文档库 最新最全的文档下载
当前位置:文档库 › 承受内压的薄壁压力容器圆筒计算公式

承受内压的薄壁压力容器圆筒计算公式

承受内压的薄壁压力容器圆筒计算公式
承受内压的薄壁压力容器圆筒计算公式

薄壁圆筒强度计算公式Word版

压力容器相关知识 一、压力容器的概念 同时满足以下三个条件的为压力容器,否则为常压容器。 1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力; 2、容积V ≥25L ,且P ×V ≥1960×104L Pa; 3、介质:为气体,液化气体或最高工作温度高于标准沸点的液体。 二、强度计算公式 1、受内压的薄壁圆筒 当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式, δ理= P PD -σ][2 考虑实际因素, δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜; D — 圆筒内径,㎜; P — 设计压力,㎜; [σ] — 材料的许用拉应力,值为σs /n ,MPa ; φ— 焊缝系数,0.6~1.0; C — 壁厚附加量,㎜。 2、受内压P 的厚壁圆筒 ①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。 径向应力σr =--1(222a b Pa 22 r b ) 环向应力σθ=+-1(222a b Pa 22 r b ) 轴向应力σz =2 22 a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜; ②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为: σ1=σθ=P K K 1 122-+

σ2=σz = P K 1 12- σ3=σr =-P 第一强度理论推导处如下设计公式 σ1=P K K 1 122-+≤[σ] 由第三强度理论推导出如下设计公式 σ1-σ3=P K K 1 122-+≤[σ] 由第四强度理论推导出如下设计公式: P K K 1 32 -≤[σ] 式中,K =a/b 3、受外压P 的厚壁圆筒 径向应力σr =---1(222a b Pb 22 r a ) 环向应力σθ=-+-1(222a b Pb 22 r a ) 4、一般形状回转壳体的应力计算 经向应力 σz =s P 22ρ 环向应力 s P t z =+21ρσρσ 式中,P —内压力,MPa ; ρ1—所求应力点回转体曲面的第一主曲率半径,㎜;(纬) ρ2—所求应力点回转体曲面的第一主曲率半径,㎜;(经) s —壳体壁厚,㎜。 5、封头设计 ①受内压的标准椭圆形封头,顶点应力最大,σz =σt =P ·a/s(椭圆长轴),由第一强度条件,再考虑到焊缝削弱及材料腐蚀等影响,则标准椭圆形封头的壁厚计算公式为: C P PD s t +φ-5.0][2σ= 式中,s —封头壁厚,㎜; P —设计压力,MPa; D —封头内径,㎜;

薄壁圆筒外压失稳实验

薄壁圆筒外压失稳实验 一、实验目的 1.观察外压容器的失稳破坏现象及破坏后的形态。 2.验证外压筒体试件失稳时临界压力的理论计算式。 二、实验装置基本配置 表一、实验装置基本配置表:

图一、薄壁圆筒外压失稳实验装置 三、实验原理 薄壁容器在受外压作用时,往往在器壁内的应力还未达到材料的屈服极限,而在外压达到某一数值时,壳体会突然推动原来形状而出现褶皱,这种现象称为失稳,失稳时的压力称为临界压力,以P cr [MPa]表示。它与材料的弹性性能(弹性模数E 和泊桑比μ)、几何尺寸(简体直径D 、壁厚S O 和筒体计算长度L)有关。 钢制薄壁容器的临界压力与波数的计算公式如下: 长圆筒Bress 公式: 2 02)(12D S E P cr μ-= (1) 短圆筒B.M.Pamm 公式: ) ()//()/(06.7/59.24200 2 正整数D L S D n s D LD ES P cr == (2) 临界尺寸: 0/17.1L S D D cr = (3) 当L >L cr 时,为长圆筒; 当L <L cr 时,为短圆筒。

式中: P—临界压力,MPa; cr D—圆筒直径,mm; L—圆筒计算长度,mm; S0—圆筒壁厚,mm; E—材料弹性模数,MPa; μ—材料泊桑比; n—失稳时波数; Lcr—临界长度,mm。 四、实验操作步骤 1.开启计算机,启动计算机、打开实验软件。 2.检查压力传感器和温度计是否正常。 3.测量试件几何尺寸,检查水箱内水是否充足,适量添加。 4.启动离心泵,向失稳灌内注入适量水(水加至试件放入不易水为宜),安装测试试件。 5.停止离心泵,将压力仪表输出值调至0,启动压缩机。 6.慢慢改变仪表输出值,增加压力,记录压力变化曲线。 7.通过有机玻璃观察试件受压及其变形情况(失稳瞬间有响声)。 8.关闭实验设备,释放压力,取出实验试件分析实验数据。

轴的计算

14.3轴的强度计算 14 .3 .1 按扭转强度计算 轴不是标准零件,需要自己设计计算。在满足强度和保证轴正常工作的条件 下来设计轴。例如用于带式运输机的单级斜齿圆柱齿轮减速器的低速轴。 这种计算方法主要应用于传动轴,也可以初步估算轴的最小直径,在此基础 上进行轴的结构设计。 按扭转强度计算公式 式中,—许用扭转切应力,; —轴传递的转矩,也是轴承受的扭矩,; —轴的抗扭截面系数,; —轴传递的功率, KW; d—轴的直径, mm ; n—轴的转速, r/min 。 C—为由轴的材料和受载情况所决定的常数(见下表)。 -轴传递的转矩,也是轴承受的扭矩,单位: N.mm 按公式计算轴的直径,当轴截面上有一个键槽时,轴径应增大5%;有两个键 槽时,应增大10%。 轴常用材料的值和C值 注:当作用在轴上的弯矩比转矩小或只受转矩时,C取较小值,否则C取较 大值。 14 . 3 . 2 轴的刚度计算概念 按弯扭合成强度计算

1.作轴的受力简图 轴上零件所受的作用力,其作用点在轮毂宽度的中间点。而轴承处支承反力 作用点的位置,要根据轴承的类型和布置方式确定。 如果轴上的载荷不在同一平面内,需求出两个互相垂直平面的支承反力。 即 水平面和垂直面支承反力。 2.作弯矩图 根据受力简图分别作出水平面弯矩图和垂直面的弯矩,求出合成 弯 矩并作合成弯矩图。 3.作轴的扭矩图 4.作当量弯矩图 根据已作出合成弯矩图和扭矩图,按第三强度理论计算各剖面上的当量弯矩 ,并作当量弯矩图。 式中,—根据扭矩性质而定的校正系数,对于不变的扭矩,; 对 于脉动循环变化的扭矩,;对于对称循环变化的扭矩,。 5.轴的强度计算 求出危险截面的当量弯矩后,按强度条件计算: —轴的危险截面的抗弯截面系数,。 表 12.3 轴材料的许用弯曲应力:

实验四 薄壁圆筒在弯扭组合变形下主应力测定

实验四 薄壁圆筒在弯扭组合变形下主应力测定 实验内容: 构件在弯扭组合作用下,根据强度理论,其强度条件是[]r σσ≤。计算当量应力r σ,首先要确定主应力,而主应力的方向是未知的,所以不能直接测量主应力。通过测定三个不同方向的应变,计算主应变,最后计算出主应力的大小和方向。本实验测定应变的三个方向分别是-45°、0°和45°。 实验目的与要求: 1、用电法测定平面应力状态下一点的主应力的大小和方向 2、进一步熟悉电阻应变仪的使用,学会1/4桥法测应变的实验方法 设计思路: 为了测量圆管的应力大小和方向,在圆管某一截面的管顶B 点、管底D 点各粘贴一个45°应变花,测得圆管顶B 点的-45°、0°和45°三个方向的线应变45ε-o 、 0εo 、45εo 。 应变花的粘贴示意图 实验装置示意图 关键技术分析: 由材料力学公式: 得 从以上三式解得 主应变

根据广义胡克定律1、实验得主应力 大小______ ___ _________ 12 2 4545 450450 2 ()2 ()() 2(1)2(1) E E σεε εεεε σμμ - - + ? =±-+- ? -+ ? o o o o o o 实 实 方向 _______________ 0454504545 2()/(2) tgαεεεεε -- =+-- o o o o o 实 2、理论计算主应力 3、误差 实验过程 1.测量试件尺寸、力臂长度和测点距力臂的距离,确定试件有关参数。附表1 2.拟定加载方案。先选取适当的初载荷P0(一般取P o=lO%P max左右)。估算P max(该实验载荷范围P max<400N),分4~6级加载。 3.根据加载方案,调整好实验加载装置。 4.加载。均匀缓慢加载至初载荷P o,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值,直到最终载荷。实验至少重复两次。 5.作完试验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 6.实验装置中,圆筒的管壁很薄,为避免损坏装置,注意切勿超载,不能用力扳动圆筒的自由端和力臂。

内压薄壁壳体强度计算

内压薄壁壳体强度计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

第三章、 3—1内压薄壁壳体强度计 算 目的要求:使学生掌握内压圆筒内压球形壳体的强度计算,以及各类厚度的相互关系。 重点难点:掌握由第一强度理论推出的内压圆筒,内压球形壳体的强度计算公式。 第三章 内压薄壁容皿 本章的任务就是在回转薄壁壳体应力分析的基础上,推导出内压薄壁容皿强度计公式。本章的压力容皿设计计算公式,各种参数制造要求以及检验标准均与GB150-1998《钢制压力容皿》保持一致。 第一节 压内薄壁壳体强度计算 一、 内压圆筒 为了保证圆筒受压后不破裂,[根据第一强度理论]应使筒体上最大应力,即环向应力2σ小于等于材料在设计温度下的许用应力[]t σ 用公式表达:2[]2t P D σσδ = ≤ ,其中P-设计压力。 1)中径0()2i D D + 此外还应考虑到,筒体在焊接的过程中,对焊金属组织的影响以及焊接缺陷(夹渣、气孔、未焊透等)影响缝焊的强度(使整本强度降低),所以将钢板的许用应力乘以一个小于1的焊接接头系数,以弥补焊接可能出现的强度削弱,故 2[]2t P D σσδ= ≤:[]2t P D σ?δ ≤ 此外,工艺计算时通常以i D 做为基本尺寸,故将i D D δ=+代入上式: 则 () []2t i P D δσ?δ +≤ 可解出δ,同时根据GB150-1998规定,确定厚度时的压力用计算压力c p 代替。 最终内压薄壁圆筒体的计算厚度δ: 2[]C i t C P D P δσ?= - 适用:0.4[]t C P σ≤ 考虑到介质时皿壁的腐蚀,确定钢板厚度时,再加上腐蚀裕量: 2C d δδ+=——圆筒的设计厚度

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

实验二、外压薄壁圆筒形容器失稳实验

实验二、外压薄壁圆筒形容器失稳实验 一、实验目的 1. 观察薄壁圆筒形容器在外压作用下丧失稳定性后的形态。 2. 测定圆筒形容器失去稳定性时的临界压力并与理论值相比较。 二、基本原理 圆筒形容器在外压作用下,常因刚度不足使容器失去原有形状,即被压扁或折曲成波形,这就是容器的失稳现象,容器失去稳定性时的外压力,成为容器的临界压力,用cr p 表示。圆筒形容器失去稳定性后,其横截面被折成波形,波数n 可能是1,2,3,4,……等任意整数,如图一所示。 容器承受临界值的外压力而失去稳定性,决非是由于容器壳体本身不圆的缘故,即是绝对圆的壳体也会失去稳定性。当然如壳体不圆(具有椭圆度)容器更容易失稳,即它的临界压力值会下降。 根据外压容器筒体的长短,可分为长圆筒,短圆筒和刚性圆筒三种,刚性圆筒一般具有足够的刚度,可不必考虑稳定性问题。但长圆筒,短圆筒必须进行稳定性计算,它们的临界压力cr p 值大小主要与厚壁(t ),外直径(0D ),长度(L )有关。亦受材料弹性模数(E ),泊桑比(μ)影响。所谓长圆筒,短圆筒之分,并不是指它们的绝对长度,而是与直径壁厚有关的相对长度。一般长圆筒、短圆筒之间的划分用临界长度cr L 表示。如容器长度L >cr L 为长圆筒,反之为短圆筒。临界长度cr L 由下式确定: t D D L cr 0017.1= 长圆筒:长圆筒失稳时的波数n =2,临界压力cr p 仅与0D t 有关,而与0D L 无关。cr p 值可由下式计算: 3 2)(12D t E p cr μ-= 短圆壁:短圆筒失去稳定性时,波数n >2,如为3,4,5……,其波数n 可近似为: 图一 圆筒形容器失去稳定后的形状

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

(整理)基于ABAQUS复合材料薄壁圆筒的屈曲分析.

基于ABAQUS复合材料薄壁圆筒的屈曲分析 由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。因此,为了保证结构的安全,需要进行屈曲分析。 对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。ABAQUS 就是其中的杰出代表。 1.屈曲有限元理论 有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。 1.1线性屈曲 假设结构受到的外载荷模式为。,幅值大小为,结构内力为Q,则静力平衡方程应为 进一步考察结构在载荷作用下的平衡方程,得到 由于结构达到保持稳定的临界载荷时有,代入上式得 该方程对应的特征值问题为 如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为 该方程即为求解线性屈曲的特征值方程。为屈曲失稳载荷因子,为结构失稳形态的特征向量。

1.2非线性屈曲 非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。 2.ABAQUS的线性屈曲分析 ABAQUS中提供两种分析方法来确定结构的临界荷载和结构发生屈曲响应的特征形状:线性屈曲分析(特征值屈曲分析)、非线性屈曲分析。 线性屈曲分析用于预测一个理想的弹性结构的理论屈曲强度。它是预期的线性屈曲荷载的上限,可以作为非线性屈曲分析的给定荷载,在渐进加载达到此荷载前,非线性求解必然发散;它还可以作为施加初始缺陷或扰动荷载的依据。所以预先进行特征值屈曲分析有助于非线性屈曲分析,进行特征值屈曲分析是必要的。 3.算例 3.1问题概述 图3-1 实例模型 如图所示两端开口的复合材料薄壁圆筒,底端固支,顶端作用有均匀分布的轴压边载。半径R=152mm,高度300mm,厚度t=0.804mm,对称铺层[±45,0]s,

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

薄壁圆筒在载荷作用下的应力和应变

弹塑性力学及有限元法 题目:试分析图1薄壁圆筒在载荷作用下的应力和应变(载荷个数、大小、薄壁圆的参数自己选择)。 1.三维建模 3D 模型是对部件进行分析和改进的结果,模型建立的越精确,有限元分析中的网格划分也就越细致,那么得到的结果相应的也就更加的准确,考虑到薄壁圆筒的结构性,将其适当的简化,用SOLIDWORKS 建模(如图2)。 图2 薄壁圆筒三维模型 图1 薄壁圆筒受力分析 其中:外圆柱直径为100mm,高度为20mm,中间圆柱直径为70mm,高度为90mm,孔的直径为60mm,为通孔.

考虑到ANSYS 和SOLIDWORKS 有很多数据接口,例如IGES,PARA,以及SAT 等等,为了保证零件导入的完整性,选择另存为PARASOLID (*.x_t )文件,在将其导入ANSYS 中的workbench 协同仿真环境中。 2.有限元分析 2.1定义单元的属性 1)定义材料属性:选择菜单Toolbox :Static Structural(ANSYS)>Project Schematic>Engineer Data>Edit>View>Outline 在材料属性窗口Material 选择Structural Steel ,View>Properties 在弹出的对话框中设置Young's Modulus (弹性模量)为2E11,Poisson's Ratio (泊松比)为0.3,density (密度)为7850,单击OK 即可。 2)导入模型:选择菜单Static Structural(ANSYS):Geometry>Import Geometry>Browse 将之前存入的PARASOLID (*.x_t )文件导入环境中,并且选择单位为Millimeter(毫米)。 3)定义单元的类型:ANSYS 提供了190 多种不同的单元类型, 从普通的线单元、面单元、实体单元到特殊的接触单元、间隙单元和表面效应单元等。选择合适的单元类型是进行各类有限元分析的基础, 在满足计算精度的同时可以有效的简化单元划分的难度。实体单元类型也比较多, 实体单元也是实际工程中使用最多的单元类型。常用的实体单元类型有solid45, solid92, solid185, solid187 等几种。 4)在此, 选择单元类型为Solid185, 因为Solid185 单元是3 维8 节点实体, 该单元用来模拟3 维实体, 由8 个节点定义, 每个节点3 个自由度: X ,Y , Z 方向. 具有塑性, 超弹性应力, 超大许用应变, 大变形, 大应变能力(如图3)。选择菜单Static Structural(ANSYS):Model>Geometry>Solid>Inset>Command 在右方出现的命令栏中输入et,matid, 185,回车确定。即选择单元类型为三维实体单元 Solid 185. 图3 SOLID185几何图形

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化

安徽工程大学,薄壁圆筒有限元分析

题目:试分析图1薄壁圆筒在载荷作用下的应力和应变(载荷个数、大小、薄壁圆的参数自己选择)。 1.三维建模 3D 模型是对部件进行分析和改进的结果,模型建立的越精确,有限元分析中的网格划分也就越细致,那么得到的结果相应的也就更加的准确,考虑到薄壁圆筒的结构性,将其适当的简化,用SOLIDWORKS 建模(如图2)。 图2 薄壁圆筒三维模型 考虑到ANSYS 和SOLIDWORKS 有很多数据接口,例如IGES,PARA,以及SAT 等等,为了保证零件导入的完整性,选择另存为PARASOLID (*.x_t )文件,在将其导入ANSYS 中的workbench 协同仿真环境中。 2.有限元分析

2.1定义单元的属性 1)定义材料属性:选择菜单Toolbox:Static Structural(ANSYS)>Project Schematic>Engineer Data>Edit>View>Outline在材料属性窗口Material选择Structural Steel,View>Properties 在弹出的对话框中设置Young's Modulus(弹性模量)为2E11,Poisson's Ratio(泊松比)为0.3,density(密度)为7850,单击OK即可。 2)导入模型:选择菜单Static Structural(ANSYS):Geometry>Import Geometry>Browse 将之前存入的PARASOLID(*.x_t)文件导入环境中,并且选择单位为Millimeter(毫米)。 3)定义单元的类型:ANSYS 提供了190 多种不同的单元类型, 从普通的线单元、面单元、实体单元到特殊的接触单元、间隙单元和表面效应单元等。选择合适的单元类型是进行各类有限元分析的基础, 在满足计算精度的同时可以有效的简化单元划分的难度。实体单元类型也比较多, 实体单元也是实际工程中使用最多的单元类型。常用的实体单元类型有solid45, solid92, solid185, solid187 等几种。 4)在此, 选择单元类型为Solid185, 因为Solid185 单元是3 维8 节点实体, 该单元用来模拟3 维实体, 由8 个节点定义, 每个节点3 个自由度: X ,Y, Z 方向. 具有塑性, 超弹性应力, 超大许用应变, 大变形, 大应变能力(如图3)。选择菜单Static Structural(ANSYS):Model>Geometry>Solid>Inset>Command 在右方出现的命令栏中输入et,matid, 185,回车确定。即选择单元类型为三维实体单 元 Solid 185. 2.2 网格划分 有限元网格数目过少,容易产生畸变,并影响计算精度;而数目过大,不仅对提高精度作用不大,反而大大增加了计算工作量. 图3 SOLID185几何图形

外压薄壁圆筒的计算

doi:10.16576/https://www.wendangku.net/doc/bf14409628.html,ki.1007-4414.2017.04.040 外压薄壁圆筒的计算? 罗永智,张传齐,罗海荣,陈丽萍 (兰州兰石重型装备股份有限公司,甘肃兰州一730314) 摘一要:外压圆筒的正确计算及圆筒加强圈的合理设计,是保证外压圆筒设计安全二经济的关键三介绍外压薄壁圆筒的稳定性问题,对外压薄壁圆筒设计中的解析公式法和图算法进行了分析概括,并对圆筒加强圈的设计进行介绍三关键词:外压薄壁圆筒;失稳;计算;加强圈 中图分类号:TH49一一一一一一文献标志码:A一一一一一一文章编号:1007-4414(2017)04-0125-03 Calculation of Thin-Walled External Pressure Cylinder LUO Yong-zhi,ZHANG Chuan-qi,LUO Hai-rong,CHEN Li-ping (Lanzhou LS Heavy Equipment Co.,Ltd,Lanzhou Gansu一730314,China) Abstract:Correct calculation of thin-walled external pressure cylinder and correct design of cylinder reinforcing ring are the key points to ensure the safety and economy of the thin-walled external pressure cylinder.In this article,the stability problem of thin-walled external pressure cylinder is introduced.The analytical formula method and the nomography in design of the thin-walled external pressure cylinder are analyzed.In addition,the design of cylinder stiffening ring is introduced. Key words:thin-walled external pressure cylinder;instability;calculation;stiffening ring 0一引一言 外压薄壁圆筒即承受外压力的D o/δe?20的圆筒[1-2],其破坏以失稳为主,当发生失稳时,圆筒的形状发生改变,不能保持原状,导致结构失效三外压薄壁筒体的失稳属于弹性失稳,因为其薄膜应力要小于材料的比例极限,在计算时仅进行稳定性校核即可[3],即控制外载荷小于该结构发生失稳现象的临界载荷,并取一定的稳定安全系数三外压薄壁圆筒常用的计算方法是解析公式法和图算法[4],在计算过程中涉及到的因素和参数比较多,计算繁琐复杂,笔者结合实际工作过程中积累的经验,对外压薄壁圆筒的设计计算进行了归纳总结三 1一外压薄壁圆筒的稳定性问题 对于外压薄壁圆筒,刚度不够引起失稳是主要的失效形式,保证圆筒的稳定性是外压薄壁容器计算和分析的主要内容三在外压工况下,圆筒内的应力主要表现为压应力,当圆筒失稳后,筒壁的变形使其受力状态发生了重大改变,应力主要表现为弯曲应力三对于结构参数已定的圆筒,其能够承受的最大外压也是已定的,称之为临界压力,在外压低于临界压力时,圆筒承受压应力处于稳定状态,其形状保持不变,外压的变化只会引起圆筒压应力大小的变化,不会改变圆筒的受力状态,数值上二者成正比关系;但是,如果外压超过了圆筒的临界压力,圆筒的形状会发生突变,产生永久变形,其受力状态也随之改变,局部产生较大的弯曲应力三外压薄壁圆筒失稳时,筒体瞬间变为曲波形,其波数可能为2二3二4二 等,外压薄壁圆筒的失稳形态如图1所示 三 图1一外压薄壁圆筒的失稳形态 一一外压薄壁圆筒在进行稳定性计算时,根据圆筒两端的加强构件对圆筒稳定性是否产生影响,通常将圆筒分为长圆筒和短圆筒两类三长圆筒的失稳不受圆筒两端刚性支撑件的影响,在弹性失效时形成的波数为2,其特点是:计算长度与直径的比值较大,其临界压力不受计算长度的影响,仅与圆筒的有效厚度二外径有关三短圆筒的相对长度较短,两端的刚性支撑件对圆筒有约束作用,临界压力与圆筒壁厚二外径及计算长度有关,弹性失效时形成的波数大于2三 2一外压薄壁圆筒的计算 外压薄壁圆筒的计算是一个反复试算的过程,首先要根据圆筒的规格参数和材料假定圆筒的壁厚及加强结构的尺寸,然后采取正确的计算方法进行计算,直至设计出安全二合理的结果三文中涉及到的所 四521四 四机械研究与应用四2017年第4期(第30卷,总第150期)一一一一一一一一一一一一一一一一一一一经验交流 ?收稿日期:2017-06-15 作者简介:罗永智(1985-),男,甘肃武威人,工程师,主要从事压力容器设计和制造技术方面的工作三

内压薄壁壳体强度计算

第三章、 3—1内压薄壁壳体强度计算 目的要求:使学生掌握内压圆筒内压球形壳体的强度计算,以及各类厚度的相互关系。 重点难点:掌握由第一强度理论推出的内压圆筒,内压球形壳体的强度计算公式。 第三章 内压薄壁容皿 本章的任务就是在回转薄壁壳体应力分析的基础上,推导出内压薄壁容皿强度计公式。本章的压力容皿设计计算公式,各种参数制造要求以及检验标准均与GB150-1998《钢制压力容皿》保持一致。 第一节 压内薄壁壳体强度计算 一、 内压圆筒 为了保证圆筒受压后不破裂,[根据第一强度理论]应使筒体上最大应力,即环向应力2σ小于等于材料在设计温度下的许用应力[]t σ 用公式表达:2[]2t P D σσδ =≤ ,其中P-设计压力。 1)中径0() 2 i D D + 此外还应考虑到,筒体在焊接的过程中,对焊金属组织的影响以及焊接缺陷(夹渣、气孔、未焊透等)影响缝焊的强度(使整本强度降低),所以将钢板的许用应力乘以一个小于1的焊接接头系数,以弥补焊接可能出现的强度削弱,故 2[]2t P D σσδ=≤ :[]2t P D σ?δ≤ 此外,工艺计算时通常以i D 做为基本尺寸,故将i D D δ=+代入上式: 则 () []2t i P D δσ?δ +≤ 可解出δ,同时根据GB150-1998规定,确定厚度时的压力用计算压力c p 代替。 最终内压薄壁圆筒体的计算厚度δ: 2[]C i t C P D P δσ?= - 适用:0.4[]t C P σ≤ 考虑到介质时皿壁的腐蚀,确定钢板厚度时,再加上腐蚀裕量: 2C d δδ+=——圆筒的设计厚度

再考虑到钢板供货时的厚度偏差,将设计厚度加上厚度负偏差,再向上圆整三规格厚度,这样得到名义厚度。 21d C C δδ=++?+ 筒体强度计算公式,除了可以决定承压筒体所需的最小壁厚外,还可用该公式确定设计温度下圆筒的最大允许工作压力,对容皿进行强度校核;可以计算其设计温度下计算应力,判断指定压力下筒体的安全。 例:设计温度下圆筒的最大允用工作压力 由 () []2t i p D δσδ +≤ 推导而来 12()e n C C δδ=-+ 2[][]t e W i e P D δσ? δ≤ + 设计温度下圆筒的计算应力: () [][]2t t c i e e P D δσσ?δ+= ≤ 采用计算压力c p 及i D 代替D ,并考虑焊接头系数?的影响上式变形成: () []4t i P D δσ?δ +≤ 则设计温度下球壳的厚度计算: 0.6[]4[]t c i c t c P D P P δσ?σ?= ≤-范围: 考虑腐蚀裕量,设计厚度: 24[]c i d t c P D C P δσ?= +- 再考虑钢板厚度负偏差C 1,再向上图整得到钢板的名义厚度 12n C C δδ=+++ ,同理,确定球壳的最大允许工作压力[Pw],并对其强度进行 校核。 4[][]() () []t w i e t t t c e e P D P Di σ?δδσσ? σδ= ++= ≤ 最大允许工作压力 设计温度下球壳计算应力 对比内压薄壁球壳与图筒的壁厚公式:当前件相同时,球壳的壁厚约为圆筒

相关文档
相关文档 最新文档