文档库 最新最全的文档下载
当前位置:文档库 › 面料低压注塑、嵌件注塑、二次注塑

面料低压注塑、嵌件注塑、二次注塑

面料低压注塑、嵌件注塑、二次注塑
面料低压注塑、嵌件注塑、二次注塑

面料低压注塑、嵌件注塑、二次注塑技术研习

前言

为了让注塑产品有良好的手感、外观,并且兼顾其它物料的优点,现在流行以硬的塑料做基材骨架,面料、软塑料为表层的注塑加工工艺。

纵观这类工艺,从发展的角度我个人认为:在注塑骨架上再注塑一层手感好的软塑料工艺(嵌件、二次)将显示它的实用性,因为它不用后续加工。而面料、表皮低压注塑有很多后续加工。

面料注塑的特点

1.面料的延展性和张性现在低压注塑用的面料都是底层无纺布+泡沫层+表面面料层,其中复合工艺国内是热熔复合。这些都影响到面料整体的延展性:纵向静态延伸率、纵向残余延伸率、横向静态延伸率、横向残余延伸率。由于受到模具的压缩与熔融塑料的挤压,面料纵向、横向的延伸性不同,反映到产品上的现象也就不同。其中最为突出的问题是:渗料、击穿、破损。就是说在模具状态恒定、工艺条件恒定的情况下,面料的特性对产品的质量有着很大的影响。同样延伸率纵向、横向对不同的模具也有不同的适配性,有的模具由于设计上的限制可能对纵向延伸率要求高,有的模具可能对横向延伸率要求高。所以在试制新产品、新模具时需要综合考虑这个问题。

2.塑料的流动性评定塑料流动性的指标是:熔融指数MI值。大家都知道在面料上塑料的流动比在光滑的模具型腔上流动肯定缓慢许多,这就是为什么面料低压注塑模具比普通模具有更多浇口的原因。而流动速度的缓慢势必影响到产品其它外观问题,如结合痕、缺料等。一般PP料的MI值在20~55之间,这就要求我们在产品开发时不要盲目的使用进口面料、进口塑料粒子。因为这些是需要组合后应用的,只要和模具配合好,国产料照样能做出合格产品。

3.模具的结构通常这类模具的顶出在定模,使用了阀浇口利用控制各浇口的料量,定模有一个压面料框,定模有面料针或气吸盘来固定面料。

4.常见缺陷及处理措施

1)缺料产品的尖角处容易出现缺料,原因:模温太低;缺料部位浇口温度偏低;缺料部位浇口料量控制过少;模具尖角处壁厚过薄;注射速度、压缩速度偏低。

2)渗料产品的转角处容易出现渗料,原因:渗料部位浇口温度过高;模具温度过高;渗料部位浇口料量控制过多。

3)击穿产品尖角处容易出现击穿,原因:尖角处分型面配合有间隙,当料量或速度增加后熔融塑料从间隙里面穿透出来,先带动无纺布然后穿透表层面料。尖角处壁厚太厚也容易造成击穿,所以模具尖角处壁厚相对较薄一点,防止面料渗料或击穿。

4)面料压破原因:通常低压注塑模使用的模具温度偏低(10~15度),如果防锈措施做的不好,会在压面料框、滑块分型面产生锈斑,生产时对面料的压紧作用过剩,面料的延展性有限,从而将面料压破。

PVC表皮注塑的特点

1.PVC表皮的性质更面料相比,两者有许多不同的地方。首先排气性:面料因为是孔状、疏松结构,所以气体容易从里面跑出来;而PVC表皮因为表面是一层PVC塑料,所以气体很难从里面跑出来。其次基材:面料基材是无纺布,所以对熔融塑料的流动阻力颇大;而PVC表皮基材是塑料发泡层,表面光滑,对熔融塑料的流动阻力较小。再是延展性:面料延展后结构间隙大,熔融塑料更容易穿透;PVC表皮延展后仍然有很强的抗击能力,熔融塑料不容易穿透。

2.模具的结构更面料注塑相比,其最大的不同在于对型腔排气的设计上。PVC表皮注塑模结构上和面料注塑模一样,只不过它注重于型腔、型芯空间的排气。由于型芯、型腔闭合后里面存在空气,当熔融塑料注射进来后,慢慢压缩里面的空气,如果气体得不到及时的排放,势必会给填充造成很大麻烦,出现很多缺陷。如结合痕、缩瘪、烧焦。

3.常见缺陷及处理措施

1)产品表面缩瘪原因:模具分型面间隙过大,造成逃料,导致需要料的地方没有压实从而缩瘪;和普通注塑一样,产品壁厚的地方、有加强筋的地方,由于冷却效果不好,导致体积收缩造成缩瘪。

2)熔结痕原因:模具型腔、型芯如果排气不好,在浇口前锋料汇合处空气受到压缩无法自然的熔合在一起,结合的痕迹能很明显地反映到表皮上,造成熔结痕明显,影响外观;当然和普通注塑一样,模温低、塑料熔体温度低,也容易造成熔结痕明显缺陷。

3)表皮压破原因:同面料注塑一样,通常低压注塑模使用的模具温度偏低(10~15度),如果防锈措施做的不好,会在压面料框、滑块分型面产生锈斑,生产时对表皮的压紧作用过剩,表皮的延展性有限,从而将表皮压破。4)浇口熔料击穿原因:熔融塑料从浇口中注射出来,受到剪切、加热圈作用,其中心位置温度偏高,如果开模注射,并且距离增大可以有效减少熔穿现象发生;可以降低浇口温度、模具温度,但是同时需要考虑到树脂流动性问题,否则可能出现缺料。

注塑成型工艺参数说明

注塑成型注塑成型工艺参数工艺参数工艺参数说明说明说明 一.干燥温度 定义:为保证成型质量而事先对聚合物进行干燥所需要的温度 作用:1.去除原料中的水份.2.确保成品质量 设定原则: 1.聚合物不致于分解或结块(聚合) 2.干燥时间尽量短,干燥温度尽量低而不致于影响其干燥效果. 3.干燥温度和时间因不同原料而异. 注:1,A 表示用热风干燥机. 2,D 表示用除湿干燥机. 3,*表示通常不需干燥. 4,**表示干燥依条件类别而定,最好材料供货商确认. 二.料温 定义: 为保证成型顺利进行而设加在料管上之温度. 作用: 保证聚合物塑化(熔胶)良好,顺利充模,成型. 设定原则: (1)不致引起塑料分解碳化. (2)从加料断至喷嘴依次上升. (3)喷嘴温度应比料筒前断温度略低. (4)依材料种类不同而所需温度不同. (5)不至对制品产生坏的质量影响. 三.模温 定义: 制品所接触的模腔表面温度 作用: 控制影响产品在模腔中的冷却速度,以及制品的表观质量. 设定原则: (1)考虑聚合物的性质. (2)考虑制品大小和形状. (3)考虑模具的结构.浇道系统. 四.注射速度 定义: 在一定压力作用下,熔胶从喷嘴注射到模具中的速度 . 作用: (1)注射速度提高将使充模压力提高. (2)提高注射速度可使流动长度增加,制质量量均匀. (3)高速射出时粘度高,冷速快,适合长流程制品. (4)低速时流动平稳,制品尺寸稳定.

设定原则: (1) 防止撑模及避免产生溢边. (2)防止速度过快导致烧焦. (3)保证制品质量的前提下尽量选择高速充填,以缩短成型周期. 五.熔胶速度 定义: 塑化过程中螺杆熔胶时的转速 . 作用: 影响塑化能力,塑化质量的重要参数,速度越高,熔体温度越高,塑化能力越强 . 设定原则: (1)熔胶速度调整时一般由低向高逐渐调整. (2)螺杆直径大于50MM之机台转速应控制在50RPM以下,小于50MM之机台应控制在100RPM以下为宜. 六.射压 定义: 螺杆先端射出口部位发生之最大压力,其大小与射出油缸内所产生油压紧密关连 . 作用: 用以克服熔体从喷嘴--流道--浇口--型腔的压力损失,以确宝型腔被充满,获得所需的制品. 设定原则: (1)必在注塑机的额定压力范围内. (2)设定时尽量用低压. (3)尽量避免在高速时采用高压,以免异常状况发生 七.背压 定义: 塑料在塑化过程建立在熔腔中的压力 . 作用: (1)提高熔体的比重. (2)使熔体塑化均匀. (3)使熔体中含气量降低.提高塑化质量 设定原则: (1)背压的调整应考虑塑料原料的性质. (2)背压的调整应参考制品的表观质量和呎寸精度 八.锁模压力 定义: 合模系统为克服在注射和保压阶段使模具分开的胀模力而施加在模具上的闭紧力. 作用: (1)保证注射和保压过程中模具不致于被胀开 (2)保证产品的表观质量. (3)保证产品的尺寸精度. 设定原则: (1)合模力的大小依据产品的大小,机台的大小而定. (2)一般来说,在保证产品不出毛头的情况下,合模力 要求越小越好. (3)合模力的设定不应超出机台之额定压力.

注塑成型工艺参数及其影响

注塑成型工艺参数及其影响 11209040112 黄卓 摘要:塑料材料在生活中所占比例越来越高,而对于其质量的要求也越来越高, 注塑成型作为重要的生产手段,对技术的提高也越来越迫切,而注塑成型制品的影响因素较多,但注塑成型加工工艺条件是重要的影响因素之一,下面将会介绍个个工艺参数对于制品性能的影响。 关键词:注塑成型工艺参数 一、注塑成型概念 传统的模具设计和工艺参数设置主要依赖于设计者的经验和技巧,模具设计的合理性只有靠反复的试模和修模,工艺参数的设置也只能靠反复的试模来进行修改,缺乏科学依据,生产周期长,成本高,质量也难以保证。而对成型过程进行模拟,在模具制造之前就可发现设计中的问题,使模具设计和工艺参数设置建立在科学的分析基础之上,可缩短生产周期,提高制品质量。随着对制品质量要求的提高,对成型过程进行预测己经成为设计不可缺少的环节。因此,建立注塑成型过程熔体在模腔中流动和传热的数学模型,并采用数值仿真方法实现成型过程的模拟具有重要的意义。 由于成型过程的工艺参数直接决定了熔体在模腔中的流动状态,对制品质量有着最直接最深远的影响,因此找到制品成型的最优工艺条件,对成型过程进行工艺控制,是提高塑料制品质量的有效途径。这是因为,成型过程中,精密的成型机械、合理的模具设计和优良的材料性能只有在合理的成型工艺设置下刁`能体现出来另一方面,成型机械、模具设计和材料性能的缺陷有时可通过合适的成型工艺设置来弥补。由此可见,注塑成型工艺对制品质量有着至关重要的作用 二、注塑工艺条件及其影响 1、注塑压力 注射压力指的是在注射过程中螺杆顶部或柱塞对于塑料熔体所加载的压力。它的作用是对于使熔料混合和塑化,螺杆(或柱塞)必须提供克服固体粒子和熔料在料筒和喷嘴中的流动阻力。使得塑料熔体以一定的速度来充满型腔,在型腔充满熔体后注射压力起到压实的作用。从而使得塑件致密,并对熔料因冷却而产生的收缩进行补料,从而使塑件保持精确的形状,获得所需要的性能。注射的压力主要由塑料的种类,注塑机的类型,模具的温度,模具结构,塑件的壁厚来决定的,其中浇注系统的尺寸与结构对于注射压力影响很大。 2、保压压力 当熔体充满型腔后,注射压力所起的作用为对于模内的熔体进行压实,此时我们把注射压力也叫做保压压力,在实际生产中,保压压力应该等于或小于注射时所用压力。当保压时的压力与注射时的压力相等时,往往会使塑件的收缩率降低,而且可以保证塑件的稳定性以及塑件的力学性能。但常常也会伴随着脱模时残余应力的增加,造成塑件脱模困难、使塑件容易产生变形、表面划伤等,也容易使塑件产生飞边,影响表观质量。因此,选择保压压力时需要多方面考虑,慎

聚丙烯(PP)常见的注塑成形缺陷

【解决】聚丙烯(PP)常见的注塑成形缺陷! 一、欠注 故障分析及排除方法: (1)工艺条件控制不当。应适当调整。 (2)注塑机的注射能力小于塑件重量。应换用较大规格的注塑机。 (3)流道和浇口截面太小。应适当加大。 (4)模腔内熔料的流动距离太长或有薄壁部分。应设置冷料穴。 (5)模具排气不良,模腔内的残留空气导致欠注。应改善模具的排气系统。(6)原料的流动性能太差。应换用流动性能较好的树脂。 (7)料筒温度太低,注射压力不足或补料的注射时间太短也会引起欠注。应相应提高有关工艺参数的控制量。 二、溢料飞边 故障分析及排除方法: (1)合模力不足。应换用规格较大的注塑机。 (2)模具的销孔或导销磨损严重。应采用机加工方法进行修复。 (3)模具的合模面上有异物杂质。应进行清除。 (4)成型模温或注射压力太高。应适当降低。 三、表面气孔 故障分析及排除方法: (1)厚壁塑件的模具流道及浇口尺寸较小时容易产生表面气孔。应适当放大流道和浇口尺寸。 (2)塑件壁太厚。在设计时应尽量减少壁厚部分。 (3)成型温度太高或注射压力太低都会导致塑件表面产生气孔。应适当降低成型温度,提高注射压力。 四、流料痕 故障分析及排除方法: (1)熔料及模温太低。应适当得高料筒和模具温度。

(2)注射速度太慢。应适当加快注射速度。 (3)喷嘴孔径太小。应换用孔径较大的喷嘴。 (4)模具内未设置冷料穴。应增设冷料穴。 五、银条丝 故障分析及排除方法: (1)成型原料中水分及易挥发物含量太高。应对原料进行预干燥处理。 (2)模具排气不良。应增加排气孔,改善模具的排气性能。 (3)喷嘴与模具接触不良。应调整两者的位置及几何尺寸。 (4)银条丝总是在一定的部位出现时,应检查对应的模腔表面是否有表面伤痕。如有表面伤痕的复映现象,应采取机加工方法去除模腔表面伤痕。 (5)不同品种的树脂混合时,会产生银条痕。应防止异种树脂混用。 六、熔接痕 故障分析及排除方法: (1)熔料及模具温度太低。应提高料筒及模具温度。 (2)浇口位置设置不合理。应改变浇口位置。 (3)原料中易挥发物含量太高或模具排气不良。应除去原料内的易挥发物质及改善模具的排气系统。 (4)注射速度太慢。应适当加快。 (5)模具内未设置冷料穴。应增设冷料穴。 (6)模腔表面有异物杂质。应进行清洁处理。 (7)浇注系统设计不合理。应改善浇注系统的充模性能,使熔料在模腔中流动顺畅。 七、黑条及烧焦 故障分析及排除方法: (1)注塑机规格太大。应换用规格较小的注塑机。 (2)树脂的流动性能较差。应使用适量的外部润滑剂。 (3)注射压力太高。应适当降低。 (4)模具排气不良。应改善模具的排气系统,增加乔气孔或采用镶嵌结构,以及适当降低合模力。 (5)浇口位置设置不合理。应改变浇口位置,使模腔内的熔料均匀流动。

注塑件常见品质问题及原因分析

注塑件常见品质问题及原因分析、解决方法 一、注塑件常见品质问题塑胶件成型后,与预定的质量标准(检验标准)有一定的差异,而不能满足下工序要求,这就是塑胶件缺陷,即常说的品质问题,要研究这些缺陷产生原因,并将其降至最低程度,总体来说,这些缺陷不外乎是由如下几方面造成:模具、原材料、工艺参数、设备、环境、人员。现将缺陷问题总结如下:1、色差:注塑件颜色与该单标准色样用肉眼观看有差异,判为色差,在标准的光源下(D65)。2、填充不足(缺胶):注塑件不饱满,出现气泡、空隙、缩孔等,与标准样板不符称为缺胶。3、翘曲变形:塑胶件形状在塑件脱模后或稍后一段时间内产生旋转和扭曲现象,如有直边朝里,或朝外变曲或平坦部分有起伏,如产品脚不平等与原模具设计有差异称为变形,有局部和整体变形之分。4、熔接痕(纹):在塑胶件表面的线状痕迹,由塑胶在模具内汇合在一起所形成,而熔体在其交汇处未完全熔合在一起,彼此不能熔为一体即产生熔接纹,多表现为一直线,由深向浅发展,此现象对外观和力学性能有一定影响。5、波纹:注塑件表面有螺旋状或云雾状的波形凹凸不平的表征现象,或透明产品的里面有波状纹,称为波纹。6、溢边(飞边、披锋):在注塑件四周沿分型线的地方或模具密封面出现薄薄的(飞边)胶料,称为溢边。7、银丝纹:注塑件表面的很长的、针状银白色如霜一般的细纹,开口方向沿着料流方向,在塑件未完全充满的地方,流体前端较粗糙,称为银丝纹(银纹)。8、色泽不均(混色):注塑件表面的色泽不是均一的,有深浅和不同色相,称为混色。9、光泽不良(暗色):注塑件表面为灰暗无光或光泽不均匀称为暗色或光泽不良。10、脱模不良(脱模变形):与翘曲变形相似,注塑件成型后不能顺利的从模具中脱出,有变形、拉裂、拉伤等、称为脱模不良。11、裂纹及破裂:塑胶件表面出现空隙的裂纹和由此形成的破损现象。12、糊斑(烧焦):在塑件的表面或内部出现许多暗黑色的条纹或黑点,称为糊斑或烧焦。13、尺寸不符:注塑件在成型过程中,不能保持原来预定的尺寸精度称为尺寸不符。14、气泡及暗泡:注塑件内部有孔隙,气泡是制品成型后内部形成体积较小或成串孔隙的缺陷,暗泡是塑胶内部产生的真空孔洞。15、表面混蚀:注塑件表面呈现无光、泛白、浊雾状外观称为混蚀。16、凹陷:注塑件表面不平整、光滑、向内产生浅坑或陷窝。17、冷料(冷胶):注塑件表面由冷胶形成的色泽、性能与本体均不同的塑料。18、顶白/顶高:注塑件表面有明显发白或高出原平面。19、白点:注塑件内有白色的粒点,粒点又叫“鱼眼”,多反映在透明制品上。20、强度不够(脆裂):注塑件的强度比预期强度低,使塑胶件不能承受预定的负裁二、常见品质(缺陷)问题产生原因1、色差:①原材料方面因素:包括色粉更换、塑胶材料牌号更改,定型剂更换。②原材料品种不同:如PP料与ABS料或PC料要求同一种色,但因材料品种不同而有轻微色差,但允许有一限度范围。③设备工艺原因:A、温度;B、压力;C熔胶时间等工艺因素影响。④环境因素:料筒未清干净,烘料斗有灰尘,模具有油污等。⑤色粉本身因素:有些色粉不受温,且制品很易受温度变化而改变。如:9278烤箱提手(A2945兰)。2、充填不足(缺胶):①模具方面:A、浇注系统设计不合理,浇注系统是熔体进入模腔的通道,对塑料件成型质量有很大关系,浇口不平行,浇口的位置不是在壁厚部位;B、模具排气结构不良;C、熔体中的杂质或冷料阻塞流道;D、模具温度未达要求。②原料方面:A、原材料含水量过大;B、原料中易挥发物超标; C、原材料中杂质或再生料过多。③注塑机方面:A、注射量不足:如用150T机生产180T产品。 B、喷嘴为异物堵塞,喷嘴孔太小; C、原料供应不足:如料筒堵塞,水口料影响下料; D、止逆阀故障; E、注射行程不够。④成型操作方面:A、模具温度过低;B、注射压力太低;C、保压时间太短;D、注射速度太慢;

常用塑料注塑工艺参数详述(doc 11页)

常用塑料注塑工艺参数详述(doc 11页)

浅述冷/热模注塑成型技术 2010-2-25 来源:网络文摘 【全球塑胶网2010年2月25日网讯】 所谓的“冷/热模注塑成型”技术,是一种可在注塑成型周期内,使模腔表面温度实现冷热循环的工艺。其特点是:在注射前,先加热模腔,使其表面温度达到加工材料的玻璃化转变温度(Tg)以上;当模腔填满后,迅速冷却模具,以使制件在脱模前完全冷却。 这种冷/热模注塑成型工艺可以大幅度地改善注塑制品的外观质量,而且可以省去某些二次加工(如旨在掩盖表面缺陷的底漆和磨砂处理)过程,从而降低整体生产成本。在某些情况下,甚至还可以省去上漆或粉末涂布工艺。在那些对表面光泽度有较高要求的应用中,冷/热模注塑成型工艺还允许使用玻纤增强材料。该工艺的其他优势还包括:降低注塑内应力、减少甚至消除喷射痕和可见的熔接线,以及增强树脂的流动性,从而生产出薄壁产品等。 通常情况下,冷/热模注塑成型工艺适用于所有的传统注塑机。但是,如果希望模具表面得到快速加热或冷却,还需要配合使用特定的辅助系统,目前常用的辅助系统是高温热水系统和高温蒸汽系统。这些辅助系统中的蒸汽,要么来自外部锅炉,要么由其自身的控制设备产生。早在几年前,沙伯基础创新塑料就开始在日本研究冷/热模注塑成型技术。目前,该公司在其亚太区的开发中心中使用的是高温蒸汽系统,而在位于马萨诸塞州匹兹菲尔德的聚合物加工开发中心(PPDC)中,该公司则使用了德国Single Temperiertechnik公司的高温热水系统,它可以提供200℃的高温热水。 为了实现有效的工艺控制,模具必须配备热电偶,并且热电偶最好被安置在靠近模腔表面的位置,以便监控温度。为了确保工艺的稳定性,注塑模具、注塑机和冷/热控制器还必须集成在一起。沙伯基础创新塑料在该工艺的生产体系中配备了一台控制设备,以将各个要素有效地集成在一起。 在该工艺的开始阶段,利用在模内循环的蒸汽或高温热水来加热模腔表面,使其温度达到高于被加工树脂的玻璃化转变温度10~30℃的水平。一旦模腔表面达到这一温度值,系统便向注塑机发出信号,以将塑料注射到模腔中。当模腔被填满(注射阶段完成)后,冷水开始在模具中循环流动,以快速带走热量,从而使注塑部件在脱模前完全冷却。利用一个阀站,即可方便地实现从蒸汽或高温热水到冷水的切换,反之亦然。当部件冷却后,模具打开,部件被顶出,然后重复上述过程。 工艺优化:模具的设计和构造

常用塑料注塑成型缺陷及解决方案设计

第一章注塑成型缺陷及解决方法 第一节欠注 一.名词解释 熔料进入型腔后没有充填完全,导致产品缺料叫做欠注或短射。如图所示。 二. 故障分析及排除方法: 1.设备选型不当。在选用注塑设备时,注塑机的最大注射量必须大于塑件重量。在验核时,注射总量(包括塑件、浇道及飞边)不能超出注射机塑化量的85%。 2. 供料不足,加料口底部可能有“架桥”现象。可适当增加射料杆注射行程,增加供料量。 3. 原料流动性能太差。应设法改善模具浇注系统的滞流缺陷,如合理设置浇道位置、扩大浇口、流道和注料口尺寸以及采用较大的喷嘴等。同时,可在原料配方中增加适量助剂,改善树脂的流动性能。 4. 润滑剂超量。应减少润滑剂用量及调整料筒与射料杆间隙,修复设备。 5.冷料杂质阻塞流道。应将喷嘴拆卸清理或扩大模具冷料穴和流道的截面。 6. 浇注系统设计不合理。设计浇注系统时,要注意浇口平衡,各型腔塑件的重量要与浇口大小成正比,是各型腔能同时充满,浇口位置要选择在厚壁部位,也可采用分流道平衡布置的设计方案。若浇口或流道小、薄、长,熔料的压力在流动过程中沿程损失太大,流动受阻,容易产生填充不良。对此应扩大流道截面和浇口面积,必要时可采用多点进料的方法。 图5-1 制品缺料示意图

7. 模具排气不良。应检查有无冷料穴,或其位置是否正确,对于型腔较深的模具,应在欠注部位增设排气沟槽或排气孔,在合理面上,可开设0.02-0.04mm,宽度为5-10mm的排气槽,排气孔应设置在型腔的最终充填处。使用水分及易挥发物含量超标的原料时也会产生大量气体,导致模具排气不良,此时应对原料进行干燥及清除易挥发物。此外,在模具系统的工艺操作方面,可通过提高模具温度,降低注射速度、减小浇注系统流动阻力,以及减小合模力,加大模具间隙等辅助措施改善排气不良。 8. 模具温度太低。开机前必须将模具预热至工艺要求的温度。刚开机时,应适当节制模具冷却剂的通过量。若模具温度升不上去,应检查模具冷却系统设计是否合理。 9. 熔料温度太低。在适当的成型围,料温与充模长度接近于正比例关系,低温熔料的流动性能下降,式的充模长度减短。应注意将料筒加热到仪表温度后还需恒温一段时间才能开机。如果为了防止熔料分解不得不采取低温注射时,可适当延长注射循环时间,克服欠注。 10. 喷嘴温度太低。在开模时应使喷嘴与模具分离。减少模温对喷嘴温度的影响,使喷嘴处的温度保持在工艺要求的围。 11. 注射压力或保压不足。注射压力与充模长度接近于正比例关系,注射压力太小,充模长度短,型腔充填不满。对此,可通过减慢射料杆前进速度,适当延长注射时间等办法来提高注射压力。 12. 注射速度太慢。注射速度与充模速度直接相关。如果注射速度太慢,熔料充模缓慢,而低速流动的熔体很容易冷却,使其流动性能进一步下降产生欠注。对此,应适当提高注射速度。 13. 塑件结构设计不合理。当塑件厚度与长度不成比例,形体十分复杂且成 图5-2 流道过细而凝固 图5-3 困气产生背压阻料

注塑成型制品常见缺陷及预防措施-注塑件常见缺陷及原因

龙源期刊网 https://www.wendangku.net/doc/bc15638557.html, 注塑成型制品常见缺陷及预防措施 作者:徐丽瑜 来源:《知识文库》2016年第04期 一、注塑成型加工在制造业中的应用 塑料加工工艺一般包括:注塑成型、挤塑成型、压塑成型、吹塑成型。因为注塑机具有能一次成型外型复杂、尺寸精确或带有金属嵌件的质地密致的塑料制品所以被广泛应用于国防、机电、汽车、交通运输、建材、包装、农业、文教卫生及人们日常生活各个领域。在塑料工业迅速发展的今天,注塑机不论在数量上或品种上都占有重要地位,其生产总数占整个塑料成型设备20%-30%,从而成为目前塑料机械中增长最快,生产数量最多的机种之一。从涵盖的行 业范围及生产总数已经反映了注塑成型工艺在制造业中的地位举足轻重。 我国注塑机行业的技术在近几年进步十分显著,尤其是注塑机的技术水平与国外名牌产品的差距大大缩小,在控制水平、产品内部质量和外观造型等方面均取得明显进步。我国注塑成型一般以热固性塑料为主,而热塑性塑料的注塑加工在近年也取得了很大的进步。但国内由于精密制品比较少,复合制品基本没有,因而很少配置机械手,反映国内整体要求相对比较低,与西方国家差距较大,对制品的质量要求还未提高到相应水平,也反映了我国的生产还处在劳动密集型经济。 二、注塑制品的常见缺陷及预防措施 因为制品的质量直接影响到企业的效益,而如果制品中存在缺陷,企业需要派工人进行返工,把制品粉碎后重新加工或者是直接报废,这会提高企业的生产成本。而产品的质量又直接地影响企业形象与诚信度,要把一切质量问题解决在出厂前。而一般的一线工人只负责观察塑件是否能正常脱模,面对塑件出现大批量的缺陷,他们无法纠正。所以为了提高效益,技术人员必须在发现制品缺陷后,及时地进行预防纠正,以及在生产中不断地优化生产工艺、修整模具,以免带来更大的亏损。下面介绍几种注塑制品常见缺陷及预防措施: 1、变形 (1)模具温度太高,冷却不足:首先考虑延长冷却时间,检查冷却管道循环水是否正常运作。如果延长冷却时间无法解决,就应考虑模具冷却系统的设计是否合理。在塑件横截面积大或在浇注口等温度较高的位置要设计比较集中的冷却管道,而在容易冷却的部位应进行缓慢冷却,尽量使塑件各部位冷却均匀。 (2)分子取向不均衡:塑化后的塑料被注射进入型腔内,在型腔中流动的过程中,分子取向是不可避免的,但如果分子取向存在方向上的差异就容易导致塑件翘曲变形。如果在塑件发生分子取向不均衡后,再通过外力改变其翘曲变形的现状,通常是只有短暂效果,基本是不

注塑成型常见缺陷分析

注塑成型常见缺陷分析 注塑成型常见缺陷分析: 1、打不满 工艺问题:塑化温度太低、喷嘴温度太低、注塑时间太短、注塑速度太慢、模温太低。 模具问题:流道太小、浇口太小、浇口位置不合理、排气不良、型腔内有杂物 原材料问题:流动性太差、混有杂物。 2、飞边 工艺问题:塑化温度过高、注塑时间过长、加料量太多、注塑压力过高、模温太高、模板间有杂物。 模具问题:模具变形、型芯与型腔配合尺寸有误差、模板组合不平行、排气槽过深。 设备问题:模板不平行、模板闭合不紧。 原材料问题:流动性过高。 3、变形 工艺条件方面:料温过高,模温过高,保压时间太短,冷却时间太短强行脱模。 模具方面:浇口位置不当,浇口数量不够,顶出位置不当使受力不均 4、流痕

工艺条件方面:料温太低未完全塑化、注塑速度太低、注塑压力太小、保压压力不够、模温太低、注塑量不足。 模具方面:浇口太小、浇口数量太少、流道浇口粗糙、型面光洁度差。设备方面:温控后系统失灵、油泵压力下降。 原材料方面:含挥发物太多,流动性太差,混入杂料 5、气泡 工艺条件方面:注塑压力低、保压压力不够、保压时间不够、料温过高。 模具方面:排气不良、浇口位置不合理、浇口尺寸太小。 原材料方面:含水分未干燥或干燥时间不够、收缩率过大。 6、缩坑 工艺条件方面:加料量不足、注塑时间过短保压时间过短、料温过高、模温过高、冷却时间太短。 模具方面:流道太细小、浇口太小、排气不良。 设备方面:注塑压力不够、喷嘴堵有异物。 原材料方面:收缩率过大 7、尺寸不稳定 工艺条件方面:注塑压力过低、料筒温度过高、保压时间变动、注塑周期不稳模温太高。 模具方面:浇口尺寸不均、型腔尺寸不准、型芯松动、模温太高或未设水道。 原材料方面:牌号品种有变动、颗粒大小不均、含有挥发性物质。

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

常用塑料注塑成型缺陷及解决方案

. 第一章注塑成型缺陷及解决方法 第一节欠注 一.名词解释 。如图所示。熔料进入型腔后没有充填完全,导致产品缺料叫做欠注或短射 图5-1 制品缺料示意图 二. 故障分析及排除方法: 1.设备选型不当。在选用注塑设备时,注塑机的最大注射量必须大于塑件重量。在验核时,注射总量(包括塑件、浇道及飞边)不能超出注射机塑化量的85%。 2. 供料不足,加料口底部可能有“架桥”现象。可适当增加射料杆注射行程,增加供料量。 3. 原料流动性能太差。应设法改善模具浇注系统的滞流缺陷,如合理设置浇道位置、扩大浇口、流道和注料口尺寸以及采用较大的喷嘴等。同时,可在原料配方中增加适量助剂,改善树脂的流动性能。 4. 润滑剂超量。应减少润滑剂用量及调整料筒与射料杆间隙,修复设备。 5.冷料杂质阻塞流道。应将喷嘴拆卸清理或扩大模具冷料穴和流道的截面。 6. 浇注系统设计不合理。设计浇注系统时,要注意浇口平衡,各型腔内塑件的重量要与浇口大小成正比,是各型腔能同时充满,浇口位置要选择在厚壁部位,也可采用分流道平衡布置的设计方案。若浇口或流道小、薄、长,熔料的压力在流动过程中沿程损失太大,流动受阻,容易产生填充不良。对此应扩大流道截面和浇口面积,必要时可采用多点进料的方法。 . .

流道过细而凝固图5-2 模具排气不良。应检查有无冷料穴,或其位置是否正确,对于型腔较深7. 在欠注部位增设排气沟槽或排气孔,在合理面上,可,的模具应开设0.02-0.04mm,宽度为5-10mm的排气槽,排气孔应设置在型腔的最终充填处。使用水分及易挥发物含量超标的原料时也会产生大量气体,导致模具排气不良,此时应对原料进行干燥及清除易挥发物。此外,在模具系统的工艺操作方面,可通过提高模具温度,降低注射速度、减小浇注系统流动阻力,以及减小合模力,加大模具间隙等 辅助措施改善排气不良。 图5-3 困气产生背压阻料 8. 模具温度太低。开机前必须将模具预热至工艺要求的温度。刚开机时,应适当节制模具内冷却剂的通过量。若模具温度升不上去,应检查模具冷却系统设计是否合理。 9. 熔料温度太低。在适当的成型范围内,料温与充模长度接近于正比例关系,低温熔料的流动性能下降,式的充模长度减短。应注意将料筒加热到仪表温度后还需恒温一段时间才能开机。如果为了防止熔料分解不得不采取低温注射时,可适当延长注射循环时间,克服欠注。 10. 喷嘴温度太低。在开模时应使喷嘴与模具分离。减少模温对喷嘴温度的影响,使喷嘴处的温度保持在工艺要求的范围内。 11. 注射压力或保压不足。注射压力与充模长度接近于正比例关系,注射压力太小,充模长度短,型腔充填不满。对此,可通过减慢射料杆前进速度,适当延长注射时间等办法来提高注射压力。 12. 注射速度太慢。注射速度与充模速度直接相关。如果注射速度太慢,熔料充模缓慢,而低速流动的熔体很容易冷却,使其流动性能进一步下降产生欠注。对此,应适当提高注射速度。 13. 塑件结构设计不合理。当塑件厚度与长度不成比例,形体十分复杂且成. . 使型腔很难充满。熔体很容易在塑件薄壁部位的入口处流动受阻,型面积很大时,在应注意塑件厚度与熔料极限充模长度有关。因此,在设计塑件的形体结构时,。通常,塑件厚度超3-6mm1-3mm,大型塑件为注射成型时,塑件的厚度应采用 0.5mm都对注塑成型不利,设计时应避免采用这样的厚度。过8mm或小于

注塑成型工艺参数

注塑成型工艺参数 第一节注塑工艺参数 在制品和模具确定之后,注塑工艺参数的选择和调整对制品质量将产生直接影响。注塑工艺具体是指温度、压力、速度、时间等有关参数,实际成型中应综合考虑,在能保证制品质量(如外观、尺寸精度、机械强度等)和成型作业效率(如成型周期)的基础上来决定。尽管不同的注塑机调节方式各有所异,但是对工艺参数的设定和调整项目基本是相同的。注塑工艺参数与注塑机的设计参数是有关联的,但是在这里主要是从注塑工艺角度理解这些参数。 一、注塑参数 1.注射量:注射量是指注塑机螺杆(或柱塞)在注射时,向模具 内所注射的物料熔体量(g )。因此,注射量是由聚合物的物理性能及螺杆中料筒中的推进容积来确定的。 由此可见,选择注射量时,一方面必须充分地满足制品及其浇注系统的总用料量,另一方面必须小于注塑机的理论注射容积。如果选取用注射量过小则会因注射量不足而使制品产生各种缺陷,但过大又造成能源的浪费。 所以注塑料机不可用来加工小于注射量 10% 或超过注射量 70% 的制品,据统计世界上制品生产厂家大约有 1/3 的能源浪费在不合理地机型选择上。 2.计量行程(预塑行程):每次注射程序终止后,螺杆是处在料 筒的最前位置,当预塑程序到达时,螺杆开始旋转,物料被输送到螺杆头部,螺杆在物料的反压力作用下后退,直至碰到限位开关为止。这个过程称计量过程或预塑过程,螺杆后退的距离称计量容积,也正是注射容积,其计量行程也正是注射行程。因此制品所需的注射量是用计量行程工来调整的。 由此可知,注射量的大小与计量行程的精度有关,如果计量行程调节

太小会造成注射量不足,如果计量行程调整太大,使料筒前部每次注射后的余料太多,使熔体温度不均或过热分解,计量行程的重复精度的高低会影响注射量的波动.料温沿计量行程的分布是不均匀的,增加计量行程会加剧料温的不均匀性.螺杆转速、预塑背压和料筒的温度都将对熔体温度和温差有显着地影响. 在注射前处于螺杆头部计量室外中的熔体温度最高,虽然也有温差,但在这时较小,在注射后,螺杆槽中熔体的温度最低,停留一段时间之后熔体温度上升.这种温差可以采用调整螺杆转速轴向背压或使用新型螺杆等办法使其得到改善。 3.余料量:螺杆注射完了之后,并不希望把螺杆头部的熔料全部注射出去,还希望留存一些,形成一个余料量。这样,一方面可防止螺杆头部和喷射接触发生机械破损事故,另一方面,可通过此余料垫来控制注射量的重复精度达到稳定注塑制品质量的目的。如果余料垫过小,达不到缓冲目的,如果过大会使余料累积过多。近代注射塑机是通过螺杆注射终止时的极限位置来控制冲量的:如果位移传感器所检测的实际值超出缓冲垫的设定范围(一般 2-10mm )。 4.防延量:防延量是指螺杆计量(预塑)到位后,又直线地倒退一段距离,使计量室中熔体的比体积增加,内压下降,防止熔体从计量室外向外流出(通过喷嘴或间隙)。这个后退动作称防流延动作,防流延量可视聚合物沾度、相对密度和制品的情况进行设定,过大的防延量会使计量室中的熔料夹杂汽泡,严重影响制品质量。 5.螺杆转速:螺杆转速影响注塑物料在螺杆中输送;影响塑化能力、塑化质量和成型周期等因素的重要参数。随着转速提高塑化能力会增加。提高螺杆转速,流量加大,熔融温度的均匀性却有所改善。熔体温度和螺杆转速之间随着螺杆转速的提高,熔体温度也有所提高。 螺杆转速根据注塑条件用注塑机的额定螺杆转速,以额定量

塑胶注塑产品常见缺陷有哪些

塑胶注塑产品常见缺陷有哪些 塑胶注塑产品常见缺陷有哪些, 制品质量包括内部质量和表观质量,内部质量包括内应力,冲击强度,制品收缩,熔合强度等,我们下面讲述的是制品常见的各种表观缺陷: 一.凹陷,缩孔,气孔 1.产生原因:原料吸湿性太大,干燥不好,制品壁厚不均,模腔压力不足或没有把存于腔内的空气排除而形成阻隔使熔体不能与模具表面全部按触,或因物料冷却速率降低其使制品表面出现严重凹陷,而缩孔位置多发生 在筋表面和远离浇口位置. 2.防止办法:在制品设计方面要防止由于筋造成壁厚不均,在选择材料方面选取收缩率小的材料,模具方面在壁厚地方开设支流道,工艺方面要降低模温,熔体温度.增加注射压力、保压时间和注射量,对容易发生缩孔的地方加强冷却,增加浇口截面尺寸. 二.无光泽,冷白,搓伤及皱纹 1.产生原因:这类缺陷的产生大都是因为模具温度过低,聚合物熔体温度过高, 冷却过快所致.当熔体还在充模时,在型腔壁上就形成了很硬的壳.壳层受到各种力的作用使之泛白变浑,严重者壳层可能被撕破和皱纹.产生此类现象的另一个原因是熔体在模内发生了不规则的脉动流动,如在浇口尺寸很小,注射速度又很大时,聚合物熔体细流射入模腔,细射流经过一段时间表面己冷却再与后续熔体熔合时,就会出现此类缺陷. 2.防止办法:提高模具温度,加大流道,浇口. 三.银丝与剥层 1.产生原因:在充满时,波前峰析出挥发性气体,这些气体往往是物料受热分解 出来的,气体分布在制品表面,就留下银纹,当物料含湿量过大时,加热会产生水蒸气,

塑化时由于螺杆工作不利,物料所挟带的空气不能排出也会产生银纹,在某些情况下,大气泡被拉长成扁气泡覆盖在制品表面上,使制品表面剥层.有时从料筒至喷嘴的温度梯度太大使剪切过大也会产生银丝. 2.防止办法:选择好干燥设备和干燥工艺,将含湿量降到最低值.工艺方面降低 熔体温度,提高模温,稳定喷嘴温度,加大背压,模具方面加开排气槽. 四.烧焦,暗纹及暗斑 1.产生原因:暗纹或暗斑出现多是因物料过热分解而引起,有的是因为塑化不均匀,从外观上看呈暗斑痕,有的是因为异物所致,冲模时模内空气压缩,温度升高产生烧焦,多发生在熔合缝处. 2.防止办法:物料干燥充分,降低熔体温度,提高背压,模具方面改善排气. 五.翘曲,变形 1.产生原因:聚合物的组织相应力,机械应力,热胀冷缩应力(温度应力)残余在 制品内部所致,一般结晶型比非结晶型大. 2.防止办法:减小取向,增大浇口尺寸,适当降低熔体和模具温度,加大注射速率,适当延长注射保压时间,减小浇口处压力,制品方面结构合理,改善脱模斜度表面粗糙度.顶出位置,面积等. 六.龟裂 1.产生原因:分子链在应力作用下沿力的方向上排列的裂纹,当脱模顶出力不平衡时,脱模造成真空吸力引起龟裂 2.防止办法:采用消除内应力的工艺办法,如提高熔体温度和模具温度,降低注 射力,采用退火处理等七.熔合缝 1.产生原因:两股以上的熔体合拢时,波前锋受到异物阻隔气体杂质所形成. 2.防止办法:适当提高模具温度和熔体温度,提高注射力和注射速度,模具上加 开排气,增设冷料井,调整片等. 八.溢边

注塑成型工艺流程图

注塑成型工艺流程图 一、注塑成型的基本原理: 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔内,经过冷却定型,开模后顶出得到所需的塑体产品。 二、注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件 三、塑胶模具 大部份使用二板模、三板模,也有部份带滑块的行位模。 基本结构: 1.公模(下模)公模固定板、公模辅助板、顶针板、公模板。2.母模(上模) 母模板、母模固定板、进胶圈、定位圈。3.衡温系统冷却.稳(衡)定模具温度。 四、注塑机 主要由塑化、注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 1、依注射方式可分为: 1.卧式注塑机 2.立式注塑机 3.角式注塑机 4.多色注塑机 2、依锁模方式可分为: 1.直压式注塑机 2.曲轴式注塑机 3.直压、曲轴复合式 3、依加料方式可分为:

1.柱塞式注塑机 2.单程螺杆注塑机 3.往复式螺杆注塑机4、注塑机四大系统: 1.射出系统 a.多段化、搅拌性及耐腐蚀性。 b.射速、射出、保压、背压、螺杆转速分段控制。 c.搅拌性、寿命长的螺杆装置。 d.料管互换性,自动清洗。 e.油泵之平衡、稳定性。 2.锁模系统 a.高速度、高钢性。 b.自动调模、换模装置。 c.自动润滑系统。 d.平衡、稳定性。 3.油压系统 a.全电子式回馈控制。 b.动作平顺、高稳定性、封闭性。 c.快速、节能性。 d.液压油冷却,自滤系统。 4.电控系统 a.多段化、具记忆、扩充性之微电脑控制。 b.闭环式电路、回路。 c.SSR(比例、积分、微分)温度控制。

如何调注塑机工艺参数

如何调注塑机工艺参数(如何设锁模,射胶的速度,压力,位置等等),为什么? 一般来说,注塑机工艺参数是由产品模具而定 模具越大,其锁模力应随之加大,这是为保证其注塑时形成一个相对密闭的空间,不至于生产出的产品带有过多的飞边(毛刺),从而影响产品外观和使用; 至于注射的速度,压力,包括位置,都和你的产品结构以及产品所使用的材质和使用温度有关系,情况比较复杂,在你没给出一定的产品及产品材质参数前,无法详细回复。 建议参考下《机械设计手册》第五版第四卷中的《塑料制品与塑料注射成型模具设计》第二节《塑料注射成型工艺》。 追问 谢谢你的回答。请问如:调锁模力(等)时首先要输入最基础的那些数值,最近车间突然断电,重启后以前设置的参数没了,如何重输参数(依据是什么)? 回答 这个问题,我无法帮你完全找回你原来的参数,只能一点一点的调试回来, 不过建议以后类似此种重要数据一定要记录在案,而且必须备份。 这是我从事过的单位必须做的工作。 从我的经验上来说,比较重要的分几点要特别注意的: 1.锁模力,理论上来说,锁模力就是为了克服液态树脂原料在注射时从模具内溢出的作用力,所以锁模力的计算方法为:首先得到注射油缸的总压力,再由此总压力得到注射料筒内部的压强,用此压强乘以模具内部的有效面积,得出的就是近似的锁模力,一般情况下锁模力要比计算得出的数值要大一点, 但在实际操作中,很难做到这么精确计算,因为,实际调试能更快更准确的得到你需要的数据; 2.注射压力,我所掌握的经验中,就没有用过计算公式来得到数据,都是由低往高地调试,一般情况下,开模5次可以基本调定数据,然后再根据产品的具体要求进行微调,以达到最好的效果。 3.注射的速度,通常来说,此数据都是根据产品的厚薄和其形状的复杂性直接挂钩的,在产品比较薄,形状比较复杂的情况下,速度一定要快,否则在树脂没充满型腔前就已经固化; 4.注射位置和注射速度可以说是一样的,当注射速度调到一定值的时候,还无法完成产品的基本成型时,就要靠调整注射位置来进行补充操作, 5,冷却水和冷却时间的控制,这个问题不太好用语言来说明,要具体情况具体分析了,有问题再和我交流吧 以上就是我个人认为再注塑工艺中相对比较重要的几点,总之有一点是非常关键的,就是所有的数据都要由低到高地进行调试,否则很可能对模具造成永久性的损毁,后果不堪设想。。

注塑成型工艺流程及工艺参数

注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,此时逐渐固化的熔体作为传递压力的介质。模腔中的压力借助塑料传递至模壁表面,有撑开模具的趋势,因此需要适当的锁模力进行锁模。涨模力在正常情形下会微微将模具撑开,对于模具的排气具有帮助作用;但若涨模力过大,易造成成型品毛边、溢料,甚至撑开模具。因此在选择注塑机时,应选择具有足够大锁模力的注塑机,以防止涨模现象并能有效进行保压。 3.冷却阶段 在注塑成型模具中,冷却系统的设计非常重要。这是因为成型塑料制品只有冷却固化到一定刚性,脱模后才能避免塑料制品因受到外力而产生变形。由于冷却时间占整个成型周期约70%~80%,因此设计良好的冷却系统可以大幅缩短成型时间,提高注塑生产率,降低成本。设计不当的冷却系统会使成型时间拉长,增加成本;冷却不均匀更会进一步造成塑料制品的翘曲变形。 根据实验,由熔体进入模具的热量大体分两部分散发,一部分有5%经辐射、对流传递到大气中,其余95%从熔体传导到模具。塑料制品在模具中由于冷却水管的作用,热量由模腔中的塑料通过热传导经模架传至冷却水管,再通过热对流被冷却液带走。少数未被冷却水带走的热量则继续在模具中传导,至接触外

(完整版)汽车研发注塑件工艺流程及参数解析

汽车研发注塑件工艺流程及参数解析! 塑料化是当今国际汽车制造业的一大发展趋势,尤其内外饰上大部分件都是塑料件。内饰塑料件大致有仪表盘配件、座椅配件、地板配件、顶板配件、方向盘配件、车门内饰件、后视镜以及各种卡扣和固定件;外观塑料件有前后车灯、进气格栅、挡泥板、倒车镜。今天和大家一起聊聊注塑件的工艺流程及相关重要参数。 一 定义 注塑成型工艺是指将熔融的原料通过填充、保压、冷却、脱模等操作制作一定形状的半成品件的工艺过程。

二 工艺流程 注塑工艺流程图如下: 1填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高。但是在实际生产中,成型时间(或注塑速度)要受到很多条件的制约。填充又可分为高速填充和低速填充。 1)高速填充 高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行

为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 2)低速填充 热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 2保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。

相关文档