柔和、稳定。

6.脑外科用SMA制成的脑动脉瘤夹在进行脑动脉瘤手术治疗时,显现出使用方便、夹紧力稳定可靠、易于控制的优点。另外,SMA脑动脉瘤夹在低温时对脑动脉的夹紧力很小,此时可方便确定脑动脉瘤夹的位置及所夹血管是否正确,可避免发生差错。

7.胸外科利用SMA在低温下弹性模量小、塑性好等特点制成的SMA内支架,在治疗各种食管狭窄和气管狭窄的过程中,置入方便、可靠,并且万一手术失败取出也非常容易。利用SMA 在高温时的形状恢复力,其还可用作人工心脏的动力源,原理简单,将记忆成收缩状的SMA丝贴在人工心室的外壁上,SMA丝通电受热后就会使心室收缩而产生泵出作用。

8.泌尿外科SMA内支架是一种用于治疗前列腺增生所致尿道梗阻的医疗仪器,置入方便,不易损伤其他组织,是其他材料做成的内支架所无法比拟的。

4 存在的问题及发展趋势

尽管大多数文献报道均反应TiNi合金具有良好的生物相容性,在随访期内没有观察到明显的毒性和其他显著的不良反应,但是,对于TiNi形状记忆合金中如此高镍含量的存在可能造成的潜在危险还没有被完全排除,因此,对该材料长时间内的生物相容性的认识也不是没有争议的。此外,TiNi合金在生理环境中的耐蚀性也有待提高,有的研究者发现其耐蚀性不如纯

钛和T-i 6A-l 4V,有时甚至还不如不锈钢。因此,从材料表面着手提高TiNi合金的耐蚀性和生物相容性成为一个重要的研究课题,如表面粗糙度和氧化膜的控制、离子轰击形成TiNi膜和等离子体喷涂聚四氟乙烯膜等。但迄今为止,由于缺乏系统的研究,对于可靠而有效的表面处理还缺乏统一的认识,因此,这方面的工作还亟待补充和完善。

5 结束语

作为智能材料关键基础材料之一的形状记忆合金,可称为跨越21世纪的理想材料。由于它具有自动作功能和超弹性、节能、热敏等特殊性能,不仅引起了工业界的广泛重视,在20世纪80年代还在世界范围内掀起了一股SMA热。现在国内不少单位和高等院校都已将自己研制的SMA应用于有关领域,并取得了一定的应用成果。目前,我国的TiNi合金在医学应用的许多方面已走在世界前列。

参考文献:

[1] 雷竹芳.铁基形状记忆合金及其应用[J].材料开发与应用,2000,15(2):40-45.

[2] 高英俊,陈华宁.形状记忆合金及其在医学中的应用[J].广西物理,2001,22(1):24-28.

[3] 杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993.

[4] 米绪军.形状记忆合金医用内支架的系统研究[D].北京:北京有色金属研究总院,2000.

光学仪器在医疗器械中的应用要点

光学仪器在医疗器械中的应用 摘要 人们通过对光现象的认识和研究,加深了对光本质认识的同时,也极大地推动了现代光学的迅速发展和光学仪器的广泛应用,特别是在医疗器械上的应用,为很多疾病解决了难题。这次实习为我以后的工作和学习奠定初步的知识,使我能够亲身感受到由一个学生转变到一个职业人的过程。此外,更能体验生活的艰辛,激励自己好学的心,培养刻苦耐劳的精神,为以后走入社会奠定基础。 关键词:光学发展光学仪器光学应用医疗器械 Abstract People passes pair of optical phenomena understanding and research, deepen the understanding of the essence of light at the same time, but also greatly promote the rapid development of modern optics and optical instruments are widely used, especially in the application of medical devices, for many diseases to solve the problem. This practice for my future study and work to lay the preliminary knowledge, so that I can feel from a student to an occupation people process. In addition, it can experience the hardships of life, encouraging his good heart, industriousness and stamina training spirit, after entering the society lays a foundation. Key words:Optical development Optical instruments Optical application Medical apparatus and instruments 第一章绪论 1.1 前言 随着我国仪器仪表行业的迅猛发展,光学仪器也出现了的新的发展。目前我国光学仪器在物理学新效应和高新技术的推动下,有了新的探索和发展。在医疗设备方面应用越来越广泛。 目前,计量测试仪器、物理学测试仪器、地学和地质学仪器、化学分析仪器、医学仪器、无损材料检验仪器的研发都十分重视高温超导量子干涉器(SGUID)技术的应用。同时光纤、光学玻璃等检测,也逐渐应用到椭偏技术。 未来我国光学仪器将逐渐向自动化、光电化发展。目前三座标测量机、自准直仪和投影仪等光学计量仪器已经在微机化、光电化发展中取得了良好的成效。未来更多的新光电器件、新功能材料的开发,将进一步促进光学仪器的光电化发展。同时CCD器件、半导体激光器、光纤传感器等技术的发展也在推动着光学仪器的变革,使光学仪器更加微机化、光电化、自动化以及高精确化。

免疫学的临床应用

免疫学的临床应用有两个方面:一是应用免疫理论来阐明许多疾病的发病机制和发展规律;二是应用免疫学原理和技术来诊断和防治疾病。本章内容主要是后者。此外,免疫学不仅应用于传统的传染病中,而且在肿瘤、自身免疫病、免疫缺陷病、器官移植、生殖免疫等中均广泛应用。 免疫学防治是指应用免疫制剂或免疫调节药物调整机体的免疫功能,对疾病进行预防和治疗。特异性免疫的获得方式有自然免疫和人工免疫两种。自然免疫主要指机体感染病原体后建立的特异性免疫,也包括胎儿或新生儿经胎盘或乳汁从母体获得抗体而产生的免疫。人工免疫则是人为地使机体获得免疫,是免疫预防的重要手段,包括人工自动免疫、人工被动免疫和过继免疫。 人工自动免疫是给机体接种疫苗或类毒素等抗原物质,刺激机体产生特异性免疫。国内常将用细菌制作的人工主动免疫的生物制品称为菌苗,而将用病毒、立克次体螺旋体等制成的生物制品称为疫苗,而国际上把细菌性制剂,病毒性制剂及类毒素统称为疫苗。经人工自动免疫产生的免疫力出现较慢,但免疫力较持久,故临床上多用于预防。人工自动免疫制剂其主要有灭活疫苗、减毒活疫苗、类毒素、以及各种新型疫苗。 人工被动免疫是给机体输入抗体等制剂,使机体获得特异性免疫力,输入抗体后立即获得免疫力,但维持时间短,约2~3周,临床上用于治疗或紧急预防。人工被动免疫的生物制品主要有抗毒素、抗菌血清与抗病毒血清、胎盘球蛋白和血浆丙种球蛋白。 过继免疫治疗是指给患者转输具有在体内继续扩增效应细胞的一种疗法。如给免疫缺陷病患者转输骨髓细胞;给肿瘤患者输入体外激活扩增的特异肿瘤浸润淋巴细胞或非特异性的LAK细胞等。应用时应考虑供者与受者之间HLA型别是否相同,否则输注的细胞会被迅速清除,或者发生移植物抗宿主反应。再如造血干细胞移植:取患者自身或异体骨髓或脐血输入患者,移植物中的多能干细胞可在体内定居、增殖、分化、使患者恢复造血功能和形成免疫力。造血干细胞移植可用于治疗再生障碍性贫血、白血病以及某些免疫缺陷病和自身免疫病等。 在医学制剂影响免疫功能的制剂主要有两类:免疫增强剂和免疫仰制剂。免疫增强剂是指通过不同方式,达到增强机体免疫力的一类免疫治疗药物。临床上常用于治疗与免疫功能低下有关的疾病及免疫缺陷病。免疫增强剂种类很多,按其作用的先决条件可分为三类:一是免疫替代剂,用来代替某些具有免疫增强作用的生物因子的药物。按其作用机制可分为提高巨噬细胞吞噬功能的药物,提高细胞免疫功能的药物,提高体液免疫功能的药物等;按其作用性质又可分为特异性免疫增强剂和非特异性免疫增强剂;按其来源则可分为细菌性免疫增强剂及非细菌性免疫增强剂。二是免疫恢复剂,能增强被抑制的免疫功能,但对正常免疫功能作用不大。常用的免疫增强剂如:卡介苗、短小棒状杆菌、内毒素、免疫核糖核酸、胸腺素、转移因子、双链聚核苷酸、佐剂等。免疫抑制剂是对机体的免疫反应具有抑制作用的药物。能抑制与免疫反应有关细胞的增殖和功能,能降低抗体免疫反应的制剂。常用的免疫抑制剂主要有五类:(1)糖皮质激素类,如可的松和强的松、泼尼松龙等;(2)微生物代谢产物,如环孢菌素和藤霉素等;(3)抗代谢物,如硫唑嘌呤和6-巯基嘌呤等;(4)多克隆和单克隆抗淋巴细胞抗体,如抗淋巴细胞球蛋白和OKT3等;(5)烷化剂类,如环磷酰胺等。 免疫学诊断是指应用免疫学原理和方法对传染病、免疫性疾病等进行和免疫功能进行测定。由于免疫学检测具有高特异性和敏感性,因此常用临床诊断的一种重要手段。目前常用的免疫诊断方法具有体液免疫试验。细胞免疫试验和皮肤试验三种。 抗原抗体反应在体内表现为溶细胞、杀菌、促进吞噬、中和毒素或引起免疫病理损伤等;在体外可出现凝集、沉淀、细胞溶解和补体结合等可见反应。由于抗体主要存在于血清中,临床上多用血清标本进行试验,故体外的抗原抗体反应曾被称为血清学反应。但随着免疫学

高等数学在医学中的应用

数学在医学中的应用众所周知,数学是一门以高度的抽象性、严谨性为特点的学科,但同时数学在其他各门学科也有广泛的应用性,而且随着大型计算机的飞速发展,数学也越来越多的渗透到各个领域中。数学建模可以说是用数学方法解决实际问题的一个重要手段。简单的说,用数学语言来描述实际问题,将它变成一个数学问题,然后用数学工具加以解决,这个过程就称为数学建模。人们通过对所要解决的问题建立数学模型,使许多实际问题得到了完满的解决。如大型水坝的应力计算、中长期天气预报等。建立在数学模型和计算机模拟基础上的CAD(Computer Aided Design)技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。那么数学在医学领域有哪些应用呢?现代的医学为什么要借助数学呢?本研究主要叙述这两个问题。 1现代医学应用数学的必要性 现代医学的大趋势是从定性研究走向定量研究,即要能够有效地探索医学科学领域中物质的量与量关系的规律性,推动医学科学突破狭隘经验的束缚,向着定量、精确、可计算、可预测、可控制的方向发展,并由此逐渐派生出生物医学工程学、数量遗传学、药代动力学、计量诊断学、计量治疗学、定量生理学等边缘学科,同时预防医学、基础医学和临床医学等传统学科也都在试图建立数学模式和运用数学理论方法来探索出其数量规律。而这些都要用到数学知识。数学模型有助生物学家将某些变量隔离出来、预测未来实验的结果,或推论无法

测量的种种关系,因为在实验中很难将研究的事物抽离出来单独观察。尽管这些数学模型无法极其精确地模仿生命系统的运作机制,却有助于预测将来实验的结果。可以利用数学分析实验数据资料。当实验数据非常多时,传统的方法就不再适用了,只能转而使用数值计算的相关理论,以发现数据中存在的关联和规则。特别地随着当前国际生命科学领域内最重要的基因组计划的发展,产生了前所未有的巨量生物医学数据。为分析利用这些巨量数据而发展起来的生物信息学广泛应用了各种数学工具,从而使得数学方法在现代生物医学研究中的作用日益重要。 2医学上的一些例子 医学统计学(Medical Statistics)临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律;运用统计的原理和方法,结合医学的工作实际,研究医学的实验设计和数据处理。医学统计学是基于概率论和数理统计的基本原理和方法,研究医学领域中数据的收集、整理和分析的一门学科。如在疾病的防治工作中,经常要探讨各种现象数量间的联系,寻找与某病关系最密切的因素;要进行多种检查结果的综合评定、探讨疾病的分型分类:计量诊断,选择治疗方案;要对某些疾病进行预测预报、流行病学监督,对药品制造、临床化验工作等作质量控制,以及医学人口学研究等。医学统计学,特别是其中的多变量分析,为解决这些问题提供了必要的方法和手段。以传染病模型为例,了能定量的研究传染病的传播规律,人们建立了各

数字图像处理在医学上的应用

数字图像处理在医学上的应用 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的内容,抑制不重要的内容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。 图1显微光学系统与图像采集系统示意图

LED光源在皮肤医学中的应用

4.减轻炎症 已经有系列的研究表明LED具有抗炎的作用。研究发现635nm的LED光可以抑制牙龈的成纤维细胞释放炎症介质——前列腺环素E2(PGE2),从而减轻牙龈的炎症反应。在脉冲 染料激光治疗皮肤光老化前如果采用LED光源提前照射,可以减轻染料激光引起的皮肤红斑、肿胀和疼痛等不适。在乳腺癌患者的放射治疗前采用LED光源提前照射可以减轻放疗的副作用。 5.疤痕的预防 瘢痕疙瘩是临床上影响美容而且治疗困难的一种皮肤疾患,是皮肤损伤后结缔组织过度增生所引起。患者往往具有瘢痕体质。在临床上开始为小而坚硬的红色丘疹,缓慢增大,产生圆形、椭圆形或不规则性瘢痕,高出皮面,呈蟹足状向外伸展,皮肤光滑、发亮,可伴有疼痛、瘙痒等不适。临床治疗困难、疗效不理想。有研究发现LED可明显改善患者的疼痛、瘙痒等不适感,使瘢痕变平,同时具有无创的优点。 6.其他作用 此外,LED还可作为一种不含紫外线的光疗仪器、用于光动力疗法、治疗脱发、减轻 紫外线照射后的皮肤损伤等等。 总之,LED作为一种新型的光源已经被逐步应用到皮肤医学中,随着对LED灯具的不 断创新以及医学上对于LED生物效应的机理研究,LED在皮肤医学上的应用将具有不可限量的前景。同时LED具有较高的安全性可作为家庭医疗设备而被人们更为广泛的使用。(全文来源自《半导体照明》杂志2011年8月刊编辑:maysoong) 参考文献 [1] Daniel Barolet, MD. Light-Emitting Diodes (LEDs) in Dermatology. Semin Cutan Med Surg 27:227-238. [2] Trelles MA. Phototherapy in anti-aging and its photobiologic basics: a new approach to skin rejuvenation. J Cosmet Dermatol. 2006;5(1):87-91. [3] Goldman MP, Weiss RA, Weiss MA. Intense pulsed light as a nonablative approach to photoaging. Dermatol Surg. 2005;31(9 Pt 2):1179-87. [4] Weiss RA, McDaniel DH, Geronemus R, et al: Clinical trial of a novel non-thermal LED array for reversal of photoaging: Clinical, histologic, and surface profilometric results. Lasers Surg Med 36:85-91, 2005 [5] Lee SY, Park KH, Choi JW, et al: A prospective, randomized, placebocontrolled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: Clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B 27:51-67, 2007 [6] Al-Watban FA: The comparison of effects between pulsed and CW lasers on wound healing. J Clin Laser Med Surg 22:15-18, 2004 [7] Lim W, Lee S, Kim I, et al: The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39:614-621, 2007

免疫学在医学中的应用

早在1000多年前,人们就发现了免疫现象,并由此发展起来对传染病的免疫预防。中国人首先发明了用人痘痂皮接种以预防天花,并且在十五世纪中后期的明朝隆庆年间有较大改进,并得到广泛的应用。后来,这一伟大发明传播到日本、朝鲜、俄国、土耳其和英国等许多国家。后英国医生琴纳据此研究出用牛痘菌预防天花的方法,为免疫学对传染病的预防开辟了广阔的前景。全世界能在20世纪70年代末消灭天花,接种牛痘菌发挥了巨大作用。[1] 19世纪末,法国化学家、微生物学家巴斯德于研究人和动物的传染病时,分析了免疫现象。并在琴纳的启发下,他发明用减毒炭疽杆菌苗株制成疫苗,预防动物的炭疽病;用减毒狂犬病毒株制成疫苗,预防人类的狂犬病。 著名动物学家梅契尼科夫在长期研究昆虫和动物细胞吞噬异物的现象后,于1883年指出体内的白细胞和肝、脾组织中的吞噬细胞具有吞噬和消化细菌的能力。德国细菌学家、免疫学家贝林于1890年发现免疫血清中有抗白喉毒素的抗毒素存在,日本细菌学家北里柴三郎也发现抗破伤风毒素的抗毒素,两人共同研究血清疗法成功,对治疗白喉和破伤风患者取得良好效果。 从此,人们开始探讨免疫机制,把细胞的吞噬作用和抗毒素的中和作用看成是特异性免疫的根据,并逐步开展细胞免疫和体液免疫两大学派的争鸣。 细胞免疫学派的首领是梅契尼科夫,体液免疫学派的首领是德国细菌学家埃尔利希。埃尔利希用生物化学方法研究免疫现象,特别是以蛋白质化学和糖化学作为基础,探讨抗原和抗体的本质及其相互作用,于1896年提出抗体形成的侧链学说,这一学说直到今天还具有实际意义。两大学派的争鸣促进了免疫学的发展。 到20世纪60年代,对体液免疫的研究已经达到分子生物学的水平,已经弄清抗体的分子结构和功能。同时,对细胞免疫的研究也取得了明显的进展,过去认为小淋巴细胞是处于衰老终末期,而现在

高等数学在医学中的作用的

浅谈高等数学在现代医学中的作用一、高等数学在医学领域的应用 数学是一门语言, 它是表达量变和质变最完美的工具; 数学又是一种感觉, 它是科学迅速超越时空的触角。恩格斯曾对数学做过如下定义: 数学是研究现实世界的空间形式与数量关系的 科学。数学是基础教育中最受重视的学科之一, 并贯穿于整个基础教育阶段。高等数学教育则几乎覆盖了大学本科阶段所有自然学科领域和部分人文社会学科领域。 随着计算机科学技术的不断发展, 数学的社会化程度也日 益提高, 数学的思想、观点、方法已广泛地渗透到自然科学和社会科学的各个领域。数学在传统领域的应用, 以及在新领域取得的许多重要进程, 使得数学在医学领域中的作用也不断突出。数学与医学, 特别是生物医学的结合越来越紧密。例如, 可以为生物医学工程学、细胞分子生物学、肿瘤生长动力学、药物动力学等现代生物医学做出定性描述向定量描述的趋变; 常微分方程 可以运用到临床医学的定量分析和群体医学的动态分析; 生物 统计学、概率论可以为药物使用、人口统计与流行病、公共卫生管理等作出决策; 数学可为医学基础、临床医学、预防医学建立医学数学模型,经过数学处理得到可供人们作出分析、判断、预测和决策的定量结果; 临床治疗和医学科研所使用到的各种高、精、尖端医学仪器都离不开数学和计算机科学的支持, 等等。 马克思曾说过:“一门科学只有成功地应用数学时, 才算达

到了完善的地步。”因此可以看出, 数学与现代医学结合程度将决定现代医学的发展程度。中科院在《21 世纪初科学发展趋势》的研究报告中指出, 生命科学“可能发展成为科学革命的中心”, 数学科学则“一直是整个科学技术发展的带动因素”, 加快数学在医学领域的应用和发展是当今医学发展的必然趋势。 二、高等数学教育在医学教育中的作用及意义 数学的思维方式、计量分析技术有力地推动了现代医学的 迅速发展。强调用数学、统计学研究并解决医学问题的思路和方法, 增强对医学问题进行定量分析与处理的能力, 提高医学科研 水平, 促进临床工作进一步精确化、科学化早已成为各国高等医学教育所关注的重要内容。目前国内绝大多数的医学院校都在 大学一年级开设了《医用高等数学》。笔者认为, 开设这门课程除了可以扩大学生知识面以外, 还有着如下五个方面的作用及意义: 1. 高数教育可以加强医学生的道德教育 抽象性是数学的基本特征之一, 具体表现为推理的严谨性、 表达的准确性、类别的归纳性、计算的规定性、定义的唯一性等等。学生在学习高数的同时, 也能受到其特性的影响: 教育过程 中数学史的讲解可以激发学生的爱国主义热情; 逻辑性的推理 可以培养学生严谨的思维模式; 公理、定义、计算规则的唯一性要求可以使学生形成对法律法规、社会公德的内在自我约束; 对问题的归类、分析可以培养学生灵活思考问题、周密总结分析的

数字图像处理在医学上的应用

数字图像处理的应用 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号,并通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 进行数字图像处理所需要的设备包括摄像机、数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 接下来,就讨论一下数字图像处理在医学上的应用。 自发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理。 目前的医学图像包括CT图像、核磁共振图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。由于人眼识别度等客观因素的影响,大部分的图像需要依靠计算机的帮助。随着数字图像处理技术的发展,对这些图像的分析以及处理,会变得更加快捷,分析的结果也会更加精准。

与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。 首先,对于一个病例,要进行图像采集,由于采集到的图像因试验测量系统和测量者个人因素存在较多噪声,所以要先通过预处理对图像进行去噪处理和灰度变换处理等使其变得较为清晰。预处理完成后再利用中心路径提取算法对所获取的图像进行进一步处理。 接下来要做的就是图像处理。 先对图像二值化,二值形态学的运算对象是集合给出一个图像集合和一个结构元素集合利用结构元素对图像进行操作。然后做中心线的提取等。 使用计算机进行图像的采集预处理以及二值化和计算排除了人为测 量的不精确性和误差提高了测量结果的可靠性。 随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节。 医学图像处理借助于计算机图形、图像技术,使医学图像的质量和显示方法得到了极大的改善。这不仅可以基于现有的医学影像设备来极

光纤在医疗领域中的应用

光纤在医疗领域中的应用 姓名:学号: 摘要 光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。光纤主要是根据光在光纤中的全反射,把外部的光源发出的光通过光纤束导入体内,照射人体内需要检查的部位,再通过光纤束把观察到的体内器官的病变图像传出体外。又由于光纤的柔软、体积小、重量轻以及灵敏度高等特点,光纤在医学上的应用范围也是十分广泛的,如内窥镜,光纤诊断系统,光纤治疗工具和大医院的光纤通信系统等。同时,随着光纤在医学上的应用,激光器在医学上的应用也取得了重大的进展。 关键字:光纤;医用内镜;光纤治疗系统;医学应用 光导纤维,简称光纤。被广泛地应用于光能或光信号的传导,由于其可以弯曲灵活地插入体内,实现导光、传像,在医学上具有广泛应用。内窥镜技术已成为促进医学学科发展的一种强有力的工具。 1.光纤 上世纪六十年代初,激光已经发明, 但许多人怀疑其应用前景。当时高锟(2009年诺贝尔物理学奖得主, 光纤之父,)说: “我们怎么可以断定激光没有前途?如果光通讯仅仅停留在理论阶段,那就太可惜了。”高锟经过多年的努力, 最终认定了廉价的玻璃是最可用的透光材料。光纤是光学纤维的简称,它是由玻璃或塑料制成的直径为若干微米的细丝,分内外两层,是将低折射率的外层材料包在高折射率的内层纤维芯线上,并在两层之间形成良好的光学界面。当光束以入射角大于可以产生全反射的临界角入射到纤维的侧壁时,光束在侧壁产生全反射,全反射在纤维内反复产生,传播到纤维的另一端,而不会向外泄露。现在光导纤维已经得到广泛的应用:在医院应用的内窥镜;光导纤维做成电光缆可用于通信;光导纤维与敏感元件组合,则可以做成各种传感器,在力学实验中测量压力、流量、温度、位移、光泽和颜色等;光导纤维在能量传输和信息传输方面也获得广泛的应用。 2.光纤在医学中的应用 2.1 内窥镜 光纤内镜光学纤维简称光纤,是由玻璃或塑料制成的直径为若干微米的细丝,分内外两层,是将低折射率的外层材料包在高折射率的内层纤维芯线上,两层之间形成良好的光学界面。当光束以人射角大于可以产生全反射的临界角入射到纤维的侧壁时,光束在侧壁处产生全反射,全反射在纤维内反复产生,传播到光纤的另一端,而不会向外泄露。在医院广泛应用的内视镜,如,胃镜、直肠镜、支气管镜等都是根据光线在玻璃纤维表面多次发生全反射的原理制成的。实际应用时,一般

高等数学知识在医学中的应用举例

高等数学知识在生物化学工程中的应用举例 高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。 例1 在化工原理中常用的柏努利方程式中的应用 化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。 流动系统的能量衡量常用柏努利方程式,下面来介绍柏努利方程式。 定态流动时液体的机械能衡量式为 ∑?-=+?+ ?f e p p h W v d p u z g 212 2 (1) 该式队可压缩液体和不可压缩液体均适用。对不可压缩液体,(1)式中?2 p p vdp 项应视过程性质(等温、绝热或多变过程)按热力学原则处理,对不可压缩液体,其比容v 或者密度ρ为常数,故ρ ρ ρp p p dp vdp p p p p ?= -= = ??2 12 2 1 ,代入(1)式有: ∑-=?+?+?f e h W p u z g ρ 22 或 ∑+++=+++f e h p u gz W p u gz ρ ρ22 22121122 (2) (2)式称为柏努利方程式。 需要注明的是,22u 为动能,gz 为位能,ρ p 为静态能,e W 为有效能,∑f h 为能量损耗,z ?为高度差。 例2 混合气体粘度的计算 常温下混合气体的计算式为

∑∑=== n i i i n i i i i m M y M y 1 211 21μμ (3) 其中m μ为常温下混合气体的粘合度(Pa.s );i y 为纯组分i 的摩尔分率;i μ为混合气体的温度下,纯组分i 的粘度(Pa.s );i M 为组分i 的分子量(Kg/kmol )。 例如:空气组分约为01.0,78.0,21.022Ar N O (均为体积积分率),试利用 Ar N O ,,22的粘度数量,计算常温下C 020时空气的粘度? 解:常温下空气可视为理想气体,故各组分的体积积分率等于摩尔分率, Ar N O ,,22的分子量分别为32,28及39.9,经查表知道常温下C 020时各组分的粘度为 s Pa Ar s Pa N s Pa O ??????---55252 1009.2107.11003.2 代入(3)式计算空气的粘度,即 s Pa M y M y n i i i n i i i i m ??=?+?+????+???+???= = ----==∑∑52 12 12 12 15 2 152 151 211 21 1078.19 .3901.02878.03221.09 .391009.201.028107.178.0321003.221.0μμ 例3. 在细胞生长计算中的应用 随着细胞的生成繁殖,培养基中的营养物质被消耗,一些有害的代谢产物在培养液中累积起来,细胞的生长速度开始下降,最终细胞浓度不再增加,进入静止期,在静止期细胞的浓度达到最大值。 如果细胞的生长速率的下降是由于营养物质的消耗造成的,可以通过以下的分析来统计分批培养可能达到的最大细胞浓度。设限制性基质为A ,其浓度为a ,

重要医学昆虫及化学防治研究进展

重要医学昆虫及化学防治的研究进展 医学昆虫的防治不仅是疾病控制的主要措施,也是改善人民生活环境,促进经济发展的重要组成部分。人类在与卫生害虫作斗争的过程中,以综合防制为主,而化学防治是其中的一种重要手段。 1 医学昆虫学的定义及研究范围 1.1 医学昆虫学的定义 医学昆虫学,是专门研究一些有传输病原和有致病能力的昆虫,并从研究中找出一些害虫的有效防治措施,以达到保障人们健康目的的一门科学。 1.2 医学昆虫学的研究范围 医学昆虫这门学科,研究的内容是有关医学昆虫的形态、分类、生活史、生态习性、及其与人畜疾病的关系,以及防治方法等。其医学昆虫的研究范围有:昆虫纲的蚊、蝇、蟑螂、蚋、蠓、虻、臭虫、白蛉、蚤、虱、毒蛾;蛛形纲的恙螨、革螨、蜱;唇足纲的蜈蚣目前,我国从中央到地方均成立了“有害生物防制协会”,进一步扩大了有害生物防制研究的范围。如:①危害建筑和建筑材料的有害生物——白蚁、木材甲虫等;②仓储有害生物——面粉甲虫、谷物蚊虫等;③纺织品有害生物——地毯甲虫、衣物蛀虫等;④境外入侵有害生物——红火蚊等。 我国地处亚热带、温带区域,地域辽阔,幅员广大,各地环境、气候和自然条件差异很大,医学昆虫的种类繁多。据调查,我国已知蚊类有370多种,蝇类386种,室内蟑螂11种,蚤类520多种,蜱类110种,螨类534种,白蛉类40种,蠓类280多种,蚋类约100多种。这些医学昆虫分布十分广泛,栖息环境复杂,在自然界对人类健康有着重大影响。 2 有利于医学昆虫传播疾病的因素 2.1 全球温室效应 在过去的半个世纪里全球平均气温上升,使得一些原来不受某些医学昆虫传播疾病影响的地区和人群,现在受到了这些医学昆虫传播疾病的威胁。同时,由于气温上升,一些医学昆虫的繁殖力增强,其数量剧增。 2.2 全球人口 2011年10月31日,世界人口达到70亿,人口密度的增加,到医学昆虫传播疾病的流行,有两个方面的影响:第一,世界人口的城市化和由此造成的人口密度提高,增加了医学昆虫所依赖的寄主的数量;第二,由于需要生活空间,人们不得不进入医学昆虫侵害严重的地方居住。

数字图像技术在医学领域的应用

图像处理技术在医学领域的应用 摘要:介绍了图像处理技术在医学领域的发展,阐释了图像分割、图像融合和图像重建技术在医学领域的发展。提出了图像处理技术发展所面临的相关问题及其发展方向。 关键词:图像处理技术图像分割图像融合图像重建 图像处理技术是20世纪60年代发展起来的一门新兴学科。近几十年来,由于大规模集成电路和计算机科学技术的迅猛发展,离散数学理论的创立和完善,以及军事、医学和工业等方面需求的不断增长,图像处理的理论和方法的更加完善,已经在宇宙探测、遥感、生物医学、工农业生产、军事、公安、办公自动化、视频和多媒体系统等领域得到了广泛的应用,成为计算机科学、信息科学、生物学、医学等学科研究的热点。 图像处理在医学界的应用非常广泛,无论是病理研究还是临床诊断都大量采用图像处理技术。它因直观、无创伤、方便安全等优点而受到人们青睐。图像处理首先应用于细胞分类、染色体分类和放射图像分析等,20世纪70年代图像处理在医学上的应用有了重大突破,1972年X射线断层扫描CT得到实用:1977年白血球自动分类仪问世:1980实现了CT的立体重建。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前

的医学图像主要包括CT(计算机断层扫描)图像、MRI(核磁共振)图像、B超扫描图像、数字X光机图像、X射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但由于医学成像设备的成像机理、获取条件和显示设备等因素的限制,使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度,突出重点内容,抑制次要内容,来适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 什么是医学图像处理 医学图像处理就是利用计算机系统对生物学图像进行的具有临床医学意义的处理和分析。 医学图像处理是一个和复杂的过程。医学图像作为一种信息源,也和其他的有关病人的信息一样,是医生做出判断时的依据。医生在判断医学图像时,要把图像与其他解剖学、生物学和病理学等知识作对照,还要根据经验来捕捉图像中的有重要意义的细节和特征。所以要从一副或几副医学图像中判断出是否有异常,或是属于什么疾病,如果不是训练有素的医生,是难以发现图像上的异常的。所以对医学领域的图像处理显得尤为重要。 图像处理技术及其在医学领域的应用 (一)图像分割

高等数学在医学中的应用

数学在医学中的应用众所,数学是一门以高度的抽象性、严谨性为特点的学科,但同时数学在其他各门学科也有广泛的应用性,而且随着大型计算机的飞速发展,数学也越来越多的渗透到各个领域中。可以说是用解决实际问题的一个重要手段。简单的说,用数学语言来描述实际问题,将它变成一个数学问题,然后用数学工具加以解决,这个过程就称为数学建模。人们通过对所要解决的问题建立,使许多实际问题得到了完满的解决。如大型水坝的应力计算、中长期等。建立在数学模型和计算机模拟基础上的CAD(Computer Aided Design)技术,以其快速、经济、方便等优势,大量地替代了传统中的现场实验、物理模拟等手段。那么数学在医学领域有哪些应用呢?现代的医学为什么要借助数学呢?本研究主要叙述这两个问题。 1现代医学的必要性 现代医学的大趋势是从定性研究走向定量研究,即要能够有效地探索医学科学领域中与量关系的规律性,推动医学科学突破狭隘经验的束缚,向着定量、精确、可计算、可预测、可控制的方向发展,并由此逐渐派生出学、数量遗传学、药代、计量、计量治疗学、定量等边缘学科,同时、和等传统学科也都在试图建立数学模式和运用数方法来探索出其数量规律。而这些都要用到数学知识。数学模型有助将某些变量隔离出来、预测未来实验的结果,或推论无法测量的种种关系,因为在实验中很难将研究的事物抽离出来单独观察。尽管这些数学模型无法极其精确地模仿生命系统的运作机制,却有助于预测将来实验的结果。可以利用实验数据资料。当实验数

据非常多时,传统的方法就不再适用了,只能转而使用数值计算的相关理论,以发现数据中存在的关联和规则。特别地随着当前国际生命科学领域内最重要的基因组计划的发展,产生了前所未有的巨量数据。为分析利用这些巨量数据而发展起来的广泛应用了各种数学工具,从而使得数学方法在现代生物医学研究中的作用日益重要。 2医学上的一些例子 医学(Medical Statistics)临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律;运用统计的原理和方法,结合医学的工作实际,研究医学的实验设计和。医学统计学是基于和的基本原理和方法,研究医学领域中数据的收集、整理和分析的一门学科。如在疾病的防治工作中,经常要探讨各种现象数量间的联系,寻找与某病关系最密切的因素;要进行多种检查结果的综合评定、探讨疾病的分型分类:计量诊断,选择治疗方案;要对某些疾病进行预测预报、监督,对药品制造、临床化验工作等作,以及医学人口学研究等。医学统计学,特别是其中的多变量分析,为解决这些问题提供了必要的方法和手段。以模型为例,了能定量的研究传染病的传播规律,人们建立了各类模型来预测、控制疾病的发生发展。这种模型的建立是在合理假设的前提下,选择了一些相关因素(例如自然因素、人为因素)作为参数,并通过它们之间的关系来描述传染病学的现象。通过这些现象,可以反映出传染病的流行过程及一些规律特征。运用这些规律,人们可以估计不同条件下的相关因素参数、预测疾病的发生发展趋势、设计疾病控制方案及检验假设病因等。比如,通过预测高峰期的时间

激光在医学中的应用

激光在医学中的应用 摘要 激光是利用受激发射放大原理产生的高相干性、高强度的单色光。产生激光束的光源称激光器,在医学领域里有广泛的用途。激光医学是一门新兴的边缘学科,其内容包括用激光新技术去研究、诊断、预防和治疗疾病。激光已应用于内、外、妇、儿、眼、耳鼻喉、口腔、皮肤、肿瘤、针灸、理疗等临床各科。它不仅为研究生命科学和研究疾病的发生发展开辟了新的研究途径,而且为临床诊治疾病提供了崭新的手段。 激光在医学上的应用主要分三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。关键词:激光手术激光理疗激光针灸激光诊断和检测 激光的生物效应 一般认为激光有五个方面的效应: ① 热作用。主要是在可见光和红外光范围的激光引起的。弱激光不会直接造成不可逆损伤,可促使血管扩张,血液流动加强,从而改善局部的营养状态,促进伤口和溃疡的愈合,还具有镇痛和缓解肌肉痉挛等作用。强激光直接造成生物组织的不可逆性损伤,故可用以清除各种赘生物,如疣、痣、癌等,或凝固出血点、封闭破孔等。 ② 压力作用激光照射到人体上形成一种压力(光压)。如果激光呈大功率脉冲状态,则产生的压力很强。若激光聚焦功率为10W/cm则其压力可达40g/cm。强激光照射到生物组织上时,使组织汽化,产生热膨胀,这时体积剧烈增加而产生巨大的压力,可以大至几百个大气压,破坏性较大。临床上可利用这种压力在眼睛上房角处打孔,以沟通房水,降低眼压,治疗青光眼,还可以利用这种冲击波的力量来治疗后发性白内障和玻璃体出血后形成的机化索条等。

③ 光化学作用。利用激光能量激活体内某些化学反应。其中包括光致分解(吸收光能而导致化学分解的过程)、光致氧化(光作用下,反应物失去电子的过程)、光致聚合(光作用下,小分子聚合成大分子的过程)、光致敏化(在光敏剂的参与下,用特定波长的光作用而产生的化学反应)等四种主要类型。光敏化治疗是以血卟啉衍生物为代表的光动力学疗法,用以破坏癌细胞,需要氧分子参加才能起反应。另一类光敏剂如补骨脂素不需氧分子参加。局部涂补骨酯酊后,再用紫外激光局部照射,可以治疗白癜风和银屑病等疾病。 ④电磁场作用。高功率激光所产生的强电磁场,可以使生物组织发生明显的变化。⑤ 刺激作用。主要指功率较低的He-Ne激光对机体的作用。可促进神经再生,毛发生长,降低的血细胞回升,使骨痂生长迅速而使骨折愈合,还可抑制细菌生长从而消炎止痛。 以上五种效应中,压力效应和电磁场效应主要为大功率或中等功率激光所具有。而光化学反应和光刺激作用主要由小功率激光引起,热效应则大、中、小三种功率的激光均有。 医用激光器的种类 常用的医用激光器有以下几种:①氦氖激光器。输出波长为6328的红色激光。特点是结构简单,操作方便,价廉,寿命长,使用万小时以上。用于消炎、镇痛或作激光光针和理疗。②二氧化碳激光器。输出波长为10.6m 的远红外激光。特点是输出功率大,用作激光刀进行烧灼、切割和汽化。③氩离子激光器。输出波长为4880和5145的蓝绿色激光。特点是功率大,又在可见光范围。用于光凝固治疗,如眼底病和十二指肠、胃溃疡的光凝固治疗。④掺钕钇铝石榴石激光器。输出波长为1.060m的近红外激光。特点是输出功率大,对组织作用深而均匀,对红色组织有亲和力,又可用光导纤维传输。常与内窥镜结合进入腔内治疗肿瘤、息肉、出血等,是最常用的激光器之一。 其他准分子激光器、铜蒸气激光器、红宝石固体激光器、半导体激光器等在临床上也经常使用。 激光手术

数学在现代医学中的应用探究

数学在现代医学中的应用探究 1数学思维方法在中医理论中的应用 数学是研究数量、结构、变化以及空间模型的一门学科,由计数、计算、量度和对物体及运动的观察中产生,数学思维是应用想象和推理对所观察的事物脱离其具体形态,进行思考和运算,进而做出判断和结论。中医学是发祥于中国古代的研究人体生命、健康、疾病的科学。其数量表现如阴阳(2个)、五行(5个),结构表现如五行循环图,变化表现如阴阳平衡,无行相生相克,空间模型表现如阴阳鱼,它既有临床诊断后的定量用药治疗方法,也有经过抽象思维建立的中医基础理论。通过对具体数学问题进行不同的解题方法,尝试性进行数学思维方法与中医理论之间的关系分析,可以利用数学为中医学习和研究提供参考,比如古代着名的鸡兔同笼问题、和尚分馒头问题、尺绳测进问题。中医理论中的阴阳五行理论,从宏观角度对人体肺腑之间的关系进行了定性分析,但是没有明确提出在什么条件之下这些量值关系成立以及反之需要什么条件,基础理论给人的感觉是什么条件都可以利用这些关系治病进行中医辨证治病,这也容易得出中医包治百病、无所不能的说法。但是中医的临床经验表明,宏观原则只有在适当容许的治疗方法的前提下才成立,才可以取得较好的治疗效果,通过数学分析,强调要注意中医的内涵与数量机理,即金、木、水、火、土之间的阴阳平衡是什么关系,这些相生相克的关系又是在什么条件下成立。应用数学的研究方式也就是根据疾病机理首先建立五行平衡关系的数学方程,如果方程正确,则一定存在解析解,否则,在此条件下对病人所用的治疗方法是无效的,即方程建立的前提和依据可能错误,必须变换思路重新研究整治方法。纵观古今,人类的健康和对疾病的治疗一直是最重要的内容之一,中医学的建立和发展也成为人们不断与疾病进行抗争的智慧结晶。研究数学理论与中医临床和基础理论之间的关系,尝试采用数学定量方法对中医理论进行研究,对中医临床和中医理论的现代化具有重要的意义。 2数学模型在中药资源可持续发展的应用 中药资源包括可再生的野生、栽培的药用动植物资源,也包括不可再生的药用矿物资源。具统计,我国现有的中药资源有近13000种,其中药用植物资源占%,药用动物资源占%,药用矿物资源占%[2,3]。常用的320种植物类药材的总蕴藏量达到850吨以上,因此,中国是世界上药用资源最丰富的国家之一。受各种因素影响我国丰富的中药材资源正在不断衰竭,有的甚至濒临灭绝。野生人参、川贝、冬虫夏草等名贵药材正沿着越贵越挖—越挖越少—越少越贵的恶性循环而走

相关文档