文档库 最新最全的文档下载
当前位置:文档库 › 高压直流输电技术的发展及前景

高压直流输电技术的发展及前景

高压直流输电技术的发展及前景
高压直流输电技术的发展及前景

高压直流输电技术的发展及前景

1引言

-___】

【=

同压直流输电技术的发展及

马涛

(武汉大学电气工程学院湖北武汉430072)

日刖录

摘要:综述了高压直流输电的背景及其优缺点,指出了高压直流输电在我国的发展现状及趋势.介绍了高

压直流输电新技术的发展现状.

关键词:直流输电:高压直流:直流输电新技术

中图分类号:TM8文献标识码:A

电力技术的发展是从直流电开始的.

早期的直流输电是直接从直流电源送往直

流负荷,不需要经过换流.而随着三相交流

发电机,感应电动机和变压器的迅速发展.

发电和用电领域很快被交流电所取代但

是直流输电有着交流输电所不具有的优

点.如远距离大容量输电,不同电力系统联

网等当今.作为高压交流输电技术的有力

补充.高压直流输电技术已在全世界得到

越来越多的应用

由于我国地域辽阔.能源分布和负荷

发展很不平衡.水利资源主要集中在西南

数省.煤炭资源主要集中在山西,陕西和内

蒙西部.而负荷主要集中在东部沿海地区.

因此远距离大容量输电势在必行另一方面.电网互联是电力工业发展的必然趋势. 利用高压直流输电作异步联网在技术上, 经济上,安全上的优势已经在世界范围内得到证明.因此高压直流输电以其技术上, 经济上,安全上的优势.在远距离大容量和电网互联上对我国电力工业的发展必将起到十分重要的作用我国已经成为世界范围内直流输电应用前景最广阔的国家

2直流输电技术及其优缺点

在直流输电系统中.只有输电环节是

直流.发电系统和用电系统仍然是交流电在输电线路的始端.发电系统的交流电经换流变压器升压后.送到整流器中.整流器将高压交流电变成高压直流电后.送人输电线路直流电经过输电线路进入逆变器中.逆变器将高压直流电变为交流电.再经过换流变压器降压后送人交流系统中

2.1直流输电相对于交流电的优点

(1)输送相同功率时,线路造价低.对

于架空线路.交流输电通常采用3根导线. 收稿El期:2009—09—13

而直流只需1根(单极)或2根(双极)导线.输送相同功率的时候.直流输电所用的线材仅为交流输电的2/3—1/2另外.直

流输电在线路走廊,铁塔高度,占地面积等方面.比交流输电优越.

(2)线路损耗小直流输电只采用1根

或2根导线.所以线路上的有功损耗较小

同时由于直流输电线路上没有感抗和容抗.在线路上也就没有无功损耗另外.由

于直流架空线路具有"空间电荷"效应.其

电晕损耗和无线电干扰均比交流架空线路要小.直流输电没有集肤效应.导线的截面

利用充分

(3)没有系统稳定问题采用直流输电

连接两个交流系统.由于直流线路没有电抗.所以不存在同步稳定运行问题.即直流

输电不受输电距离的限制另外.由于直流输电与系统频率,系统相位差无关.所以直流

线路可以连接两个频率不相同的交流系统(4)能限制系统的短路电流用直流输

电线路连接两个交流系统时.直流系统的"定电流控制"将快速把短路电流限制在额定功率附近.短路容量不因互联而增大.有

利于实现交流系统的互联

(5)调节速度快.运行可靠.直流输电

通过晶闸管换流器.能够快速的实现有功

功率和潮流翻转不仅在正常运行时保证

稳定的输出功率.而且在事故情况下.可通

过正常的交流系统一侧由直流线路对另一侧事故系统进行支援.从而提高系统运行

的可靠性

(6)实现交流系统的异步连接频率不

同或相同的交流系统可以通过直流输电或"交流一直流一交流"的"背靠背"换流站实现异步联网运行.既得到联网运行的经济效益. 又避免交流联网在发生事故时的相互影响

2.2直流输电与交流输电相比和缺点

(1)换流站的造价高.换流站设备种类

74科技创业月刊服务科学2009年第10期繁多.其造价比交流变电站要高很多.而且运行维护也比较复杂,对运行人员要求较

高这是限制高压直流输电发展的最主要

原因.

(2)换流装置要消耗大量的无功功率

直流输电换流器要消耗一定的无功功率. 一

般情况下.约为直流输送功率的50%~60%.因此.换流站的交流侧需要安装一定

数量的无功补偿设备.一般由电容性的交

流滤波器提供无功功率

(3)产生谐波影响.换流器运行时在交

流侧和直流侧都将产生谐波电流和电压. 使电容器和发电机过热.换流器控制不稳定.对通信系统产生干扰.一般在交流侧安装滤波器限制谐波影响

(4)换流装置几乎没有过载能力.所以

对直流系统的运行不利

(5)缺乏高压直流开关.由于直流输电

不存在零点.以致灭弧比较困难.现在一般采用外加振荡器来产生过零点.增加了成本(6)直流输电利用大地(海水)为回路

带来的一些技术问题接地极附近地下(或

海水)中的直流电流对技术构件,管道,电

缆等埋设物有腐蚀作用:地中直流电流通

过中性点变压器使变压器直流偏磁.产生

局部过热,震动,噪声;以海水为回路时,对

通信系统和航海磁性罗盘产生干扰

(7)直流输电线路难以引出分支线路.

绝大部分只用于端对端输电

根据以上优缺点.直流输电适用于以

下场合:远距离大功率输电:海底电缆输电:不同频率或同频率非周期运行的交流系统之间的连接;用地下电缆向大城市供电: 交流系统互联或配电网增容时.作为增大短路容量的措施之一:配合新能源的输电. 3直流输电技术的现状及前景

鉴于高压直流输电在技术上和经济上

高压直流输电技术的发展及前景

的特点.目前.世界上很多国家都采用了这种技术目前.在五大洲都分布有高压直流输电工程.且密集于北美和欧洲等经济发达地区.

伴随着我国经济的快速发展.高压直

流输电工程也得到了蓬勃的发展1987年建成的浙江舟山直流输电工程是我国第一条直流输电线路.其额定电压为_+100KV. 额定电流为500A.额定容量为50MW.线

路全长54kin1990年.从湖北葛洲坝到上

海的葛南双极直流输电线路投人商业运行.其额定容量为1200MW.额定电压为±500kv.输送距离l045km它既是我国第

条远距离大容量高压直流输电线路.也

是区域电网直流互联工程中国电力从此

柔性直流输电线路故障分析与保护综述 周森亮

柔性直流输电线路故障分析与保护综述周森亮 发表时间:2019-10-23T10:40:13.657Z 来源:《电力设备》2019年第10期作者:周森亮 [导读] 摘要:为应对不可再生能源不断减少的形势,世界各国制订了相应的政策,随着大功率全控型电力电子器件制造及控制技术的发展,推动了柔性直流输电工程的建设。 (国网内蒙古东部电力有限公司检修分公司内蒙古赤峰 024000) 摘要:为应对不可再生能源不断减少的形势,世界各国制订了相应的政策,随着大功率全控型电力电子器件制造及控制技术的发展,推动了柔性直流输电工程的建设。基于柔性直流输电系统控制方式和拓扑结构的特殊性,在直流侧发生故障时,其故障电流上升速度极快且破坏性极强。针对柔性直流输电系统的故障类型和保护分区进行讨论,结合现阶段的故障隔离技术,介绍了直流断路器、换流器和交流断路器的应用状况。为快速隔离故障,详细介绍了柔性直流线路保护,并对柔性直流输电技术的发展趋势进行了展望。 关键词:柔性直流输电;故障类型;直流线路保护 引言 和传统基础电流源变换系统的直流输电系统相比,电压源变换系统的直流输电系统(VSC-HVDC)属于一类低廉的输电方式。其能够切实弥补直流电力传输存在的问题,尤其在可再生能源发电并网、城市供电以及异步交流互联中适用。但因为拓扑结构与控制模式的特殊性,出现故障之后电流快速上升,非常容易对换流组件产生破坏,所以,直流线路故障保护的作用非常关键。 1柔性直流输电的系统 两端的换流站都是利用柔性直流输电,由换流电和换流变压设备,换流电抗设备等进行组成。其中最为关键的核心部位是VSC,而它则是由流桥和直流电容器共同组成的。系统中,综合考虑它的主电路的拓扑结构及开关器件的类型,能够采用正弦脉宽调制技术,将此类技术在调制参考波与三角载波进行数据的对比,在后者数据相对较小的情况下,就会发生触发下桥臂开关导通并关断下桥臂。这主要是由于浮动数值和相位都可以利用脉宽调制技术来进行智能化调解。因此,VSC的交流输出电压基频分量的幅值及相位也可通过脉宽进行调节。 2柔性直流系统的故障类型 以目前正在建设的张北柔性直流电网为例,该工程采用架空输电线路,与直流电缆相比,其故障概率更高。按照故障区域划分,柔性直流电网故障大致可以分为交流系统故障、换流器内部故障和系统直流侧故障。换流器内部故障又可细分为站内母线故障、阀短路故障、桥臂电抗器故障以及最常见的子模块故障等。柔性直流输电具有输送容量大、电压等级高的特点,故MMC(模块化多电平换流器)每个桥臂串联的子模块数量较多,从而增加了子模块故障的概率。在柔性直流系统的建设中,为确保系统具有足够的容错性和充足的安全裕度,通常都会在每一个桥臂上串联适量的冗余子模块。直流侧故障可细分为直流线路断线故障、直流线路短路故障和换流器闭锁故障。在单个MMC中,因为直流侧采用单级输电,故直流侧线路故障以单极接地故障为主。而在真双极系统中,单级接地故障则相当于伪双极系统中的级间短路故障,通常由树枝接触或雷电引发,多属于暂时性故障,但是因其故障传播速度快、影响范围广、解决难度大,成为阻碍柔性直流电网发展的技术难题。真双极系统的双极短路故障则更为严重,相当于交流系统的三相短路故障。 3柔性直流输电网故障保护的难点 (1)系统故障电流升高速度极快,通常在故障出现之后10ms以内电流已经提高至稳态电流水平。(2)稳态短路存在很高电流值,系统短路电流通常比额定值高出几十倍。(3)系统故障发生时短路电流无极性改变,无过零点,断路系统很难灭弧。(4)对迅速切断故障设定的标准很高,交流输电系统的故障切断时限通常大于50ms,但直流系统故障切断时限要求不到5ms,否则就会对系统组件安全产生很大影响。所以,针对柔性直流线路故障问题,一方面需迅速准确识别故障,另一方面需采取合理处置方案限制故障电流,进而降低对换流器、线路和系统产生的威胁。 4柔性直流输电线路故障保护存在的问题与研究展望 4.1存在的关键问题 虽然国内外学者围绕柔性直流输电线路保护原理开展了大量研究,能够在一定程度上提高现有柔性直流输电工程的线路保护性能,但仍存在一些问题:(1)柔性直流输电系统故障阻尼小,故障蔓延速度快,而柔性直流系统中的电力电子设备耐受故障冲击电流能力差,因此对保护系统的响应时间要求很高,即对速动性要求高。(2)虽然行波保护是目前柔性直流输电系统较为适宜的主保护,但其易受雷击、噪声等因素干扰而发生误动,可靠性降低,并且对采样频率的要求高。(3)正负极线路行波之间存在电磁耦合,并且暂态行波在传播过程中会发生畸变、色散、频散等现象,对保护会产生一定的干扰。 4.2保护与控制协调策略 柔性直流输电线路的故障处理与保护和控制密切相关,为实现故障线路的隔离和系统的稳定,需要针对线路保护、辅助电路以及系统控制的动作时间和投入方式,进行协调策略研究。尤其对于多端柔性直流系统,直流线路故障的处理,更加强调多站之间保护与控制的协调作用。采用保护、控制、通信集成一体化的多端柔性直流系统保护方案,研究保护与保护之间,保护与控制之间的配合策略,实现交直流侧保护与控制相协调,整合并减少分散保护设备的数量,从而降低柔性直流线路故障处理与保护的复杂性、缩短故障处理的时间,提高系统的可用率。 4.3柔性直流输电技术的应用前景展望 (1)在城市电网塔容及直流供电中的应用。近几年来,我国经济的高速发展以及城市化建设的不断推进,促进了城市电网的进一步发展,与此同时大部分的城市电网负荷也一直呈现出不断增长的趋势,人们对于电能的供应及质量要求不断提高。(2)替代交直流联网。结合我国目前的总体趋势西部地区的资源相对较多,同时负荷较少,我国90%的水电几乎都集中在西部,而东部地区的能源与负荷量特点则恰好相反。导致了我国地区能源和负荷的失调,因此,特高压直流输电工程在不断增多,实现电能的大容量和远距离运输。目前关于柔性直流输电技术方面仍然存在着一定的障碍,在进行长距离和大容量的发展过程中,要克服以下几个难点:第一就是用碳化归来替代二氧化硅,从而改变VSC的材料,同时还要增强封装材料的绝缘性和耐热性,达到大容量的电流运输。第二就是要加强电流直流断路器的优化与改良,突破上述所提到的故障。如果能在技术上实现故障的突破,那么柔性直流输电技术在未来可能会完全取代传统输电技术,承担起长距离大容量的输电任务。(3)借鉴传统交流输电和常规高压直流输电的继电保护技术,结合柔性直流输电系统的结构特点,研究先进的

浅谈高压直流输电对交流电网继电保护影响

浅谈高压直流输电对交流电网继电保护影响 摘要:目前在交流电网的继电保护工作中尚且存在许多不足之处,需要工作人 员引起注意并且加以解决,比如直流输电的交流母线通过多条线路和多落点接入 交流电网,对含有直流馈入的电网做仿真分析,在直流馈入点附近采用受影响小 的继电保护装置等等,这些都是可取的措施。 关键词:高压直流;输电;交流电网;继电保护;分析 1导言 近年来我国尤其是沿海经济发达地区用电需求增长很大,但是我国能源丰富地 区大都在西部,这种能源和负荷分布不平衡的局面促使我国实行“西电东送”工程,因此,大力开发西南水电,采用特高压直流将电能输送到沿海经济发达地区势在必行。 2直流偏磁成因 对于特高压直流输电来讲,较之于常规高压直流输电有所区别,而且运行方 式也非常的复杂,即便是一个双极特高压直流输电系统其运行方式也可能达到二 十多种。当电极不对称以大地作为回路运行过程中,直流电流就会以大地作为一 部分构成一个回路,如此强大的电流会在接地极址位置形成相对比较恒定的电流场,进而对接地极与周围交流系统产生巨大的影响。实践中可以看到,距离接地 极址越近,则直流电场就越大,反之亦然。 2高压直流输电线路继电保护的整体情况和存在问题 2.1高压直流输电线路继电保护的整体情况 从新中国成立以来,以换流技术为基础的交流电网继电保护技术就开始有了 进步,尤其是在高压直流输电上取得了更可喜的发展成果。在当前情况下,用作 长距离高能量电能传输的更多的是依靠半控型器件晶闸管的电流源换流器高压直 流输电(CSCHVDC);而由全控型器件构成的电压源换流器高压直流输电(VSC-HVDC)则偏向于受端弱系统。与此相对应的,高压直流输电线路的电网构造从之前的两端系统拓展成多段的体系;电网的线路也发生了改变,从之前单纯的海底 电缆形式转变成架空线路和电缆共存的形式;此外,高压直流输电在运输的地域 宽度、功率大小、电压高低等方面都展现了更突出的优势。目前的直流输电电网 继电保护工作在开展时,主要依靠ABB和SIEMENS公司,分为几种不同的保护方式。 2.2高压直流输电线路继电保护的现存问题 从保护效果的形成机制看,目前的直流输电继电保护工作成效不高,主要是 因为设计理念不先进、方案可实施性不强,主保护工作不力是因为系统的灵敏性弱、故障处理不到位、整体规划不强、采样率要求太高和对干扰的抵抗程度低等等。而后备保护工作不到位,则是因为保护的时效性不强、低电压保护缺少根据 等等原因。就交流电网的保护配置方面看,直流输电的保护类型太过单调,不够 可靠,一旦发生故障不能及时处理。 3交流电网的现状 自从第一个交流发电站成立以来,交流电网凭借以下的优势迅速的发展并被 广泛的使用。一是利用建立在电磁感应原理基础上的交流发电机可以很经济方便 地把机械能(水流能、风能)、化学能等其他形式的能转化为电能;交流电源和 交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉。二是交流电 可以方便地通过变压器升压和降压,这给配送电能带来极大的方便。随着技术的 不断深入,交流电网出现了一些问题,主要有以下几方面:一是交流输电不能做

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

模块化多电平高压直流输电综述

模块化多电平换流器型高压直流输电综述 0引言: 现代电力电子技术的发展,使直流输电又一次登上历史舞台,与交流输电并驾齐驱。1954年,世界上第一条工业性的高压直流输电系统投入运营,从此,直流输电技术在海底电缆送电、远距离大功率输电、不同频率或相同频率交流系统之间的联结等场合得到了广泛地应用。IGBT、GTO 的出现,促使了VSC-HVDC和MMC-HVDC的产生,成为直流输电技术的一次重大变革。 MMC-HVDC(modular multilevel converter-high voltage DC transmission)是新一代直流输电技术,发展非常迅速。它具有高度模块化、易于扩展、输出电压波形好等特点,尤其适用于中高压大功率系统应用。本文首先介绍MMC的电路拓扑和工作原理,总结MMC的主要技术特点;然后分别回顾MMC在电容电压平衡、环流、控制策略、故障保护等关键问题的最新研究进展,最后指出MMC今后亟待研究的关键问题。相关研究结果表明,MMC在电力系统中有广泛的应用前景,是未来中高压大功率系统,尤其是高压输电技术的重要发展方向。 1正文: 传统两电平电压源型变换器,在电机传动、新能源并网、开关电源等工业生产领域的应用十分广泛。但在高压大功率领域的应用中,为解决功率开关器件的耐压问题,通常通过工频变压器接入高压电网,笨重的工频变压器大大增加了电力电子变换装置的体积和成本,限制了系统效率。鉴于现有传统多电平变换器在较高应用电压等级、有功功率传输场合等方面存在的不足,德国学者 Marquardt R.及其合作者提出了基于级联结构的模块组合多电平变换器(modular multilevel converter,MMC)的拓扑。 现将传统直流输电、电压源换流器型直流输电(VSC-HVDC)和MMC-HVDC三种直流输电方式的特点列表如下。

特高压直流输电的现状与展望

特高压直流输电的现状与展望 摘要:特高压直流输电大多用于长距离输电,例如海底电缆、大型发电站输电等,在我国,其是指通过1000kV级交流电网和±600kV级以上直流电网要求构成 的电网系统。放眼现在,直流输电在电力传输中的地位与日俱增,尤其在结合计 算机等技术后,特高压直流输电系统的整体调控更加可靠。本文将通过分析我国 特高压直流输电的现状,以及探究今后发展的展望,讨论特高压直流输电如何在 个别恶劣环境中进行应用的问题。 关键词:特高压;直流输电;现状;展望 1 特高压直流输电的现状 1.1 发展速度快 从上世纪六十年代开始,由于部分发达国家需要向部分地区进行远距离、大 容量输电的需求,开始了对特高压直流输电的研究。从开始阶段的不到一千公里,五十万千伏直流输电电压,输电功率六百万千瓦,到如今的上千公里,八十万千 伏直流输电电压,其中的发展速度无疑是飞快的。除此之外,由于现代科技更为 发达,再加上可以通过计算机进行实时地检测,特高压直流输电系统在调节方面 的优化,可谓是跨越了一大步。此外,相较于以往的电线,光纤的使用也使得特 高压直流输电在传输过程中的安全性得以提高,大大提高了其输电效率。并且, 特高压直流输电的应用范围也大大扩增,不再局限于几个发达国家。 1.2 效率更高 在远距离大容量输电方面,相较于交流输电,或者是超高压输电方式,特高 压直流输电通常会是更好的选择,其在经济投资、能源损耗以及工程规模方面都 要优于交流输电和超高压输电。例如,在特高压和超高压两种方式之间,面对相 同的输电工程,姑且定为10GW的输送功率,2千米的输送距离,超高压输电需 要240亿元的投资,在输电过程中有将近1.15GW的损耗,其工程规模为135米,而特高压输电只需要200亿元的投资,在输电过程中只有1GW的损耗,工程规 模也只有120米;而相等电压等级情况下的交流输电方式,需要315亿元的投资,在输电过程中更是有1.7GW的线损,工程规模也远远大于前面两种方案。所以, 在远距离大容量电力输送过程中,特高压直流输电的输电效率更好。 1.3 我国特高压直流输电现状 我国从上世纪八十年代才开始尝试建设超高压直流输电工程,即葛洲坝直流 输电工程,虽然开始较晚,但发展十分迅速。经过这些年的技术积累,我国现已 具备建设特高压直流输电工程的技术,并于2010年,完全通过我国自主研发, 成功建造了在当时而言,技术领先全球、输电能力最大的±800kV的向家坝特高压 直流输电工程。在今后3~5年中,我国还将在其他地区建设特高压直流输电工程,预计将会达到二十个左右。 2 特高压直流输电的特点 2.1 技术性能更加稳定 直流输电技术基本不存在系统稳定的问题,可以实现电网的非同期互联。简 单来说,就是指直流输电在连接连两个交流系统时,可以在非同步时期运行,在 效果方面,通过交变直,直变交,将两个直流系统隔离,使得两边能够独立运行。除此之外,在运行期间,如果线路发生短路,直流输电能够及时地进行调节,恢 复时间也很短,例如直流输电单极故障的恢复时间一般不超过0.4秒,除此之外,还可以抑制振荡阻尼和次同步振荡的影响。

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

柔性直流输电系统的改进型相对控制策略

柔性直流输电系统的改进型相对控制策略 摘要:电压源换流器(VSC)中交流滤波器可滤除交流网络侧谐波,交流侧换流电 抗器或换流变压器有助于交流网络和VSC的能量交换,直流侧电容器可减小换流 桥切换时的冲击电流,同时也可滤除直流网络侧谐波。 关键词:柔性直流输电;控制策略;应用 前言 在柔性直流输电系统(VSC-HVDC)中电压源换流器采用全控型可关断器件,可实现对交流无源网络供电,同时对有功功率、无功功率进行控制。笔者采用外环 电压控制和内环电流控制,外环电压控制中送端VSC系统采用相对控制策略,通 过分别控制输出电压相对发电机端电压的相位角和幅值,进而控制其与送端系统 交换的有功功率和无功功率。受端VSC系统采用定交流电压和定直流电压控制方法,通过调制比和移相角信号产生器件的驱动脉冲,内环控制采用空间矢量控制 策略,PI控制器实现对d、q轴电流的解耦控制,运用PSCAD/EMTDC暂态仿真软 件建立相应的内外环控制模型,验证所设计控制方案的有效性和可靠性。 1柔性直流输电技术的概述 1.1柔性直流输电技术概念 柔性直流输电技术是由加拿大的科学家开发出来的。这是一种由电压源换流器、自关断器和脉宽调制器所共同构成的直流输电技术。作为一种新型的输电技术,该技术不仅可以向无源网络进行供电,还不会在供电的过程中出现换相失败 的现象。在实际使用的过程中,换相站之间不会直接依赖于多端直流系统进行运作。柔性直流输电技术属于一类新型的直流输电技术。虽然在结构上和高压输电 技术相类似。但是整体结构仍然是由换流站和直流输电线路构成的。 1.2柔性直流输电的特点 柔性直流输电是由高压直流输电改造而来的。应该说在技术性和经济性方面 都有很大的改善。具体来说,柔性直流输电技术内部的特点可以表现为如下几个 方面: (1)在运用柔性直流输电技术的过程中,如果能够有效地采用模块化设计的技术,其生产和安装调试的周期都会最大限度地缩短。与换流站有关的设备都能 够在安装和使用的过程中完成各项试验。 (2)柔性直流输电技术内部的VSC换流器是以无源逆变的方式存在的。在使用的过程中可以向容量较小的系统或者不含旋转机电的系统内部进行供电。 (3)柔性直流输电技术在使用的过程中都伴随有有功潮流和无功潮流 (4)整个柔性直流输电系统可以有效地实现自动调节。换流器不需要经常实现通信联络。这也就在很大程度上减少了投资、运行和维护的费用。 (5)整个柔性直流输电技术内部的VSC换流器可以有效地减弱产生的谐波,并减少大家对功率的要求。一般情况下,只需要在交流母线上先安装一组高质量 的滤波器,就可以有效地满足谐波的要求。目前,多数无功补偿装置内部的容量 也不断地减少。即便不装换流变压器,内部的开关也可以更好地被简化。 2柔性直流输电技术的战略意义 目前,柔性直流输电技术在智能电网中一直都发挥着重要的作用。一般来说,柔性直流输电技术可以有效地助力于城市电网的增容改造和交流系统内的互联措施。目前,多数柔性直流输电技术也在大规模风电场建设的过程中发挥出了较好 的技术优势。如果大面积地选择柔性直流输电技术,将会在很大程度上改变电网

高压直流输电优缺点

浅谈特高压直流输电 将电能从大型火力、水力等发电厂输送到远方负荷中心地区时会遇到远距离输电问题。要实现远距离的大功率传输,需采用超高压或特高压输电技术。在特高压输电技术中有交流和直流两种方案,可根据技术经济条件和自身特点加以选择。特高压交流输电是目前国内外最基本的远距离输电方式,而特高压直流输电不存在同步稳定性问题,是大区域电网互联的理想方式。下面我将结合自己所学知识与查阅的资料对特高压直流输电进行概括的阐述。 直流输电是指将送端系统的正弦交流电在送端换流站升压整流后通过直流线路传输到受端换流站,受端换流站将直流逆变成正弦的工频交流电后降压和受端系统相连。而对于换流站,它的核心元件是换流器,,由1 个或数个换流单元串联而成,电路均采用三相换流桥,材料多采用可控硅阀。它的基本工作原理是,控制调节装置通过控制桥阀的触发时刻,可改变触发相位,进而调节直流电压瞬时值、电阻上的直流电流、直流输送功率。同时,相同的触发脉冲控制每个桥阀的所有可控硅元件。当三相电源为对称正弦波的情况下,线电压由负到正的过零点时,脉冲触发桥阀,同时阀两端电压变正,阀立即开通。6 个脉冲发生器分别完成对单桥换流器的6 个桥阀的触发,恰好交流正弦波电源经过1 个周期,线电压又达到下一个过零点进行第二个触发周期。一般,工程上为了获得脉波更小的直流输电电压,通常采用12脉的双桥换流器。 与交流输电相比,直流输电技术具有以下特点:输电功率大小、方向可以快速控制调节;直流输电系统的接入不会增加原有系统的短路容量;利用直流调制可以提高系统的稳定水平;直流的一个极发生故障,另一个极可以继续运行,且可以利用其过负荷能力减少单极故障下的树洞功率损失;另外直流架空线路走廊宽度约为相同电压等级交流输线路走廊宽度的一半。而对于特高压直流输电,它不但具有常规直流输电的特点,而且还能够很好的解决我国一些现存的问题: 1、我国一次能源分布很不均衡, 水利资源2/ 3分布在西南地区, 煤矿资源2/ 3 分布在陕西、山西及内蒙古西部。而电力需求又相对集中在经济发展较好较快的东部、中部和南部区域。能源产地和需求地区之间的距离为1 000~ 2 500 km。因此我国要大力发展西电东送, 实现南北互供, 全国联网。特高压直流输电在远距离输电方面较为经济, 而且控制保护灵活快速, 是实现南北互供的较好途径。 2、我国东部、中部、南部地区是我国经济发达地区, 用电需求大, 用电负荷有着较高的增长率。特高压直流输电能够实现大容量输电, 规划的特高压直流输电工程的送电容量高

高压直流输电线路继电保护技术综述 徐军

高压直流输电线路继电保护技术综述徐军 发表时间:2020-01-03T15:15:46.603Z 来源:《河南电力》2019年7期作者:徐军[导读] 近年来,随着我国信息化技术的快速发展,对各领域的发现起到了促进作用,扩大了对信息忽视技术的应用范围,使其在各领域的发展中,充分发挥出自身的重要作用。 (贵州送变电有限责任公司贵州贵阳 550002) 摘要:近年来,随着我国信息化技术的快速发展,对各领域的发现起到了促进作用,扩大了对信息忽视技术的应用范围,使其在各领域的发展中,充分发挥出自身的重要作用。而在人们日常生活中,信息化技术的发展,给人们的生活带创新出便捷的方式,同样,在高压直流输电的发展中,具有重要的地位。随着高压直流输电线路线工程项目的增多,加大了对继电的保护,结合实际情况,不断地创新保护技术水平,提升工程项目的整体质量,从而确保电力系统的稳定发展。 关键词:高压直流输电线路;继电保护;技术水平 为了能够满足各领域的用电需求,我国加大了对电力工程项目的建设力度,从高压直流输电保护原理的角度分析,其可靠性、保护性、灵敏度等存在着一些问题,尤其是对其故障的处理,不仅无法及时地发现所存在的故障问题,而且对故障问题的解决,需要花费大量的实践。对此后期保护工作,整体的保护速度比较慢,无法满足标准配置的发展要求。对此,需要加大对高压直流输电线路继电保护技术水平的研究,结合具体的问题分析,制定出完善的解决方案与措施,提高整体的可靠性与技术水平。 一、高压直流输电线路继电保护影响因素 (一)电容电流 高压直流输电线路,主要的要求就是大电容,大功率,再受到小波阻特点的影响,需要加强对组联电流的保护,才能够确保整体的效果与稳定性。那么对整个高压直流输电线路继电的保护,需要结合实际情况的综合分析,能够确保输电线整体的安全性与稳定性,对电容电流提出了更高的要求,需要采取相应的补偿策略[1]。 (二)过电压 高压直流输电线路会受到不同因素的影响,而引导不同的故障,而一旦高压直流输电线路发生了故障,会在电弧情况下不会熄灭,对其控制在可监控的范围内,才能够确保其不产生消弧现象。而对高压直流输电线路继电的保护,针对输电线两个的顶点开关,无法在第一时间切断,那么就不会产生反射行波,从而对高压直流输电继电保护产生一定的影响。 (三)电磁暂态过程 对高压直流输电线路的建设,其整个的距离都比较远,一旦其发生了故障问题,就会增加高频分量,对其故障的诊断、处理加大工作难度,无法准确地测量出电气误差值,最终对高频分量造成不利的影响。电磁暂态过程,会引发高压直流输电故障的同时,使电流互感处于饱和的状态下,最终引导安全事故[2]。 二、提高高压直流输电线路继电保护技术水平措施 (一)加强对行波的保护 高压直流输电线路故障问题比较多,对其故障的解决,还需结合实际情况的综合分析,如果是产生了反行波的故障问题,会对高压直流输电线路的稳定性、安全性造成一定的影响。对此,西药加强对行波的科学保护。一般情况下,针对高压直流输电线路行波的保护,有两种解决方案。一种是ABB方案,另一种是SIEMENS方案。ABB方案,是根据极波理论所提出的,能够帮助相关工作人员,及时、准确地检测出高压直流输电线路的反行波情况,结合实际情况的综合分析,采用科学合理的解决措。而SIEMENS方案,是以电压积分为原理所设计的一种方案。对高压直流输电线路继电的保护时间控制在16秒--20秒之间。把ABB方案与SIEMENS方案相比较,SIEMENS方案的起动时间比较长,但是干扰效果却比ABB方案的干扰效果更好[3]。为了能够更地加强对波保护质量的保护,对相关工作人员提出了更高的要求,结合梯度理论与数学滤波技术等综合分析,制定出科学合理的保护措施。 (二)针对微分电压的保护措施 微分电压的保护是高压直流输电线路继电保护中重要的组成部分之一,那么在实际分析的过程中,主要是对差动电压主保护、后备保护等特点的综合分析[4]。例如:在西门子公司内,就会采用ABB方案加强对其行波的保护,对所应用对象的简称,详细地掌握电压电平、电压差动。由于其所使用的是ABB方案,会对其上升的时间产生影响,使其后备保护无法发挥出自身的重要作用。但是对ABB方案上升时间的调整,至少可以解决20毫秒的时间问题。但是在实施的过程中,主要的弊端就是抗干扰的能力不强。 对微分电压的安全保护,对高压直流输电线路的可靠性有直接性的影响,提高其整体的灵敏度,但是其运行的速度要比行波保护低,以此形式的运行,无法确保其整体的电阻能力,那么就会使整体可靠性逐渐地降低,无法确保高压直流输电线路的运行效率与质量[5]。例如:对继电保护的整定值计算,会产生不同的故障问题,如果是低压问题,那么对此方法的应用,会使变压器高压侧系统电源持续加大;如果是对其负荷的保护,则需要根据极端反时限工作原理;如果是对限时电流的速断保护,那么就需要采用定时限工作原理等等。根据高压直流输电线路在运行中所产生的不同故障问题,结合实际情况的综合分析,采取合理的解决措施,不要对电缆阻抗影响因素的忽视,会对进线开关、变压器进线保护定值等产生一定的影响。具体如表1所示。

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

可控电压源型柔性直流输电换流器拓扑研究

可控电压源型柔性直流输电换流器 拓扑综述 周敏,张劲松,刘宇思 中国能源建设集团广东省电力设计研究院 摘要:为分析不同可控电压源型柔性直流输电换流器拓扑结构的技术特点,围绕模块化多电平换流器(Modular Multilevel Converter,MMC),建立了基于几种可控电压源型换流器拓扑的柔性直流输电系统电磁暂态模型,结合PSCAD/EMTDC 的数字仿真结果,验证了所提出的换流器拓扑结构及其输电方案的可行性。 关键词:柔性直流输电可控电压源型换流器模块化多电平换流器 1引言 柔性直流输电技术是高压大功率电力电子应用领域的制高点,该技术在新能源接入(特别是近海风电接入)、向无源电网供电(如海岛供电,海上钻井平台)、异步电网互联、城市配网等诸多领域有着广阔的应用前景,因此吸引了学术界和工业界越来越多的关注。国内外投入的十几个柔性直流输电工程也都取得了不错的成效,其中绝大部分工程的换流器采用两电平或三电平拓扑结构。 IEC/TR 62543技术报告[1]将电压源型柔性直流输电换流器拓扑分为两种:开关型(“switch” type)拓扑和可控电压源型(“controllable voltage source” type )拓扑。开关型拓扑,即目前绝大多数工程采用的两电平或三电平拓扑,其明显特点为直流储能电容器组并接于直流侧,运行时换流桥臂中电流不连续;而以MMC为代表的可控电压源型拓扑的储能电容器分布在换流桥臂的子模块中,运行时换流桥臂中有连续电流流过。两类拓扑各自的优势在相关文献中已有较详细的总结[2-7]。较晚出现的可控电压源型拓扑以其诸多优势,成为未来柔性直流输电换流器拓扑的发展趋势,这从目前国内外最新投运的工程(2010年的美国 Trans Bay Cable工程、2011年的上海南汇工程)和在建的工程(如大连跨海工程、舟山5端工程、南澳风电场接入3端工程、德国Borwin2工程)中可见一斑。 2MMC换流器基本结构 2002年,德国学者R. Marquart 和A. Lesnicar 最早提出了MMC拓扑结构的概念[2],该拓扑奠定可控电压源型换流器的基础,之后有学者和公司相继提出了许多拓扑,基本结构和运行原理都跟MMC 很类似。MMC的建模、控制、调制、器件参数选择在文献中有详细论述[2-7] ,MMC的拓扑结构如图1所示。

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景 发表时间:2018-11-17T14:55:25.480Z 来源:《基层建设》2018年第28期作者:朱振伟李天轩 [导读] 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 国网江苏省电力有限公司宿迁供电分公司江苏宿迁 223800 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 关键词:特高压;直流输电;技术现状;应用前景 1 引言 特高压直流输电技术起源于20 世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。1966年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20世纪80年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级,2002 年 Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 2 特高压直流输电现状 20 世纪 80 年代前苏联曾动工建设长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW。该工程将哈萨克斯坦的埃基巴斯图兹的煤炭资源转换成电力送往前苏联欧洲中部的塔姆包夫斯克,设计为双极大地回线方式,每极由两个 12 脉动桥并联组成,各由 3×320Mvar Y/Y 和 3×320Mvar Y/Δ单相双绕组换流变压器供电;但由于 80 年代末到90年代前苏联政局动荡,加上其晶闸管技术不够成熟,该工程最终没有投入运行。由巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常。 3 特高压直流输电技术的特点及适用范围 特高压直流输电无需复杂的系统设计,基本可以采用±500kV 和±600kV 直流输电系统类似的设计方法,需要考虑的关键问题是外部绝缘和套管的设计等问题。特高压直流输电的输送容量大,输电距离长,输电能力主要受导线最高允许温度的限制。交流线路的无功补偿对远距离大容量输电系统至关重要;而直流输电线路本身不需要无功补偿,在换流站利用站内的交流滤波器和并联电容器即可向换流器提供所需的无功功率。一般来讲,对于远距离大容量输电直流方案优于交流方案,特高压方案优于超高压方案。表 1 为输送功率为 10GW 输送距离为 2000km 时交、直流以及不同电压等级直流的投资及线路走廊占用情况比较。 表1 10GW 电力输送 2000km 的交、直流输电方案 由表 1 可见,特高压直流输电适用于远距离大容量的电力输送。 4 我国能源和负荷的分布特点 水能资源和煤炭作为我国发电能源供应的两大支柱,今后的开发多集中在西南、西北和晋陕蒙地区,并逐渐向西部和北部地区转移,而东部沿海地区和中南地区的国民经济的持续快速发展导致能源产地与能源消费地区之间的距离越来越大,使得我国能源配置的距离、特点和方式都发生了巨大变化,并决定了能源和电力跨区域大规模流动的必然性。 (1)水电东送规模 三峡水电站(包括地下电站)的总装机容量为22.4GW,“十二五”初期将全部建成投产。综合分析一次能源平衡、输电距离及资源使用效率等因素,可知金沙江下游水电站主送华中、华东电网是合理的。 (2)煤电基地的电力外送规模 各煤电基地的电力外送规模有望得到较大发展。现已建成和规划采用 500kV 交流和±500kV 直流跨区送电的坑口电站的电力外送规模总计15GW。2020 年煤电外送将新增 84GW,主要送往华中东部四省、华东地区和华北京津冀鲁四省市以及广东地区。 (3)东部电力市场空间 华中东部四省。按低负荷水平预测,2020 年需电量将为 600TWh,负荷将为 110GW,装机容量缺额将为 138GW。扣除本地水电和必要的气电以外,2020 年之前尚有 47GW 的市场空间,其中2010~2020 年约为 32GW。华北的京津冀鲁。按低负荷水平预测,2020年需电量将为 840TWh,负荷将为 140GW,装机容量缺额将为 168GW。扣除本地核电、蓄能电站以外,2020 年之前尚有 90GW 的市场空间,其中2010~2020 年约为 45GW。初步测算,到 2020 年水电跨区送电规模总计约 70GW,煤电外送约 84GW,而东部受电地区的市场空间约为 127GW;而能源与负荷的距离大多数超过了 1000km,采用特高压直流输电技术比较合适。 5 特高压直流输电的初步发展规划 2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要 9 条输电容量为 6GW 的±800kV 级特高压直流输电线路。根据 10 年发展规划,特高压直流输电工程的建设进度如

相关文档
相关文档 最新文档