文档库 最新最全的文档下载
当前位置:文档库 › 典型系统故障诊断与排除

典型系统故障诊断与排除

典型系统故障诊断与排除
典型系统故障诊断与排除

案例二典型系统故障诊断与排除

本章教学目标:

1、认识典型系统的工作;

2、了解典型系统故障原因;

3、熟悉典型系统的故障诊断与排除方法。

教学重点、难点:

教学学时:

教学手段:

教学内容:

一、齿轮箱故障诊断

1.诊断目的和对象

在机械设备中,齿轮箱的用量很大,一旦发生故障,损失严重。

齿轮运行中的振动现象可反映齿轮箱的运行状态,故采用振动情号进行分析和诊断,将记录下来的齿轮箱振动信号进行FFT(快速傅里叶变换)分析处理。

2.诊断方法及分析

方法:在现场用振动计和磁带记录仪测试记录了齿轮箱每根传动轴轴承座上的振动信号,表1列出三台齿轮箱振动速度均方根值,测试时1#齿轮箱检修没有列入。

分析

(1) 在三级传动的齿轮装置中,输入与输出两级的啮合作用力都要由中间级来承担,所以啮合振动最为强烈。啮合振动的幅值远高于其它两级。第二级是设计、制造中应加强的薄弱环节。但由于没有给予足够的重视,在长期运行中振动过大,使齿圈产生疲劳断裂,这是近几年发生事故的原因所在。从目前运行的情况看来,原料磨2#齿轮箱的第二级齿轮传动状况不佳,应加强监测,准备必要的备件。

(2) 从综合评定的角度曾,原料磨2#齿轮箱振动值高于2#和原料密1#的齿轮箱振动。用ISO大型机器振动强度评价标准衡量,巳超过允许值11. 2mm/s。且原料磨2#齿轮箱箱体温度高于其它齿轮箱l0℃左右,应及时进行检修。

(3)原料磨1#齿轮箱在运转中存在着调制现象,图15—4是撮动信号的例频

谱,峰值出现在例频率80ms处,调制频繁fM=1000/80=2.5Hz,恰等于驱动电机旋转频率,也等于齿轮箱第一传动铀的旋转频率。应检查第一传动轴的零部件的磨损、松动、偏心等状况,也应检测电机的进行振动状况。这些工作有待今后进一步测试分析,其它两台齿轮箱振动中没有发现调制现象。

诊断结论:

(1)齿轮箱运行状态监测与故障诊断采用FFT谱分析和倒频谱分析是有效的。

(2)三级传动的齿轮箱装置中,应提高第二级传动件的设计和制造要求,以避免过大的二级传动啮合频率振动。

二、数控机床常见故障的处理

(一) 故障的分类

数控系统故障分类,按照不同的方法有很多种分类形式。

(1)按照故障性质:系统性故障;随机性故障;

(2)按照故障类型:机械故障;电气故障;

(3)按照报警提示:有报警故障;无报警故障;

(4)按照发生部:数控装置故障;PLC故障;

伺服系统故障;机床系统故障;

(5)按照破坏程度:破坏性故障;非破坏性故障;

除去以上的分类方法,还有以下的一种分类方法:

数控机床故障:系统故障;外围电路故障;机械故障。

软件故障:

1、基本参数设置不正确导致的故障

2、伺服参数不正确导致的故障

3、主轴参数设置不正确导致的故障

4、轴参数设置不正确导致的故障

5、PLC参数设置不正确导致的故障

6、用户参数设置不正确导致的故障

7、功能参数设置不正确导致的故障

在数控系统中与软件相关的故障,主要是由于参数设置不正确、参数不匹配

导致的。

参数按照大类区分可分为:系统参数、机械参数、用户参数。

硬件故障:

1、伺服放大器故障

2、伺服电机故障

3、检测元件故障

在数控机床中与系统有关的故障主要集中在驱动部分,当然也包括一些板卡的故障。这些也是维修人员能够判断的故障。

4、各种系统板卡的故障

外围电路故障:

1、继电器、接触器、接线端子、熔断器

2、线路短路、断路

3、外围设备:冷却系统、润滑系统;气路、油路;换刀系统;安全门、电器柜、电气互锁。

在数控机床的故障中、外围电路故障所占的比例相当大。并且也是一线维护人员,能够现场判读解决的故障。绝大多数停机事件此类故障引起,因此熟练掌握此类故障的判断、排除方法和积累相关经验是一线维护人员所必须的。

机械故障:

1、机械元件损坏。

(1)导致机床不能够正常运行,时常会出现一些报警。

(2)会出现异响、异动。

2、机械整体配置、位置不当或者机械有一些磨耗。

(1)导致几何精度丢失

(2)导致位置精度丢失

(二)数控机床的故障诊断技术

故障的诊断包括两方面的内容:诊和断。

诊:对是客观状态作检测或测试。

断:确定故障的性质、程度、类别、部位,并指明故障产生的原因,提供相应的处理对策等。

1.数控系统自诊断

所谓故障自诊断技术,就是在硬件模块、功能部件上各状态测试点(在系统设计制造时设置的)和相应诊断软件的支持下,利用数控系统中计算机的运算处理能力,实时监测系统的运行状态,并在预知系统故障或系统性能、系统运行品质劣化动向时,及时自动发出报警信息的技术。

开机自诊断

运行自诊断

在线诊断

离线诊断

远程诊断

2、如何排除日常故障

(1)故障发生时机床的状态。

A:在什么时间发生的故障?

包括发生故障的具体时间;发生时机床运行的状态;发生故障时外部条件如何,包括天气、供电情况等等;了解故障发生的频次。

B:故障发生时,进行了几种操作?

机床运行在什么模式;程序运行情况如何;各轴分别处在什么位置;当前正在运行那一个轴;机床有没有执行辅助功能;能不能够复位消除;如果能够复位消除,会不会执行到相同情况下再出现;如果再次出现,改变加工参数会不会出现等等。

C:故障发生后,机床出现的现象。

有无报警;如果没有报警,机床相关的状态是否正确。

D:确认外界有无影响机床的其他因素?

电磁干扰;电源是否稳定;气源是否稳定等等

(2)根据系统的报警信息以及相关资料进行故障诊断

现在数控系统都具有强大的故障诊断功能,并能够针对各类故障提供丰富的报警文本。对于很多故障,系统都能够诊断出来,并提供相应的报警信息。数控系统在硬件上还设置了一些装置,用于系统有故障时指示技术人员方便的诊断故障。

(3)充分利用数控机床上,PLC对于外围电路实时状态的监控功能。

结合PLC和数控机床电气手册,对比PLC的实时输入、输出状态以及外围电路的控制逻辑,正确判断外围电路的故障。

(4)利用PLC梯形图反映的控制逻辑,跟踪那些外围设施出现故障的真正原因。利用梯形图的监控功能,观察那些相关信号是否处于正确的状态。如果有节点处于不正确的状态,就依据梯形图向前向后追踪,看是什么原因引起前面节点处于哪一种状态。

(5)对于排除数控机床故障最重要的方法,就是掌握数控系统及数控机床的工作原理,懂得如何使用各种各样的检测仪表、仪器,综合分析数控机床出现故障的操作以及外部、内部原因。进一步通过各种实践机会,进一步掌握一些排除故障的手法(如:零件互换、误差放大等等)。具体到某一个机床,就应该详细阅读其各类说明书,掌握其机械、电气构造、组成以及工作原理,根据故障现象分析可能出现故障的部位、环节,并大胆的动手验证。在机床出现故障时还要,详细调查该机床的“病历”“病史”。

(三) FANUC 0i系统常见故障

1.系统报警信息

(1)查看方法

当机床出现报警时,系统会自动切换到报警画面,并显示报警信息。

报警信息有两部分组成:报警号;报警信息。

在数控系统上获得的报警信息分为两种。一种是系统报警,这一部分报警或由系统故障(软件的硬件的)引起或由程序(格式或内容)引起。这一部分报警号、报警信息由系统厂商预设。一种是机床报警(外部报警)这一部分报警内容通常是由外部因素引起(如气压、各类外部PLC输入信号错误或缺失引起)。这一部分报警号、报警信息由机床生产厂商预设。

2.故障案例一

2.1机床在运行过程中在出现没有任何报警的情况下停止运行。

该机床是一台四轴四联动的数控机床,机床在运行过程中出现题目所说的意外停止,并且在反复发生几次后机床不能够运行加工程序了。

经过和操作人员的反复沟通,我们按照处理数控机床故障的分析过程,进行

分析如下:

(1)该机床出现故障的时候,是在加工零件过程中,并且是在旋转第四轴的时候出现。

(2)在出现该故障初期,停止程序运行,复位后还可以重新启动程序。

(3)经过几次反复以后,机床不能够启动加工程序。

(4)关闭系统,重新启动数控机床,对机床各轴回原点的操作。三个直线轴都能够正确回到原点,但是旋转轴不能够回到原点(第四轴根本就能够移动)分析:从以上的现象可以看到,该机床出现这样的故障极有可能是第四轴出现了某种问题。出现了第四轴不能够旋转的现象,很可能是第四轴刹车未能松开的原因。该机床所用第四轴,采用的是气动刹车。

(5)观察外部输入气压正常,证明应该不是外部气压过低引起。其实,如果外部气压过低机床会出现报警的。

(6)在排除外部气压故障的情况下,我们应该去检查第四轴刹车器是否正常。如果检查第四轴刹车器要把第四轴拆开,这样的话工作量就非常庞大。

(7)检查第四轴刹车器的信号,观察刹车器的信号是否已经进入到PMC。通过机床电气手册,查询第四轴刹车松开到位的信号的地址为X3.4。

(8)进入系统查看X3.4的状态(按照FANUC系统进入PMC 的方法)。系统键、PMC、PMCDGN、STATUS搜索X3.4。执行松开转台的动作,观察X3.4有无变化,结果是没有变化。

(9)上面的步骤证明第四轴的刹车松开信号没有到位。

(10)造成第四轴刹车信号没有到位的原因有好几个,需要我们进一步去分析排查。

a、刹车器没有松开;

b、刹车器松开了,检测开关没有检测到;

c、检测元件损坏;

d、从检测元件到接口的电缆损坏;

e、PLC故障;

f、其他原因。

(11)打开第四轴外罩,执行第四轴夹紧、放松动作,发现用于检测的接近

开关没有亮。初步怀疑是接近开关有问题,或者是连接线有问题。

(12)通过前面的初步分析,判断为接近开关或者线缆出现故障。为了进一步证实,我们把一个金属工具靠近接近开关,结果发现接近开关的等亮了。这一个现象证明接近开关以及相关的线缆是完好的。

(13)再次执行转台松紧动作,观察该结构能否正常运行。通过几次动作发现,每一次夹紧放松机构都能够正常运行,但是用于检测的接近开关还是不亮。

(14)根据接近开关的工作原理,开关和被检测物体的距离是有一定距离要求,如果距离不正确可能会导致开关不能够正常检测。那么有可能是接近开关距离被测部件过远,于是调整接近开关的距离。将距离缩小以后,发现接近开关灯可以亮了。打开机床,各轴回原点,运行加工程序,机床能够正常运行。

(15)安装后第四轴外罩,机床正常运行。但是当机床运行了十几分钟后,机床再次出现前述故障。

(16)根据前面的分析,我们可以把故障点基本上集中到接近开关和被检物上。再次打开外壳,经过仔细检查,发现联接再刹车器上,供接近开关检测的一个螺母,从刹车器上松开了。将这个螺母拧紧,并锁死。机床再次投入运行没有发生故障。

3.进给驱动的故障诊断

(1)直流进给驱动—晶闸管调速是利用速度调节器对晶闸管的导通角进行控制,通过改变导通角的大小来改变电枢两端的电压,从而达到调速的目的

(2)交流进给驱动—因采用交流同步电动机,驱动装置实质上是一个电子换向的直流电动机驱动装置

PWM驱动控制线路简图

FANUC系统进给驱动故障表示方式:

(1)CRT有报警显示的故障

报警号400~457伺服系统错误报警

报警号702~704过热报警

机床切削条件差及机床摩擦力矩增大,引起主回路中的过载继电器动作

切削时伺服电机电流太大或变压器本身故障,引起变压器热控开关动作

伺服电机电枢内部短路或绝缘不良等,引起变压器热控开关动作

(2)报警指示灯指示的报警(7个灯)

BRK—无熔丝断路器切断报警

HVAL—过电压报警

HCAL—过电流报警(伴有401号报警)

OVC—过载报警(401或702报警)

LVAL—欠压报警

TGLS—速度反馈信号断线报警

DCAL—放电报警

(3)无报警显示的故障

机床失控:速度反馈信号为正反馈信号

机床振动:与位置有关的系统参数设定错误

检测装置有故障(随进给速度)

定位精度低:传动链误差大;伺服增益太低

电动机运行噪声过大:换向器的表面粗糙度过低、油液灰尘等侵入电刷或换向器、电动机轴向窜动等

6SC610交流进给驱动系统

三、万能卧式铣床电气控制故障与维修

(以X6132铣床为例)

X6132铣床的运动要求:

主轴能正、反转运动,主轴变速时,主轴电动机瞬时冲动一下,以利于齿轮的啮合;主轴能制动停车。

工作台上下、左右、前后6个方位均可移动,且可实现手动、自动和快速移动。

(一)电气线路分析

1.主电路分析

该机床有三台电动机M1、M2、M3

2.控制电动机的控制

(1)M1的启动 SB5-KM1吸合-主触头闭合,M1启动

(2)主轴电动机的停车制动

(3)主轴的变速冲动控制

2.工作台进给电动机的控制

将电源开关QSl台上,启动主轴电动机Ml,接触器KMl吸合并自锁,进给控制电动机M3启动。

(1)工作台向上、下、左、右、前、后运动的控制通路分别是: 向上:6→KMI → 9 → SA3 → 3 → 10 → SQ2 → 2 → 15 → SQ1 → 2 → 13 →SA3 → 1 → 16 → SQ4 → 1 → 19 → KM3线圈→ 2O → KM2 → 21 向下:6 → KMl → 9 → SA3 → 3 → 10 → SQ2 → 2 → 15 → SQ1 →2 → 13 → SA3 → 1 → 16 → SQ3 → 1 → KMZ线圈→ 18 → KM3 → 21

向左:9 → SQ5 → 2 → 11 → SQ4 → 2 → 12 → SQ3 → 2 → 13 →SA3 → 1 → 16 → SQ2 → 1 → 19 → KM3线圈→20 → KMZ → 21 向右:9 → SQ5 → 2 → SQ4 → 2 → SQ3 → 2 → SA3 → 1 → SQ1 →l → KM2线圈→ KM3 → 21

工作台向前、后运动其通路与工作台上、下运动相同,只是借助机械联锁机构将垂直传动丝杠的离合器脱开,而将横向传动丝杠的离合器YC4接通,从而实现工作台的前、后运动。

(2)工作台进给变速时的冲动控制

在改变工作台进给速度时,为了使齿轮易于啮合,进给电动机M3需要瞬间冲动一下。其变速冲动控制通路如下:

6 → KMl → 9→SA3一3→10→SQ2一2→15→SQ1一2→13→SQ3一2→12→SQ4一2→11→SQ5一1→14→KM2线圈18→KM3→21。

(3)工作台快速移动

其动作过程是:按下快速移动按钮SB3(或SB4),接触器KM4线圈获电吸合,KM4在直流电路中的常闭触点(102一107)断开,迸给电磁离合器YC2脱离。KM4在直流电路中的常开触点(102一107)闭合,快速移动电磁离合器YC3通电,接通快速移动传动链,工作台按指定方向快速移动。当松开快速移动按钮SB3(或SB4)时,接触器KM4因线圈断电而释放。快速移动电磁离合器YC3因KM4的常开触点(102一107)断开脱离,进给电磁离合器YC2因KM4的常闭触点(102一108)闭合而接通进给传动链,工作台以原速度和方向继续移动。

(二)常见电气控制故障维修

(1)按停止按钮后主轴不停

根据对主轴电动机控制电路的分析可知,故障的可能原因有:

接触器KM1主触头故障如发生熔焊等,以致无法分断主轴电动机的电源。

主轴制动离合器YC1线圈未通电,其可能原因是常开触点109一110末闭合或离合器YC1故障。

(2)主轴变速时无冲动过程

发生此故障有两个原因。第一个原因,也是主要原因行程开关SQ6的常开触头SQ6一1闭合后接触不好;第二个原因是主轴变速手柄上机械顶销末碰上主轴冲动行程开关SQ6。对这两个部位检查,确定故障部位修复即可。

(3)工作台各个方向都不能进给

此故障发生的主要原因主要是接触器主触头接触不良,电动机接线脱落和绕组断路等。

检查方法:用万用表先检查控制回路电压是否正常;若正常,可扳动操纵手柄至任一运动方向,观察其相关接触器是否吸合;若吸合,则断定控制回路正常;这时着重检查电动机主回路。

(4)工作台前后进给正常,但左、石不能进给

由于工作台向前、向后进给正常,证明进给电动机M3主回路和接触器KM2或KM3及行程开关SQ1-2、SQ2-2、SQ3-1、SQ4-1的工作都正常,因此最可能的

故障原因是3个行程开关的3副触头SQ3-2、SQ4-2、SQ5-2,这3副触头只要有一副接触不良或损坏,就会使工作台向左或向右不能迸给。

检查方法:用万用表分别测量这3副测头之间的电压,以判断哪对触头损坏。其中SQ6是变速瞬间冲动开关,它常因变速时手柄扳动过猛而损坏。

(5)工作台不能快速进给

发生这种故障的常见原因是牵引电磁铁电路不通,线圈损坏或机械卡死,检查方法:

1.按下“快速”按钮SB3(SM)时,应首先观察接触器KM4与快速电磁离合器YC3是否吸合,若KM4末能吸合,应检查KM4线圈两端是否有电压,有电压不能吸合,是接触器线圈损坏,更换即可;无电压则是SB3(或SB4),KM4等的连线有松脱或接触不良,应检查修复。

2.若接触器KM4吸合,快速电磁离合器仍未吸合,则应检查其接线端是否有电压,若无电压,是接触器KM4主触头接触不良或其进出端连线松脱;有电压不能吸合,则是电磁离合器线圈损坏应检查更换。

控制器故障诊断

FANUC-Robot控制器故障诊断 错误分类概述 * 错误分类的目的是为了更容易地进行故障诊断。 * 每一次故障诊断前都要进行错误分类。 * 识别错误以及症状的类别,要先于故障诊断。 * 每一类错误在机器人操作中都同等严重。 * 错误类型分为: ?第一类错误 ?第二类错误 ?第三类错误 ?第四类错误 第一类错误慨述 * 症状 ?控制器死机 ?示教盒屏幕空白 * 潜在的原因 ?控制器AC 电源存在问题 ?断开器的问题 ?变压器的问题 ?控制器DC 电源线路的问题 ?电缆线问题 ?示教盒/缆线问题 ?电源供给单元损坏 ?电源供给单元保险丝熔断 ?开/关电路的问题 ?面板电路板保险丝 第二类错误概述 * 症状 ?示教盒锁死,没反应 * 潜在的原因 ?软件故障 ?主板的问题 @ CPU 模块,连同DRAM

@ FROM/SRAM 模块 ?示教盒/缆线/ISB 单元的问题 ?PSU 或者底板(激活信号)的问题 ?辅助轴控制卡的问题 第三类错误概述 * 症状 ?错误指示灯亮 ? KM1和KM2 关闭,因此伺服没有电源 ?屏幕上显示诊断信息 * 潜在的原因 ?伺服放大器的问题 ?马达/SPC 的问题 ?编码器/制动模块的问题 ?紧急停止线路的问题 ?紧急停止线路板的问题 ?紧急停止单元,连带KM1 和KM2 的问题 ?面板电路板的问题 ?缆线问题 第四类错误概述 * 症状 ?机器人只能在手动模式下工作 ?能够从示教盒运行程序 * 可能的原因 ?通讯或输入/输出的问题 @ 与PLC 之间没有通信 @ 行程开关等损坏 ?不正确的当地/远程开关设置,软件控制的。六控制器维修 1 无法开机

故障诊断专家系统及其发展

综述与评论 计算机测量与控制.2008.16(9) C omputer Measurement &Control 1217 中华测控网https://www.wendangku.net/doc/b114452141.html, 收稿日期:2008-06-08; 修回日期:2008-07-16。 作者简介:安茂春(1967-),山东莱阳人,副研究员,主要从事测试与故障诊断技术的管理工作。 文章编号:1671-4598(2008)09-1217-03 中图分类号:TP182 文献标识码:A 故障诊断专家系统及其发展 安茂春 (北京系统工程研究所,北京 100101) 摘要:文章对主要的故障诊断专家系统进行了系统的归纳和分类,主要关注故障诊断专家系统在军事领域的应用;重点讨论了基于规则的诊断专家系统、基于模型的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统的技术要点、发展现状、优缺点及其在军事方面的应用;最后,对该学科的发展做出了预测,指出基于多种模型结合的诊断专家系统、分布式诊断专家系统、实时诊断专家系统是今后的发展方向。 关键词:专家系统;故障诊断;军事应用;基于规则推理;建模技术;人工神经网络;模糊推理;基于事例推理 A Survey on Fault Diagnosis Expert Systems An M ao chun (Beijing Institute o f System and Eng ineering ,Beijing 100101,China) Abstract:In this article w e present a s urvey of fault diagnosis expert system s,and categorize them into 5different types according to know ledge organiz ation m ethod and reasoning m ech anis m,w hich are ru le-b as ed fault diagn osis expert system,model-based fault diagnosis ex pert system,n eural netw ork fault diagnosis exp ert sy stem,fuz zy fault diagn osis expert system and cas e-based fault diagn os is expert sys -tem,for each type w e describ e its techn ical pr op erties,curren t status,ad vantag es and disadvantages,and application s in military field.At the end of th is article,w e point out that hybrid model-based,distributed and real-time diagnosis expert sys tems are fu tu re direction s. Key words:ex pert sys tem;fault diagnosis ;military application;rule -b as ed reasoning;modelin g;artificial neural netw or k;fuzzy reasonin g;ease-b as ed reasoning 1 故障诊断专家系统及其分类 专家系统(Ex per t Sy st em,ES)是人工智能技术(A rt if-i cial I ntelligence,A I)的一个重要分支,其智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 故障诊断技术是一门应用型边缘学科,其理论基础涉及多门学科,如现代控制理论、计算机工程、数理统计、模糊集理论、信号处理、模式识别等。故障诊断的任务是在系统发生故障时,根据系统中的各种量(可测的或不可测的)或其中部分量表现出的与正常状态不同的特性,找出故障的特征描述并进行故障的检测与隔离。 故障诊断专家系统是将专家系统应用到故障诊断之中,可以利用领域知识和专家经验提高故障诊断的效率[1]。目前专家系统在故障诊断领域的应用非常广泛,如美空军研制的用于飞机喷气发动机故障诊断专家系统XM AN [2],N A SA 与M IT 合作开发的用于动力系统诊断的专家系统,英国某公司为英美军方开发的直升机发动机转子监控与诊断专家系统[3]等,此外在电力、机械、化工、船舶等许多领域中也大量应用了故障诊断专家系统。 根据知识组织方式与推理机制的不同,可将目前常用的故障诊断专家系统大致分为基于规则的诊断专家系统、基于模型 的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统。 2 故障诊断专家系统对比分析 2 1 基于规则的诊断专家系统 在基于规则的诊断专家系统中,领域专家的知识与经验被 表示成产生式规则,一般形式是:if<前提>then<结论>其中前提部分表示能与数据匹配的任何模型,结论部分表示满足前提时可以得出的结论。基于规则的推理是先根据推理策略从规则库中选择相应的规则,再匹配规则的前提部分,最后根据匹配结果得出结论。 基于规则的诊断知识表达方式直观、形式统一,在求解小规模问题时效率较高,并且具有易于理解与实现的优点,因而取得了一定成功。20世纪90年代,国外在军用水压系统、电力供应网络等方面进行了应用。 但是,对于复杂系统,所观测到的症状与对应的诊断之间的联系是相当复杂的,通过归纳专家经验来获取规则有着相当的难度,且诊断时只能对事先预想到的并能与规则前提匹配的事件进行推理,存在知识获取的瓶颈问题。2 2 基于模型的诊断专家系统 在基于模型的诊断专家系统中,领域专家的专业知识包含在建立的系统模型中,这种基于模型的诊断更多地利用系统的结构、功能与行为等知识。相比基于规则的诊断专家系统,这种诊断方式能够处理预先没有想到的情况,并且可能检测到系统存在的潜在故障。这类系统的知识库相对容易建立并且具有一定的灵活性,已应用于航天器动力燃烧系统故障诊断等方面。

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

电气控制系统故障分析诊断及维修技巧

电气控制系统故障分析诊断及维修技巧 发表时间:2016-11-07T14:10:38.820Z 来源:《电力设备》2016年第16期作者:刘庚 [导读] 所以我们必须加大电气控制系统故障分析和维护力度,以此使其使用更加安全,运行更加可靠,进而提高控制效果与水平。 (福建晋江天然气发电有限公司福建省晋江市 362251) 摘要:随着科学技术的不断发展,各种自动控制设备也随着不断的发展和完善,这些设备离不开最基本的电气控制线路,也逐渐的被人们所熟悉掌握。和发达国家相比,我国对电气控制线路控制技术的研究较晚,发展速度也比较慢。近年来通过引进、吸收、消化,明显的提高了电气控制线路技术发展速度。由于电气的控制系统线路较多,线路发生的故障点比较隐蔽,所以影响了电气控制线路的稳定发展。文章分析了电气控制系统的常见故障及其危害,探讨了电气控制系统故障分析诊断及维修技巧。 关键词:电气控制系统;故障诊断;维修技巧 引言 众所周知,电气控制系统在确保电气设备有序运行、高效工作中发挥了不容忽视的重要作用,这一点不可否认,然而在具体应用中,电气控制系统不可避免的会出现各类故障,从而对系统自身、相关设备以及非故障设备构成威胁。所以我们必须加大电气控制系统故障分析和维护力度,以此使其使用更加安全,运行更加可靠,进而提高控制效果与水平。 一、电气控制系统常见故障及其危害 1、电气控制系统常见故障分析 有一些典型的电气控制系统故障可以为我们带来启示,从中获取故障检修经验,避免系统因故障更产生严重后果。引发电气控制系统故障的原因有许多,绝大多数体现在设计上的错误,以及设备安装质量低、设备自身缺陷等,常见的几种系统故障为:(1)过负载。过负载故障体现为电气控制系统中的电机电流超过了额定电流,引发电机过负载故障诱因有很多,例如负载、电压骤然大幅度增高、电机缺相运行等。(2)形式不同的短路。短路故障包括两相短路、三相短路、一相接地短路以及电机或变压器一相绕组中的匝间短路等。(3)过电流。过电流指的是电器元件或电动机超过了限定电流的运行状态,通常比短路电流要小,很少超过6In,过电流故障的原因多来源于错误的起动及负载转矩过高等。(4)电源缺相。交流异步电动机在常规工作当中,因为三相电源包含的一相熔断器熔断所引发的电动机缺相运行。 2、故障的危害 想要真正了解电气控制系统故障,其发生后的危害也有必要了解。(1)电气控制系统在正常运行中,绝缘破损或者接线错误及负载短路后,短路时形成瞬时故障电流可激增到额定电流的数十倍以上,使配电线路或电气设备因过流所生成的电动力而遭到损毁,甚至造成火灾。(2)电流过大不仅会中止电器控制系统,还可能让电气设备遭到损坏,进而引起电动机转矩过大,让机械转动部件破损。(3)交流异步电动机在缺相电源低速运行或堵转时,其产生的定子电流十分强劲,遇到故障会让电动机绕组烧毁。(4)电气控制系统发生故障还可能导致电网电压降低,直接波及到其他设备或用户,让正常工作与生产遭到破坏,严重时会使配电系统彻底瘫痪。 二、电气控制系统故障诊断分析性 1、调查研究法 对电气控制线路的故障诊断调查研究法可以让故障检测人员有效而且快速的对故障性质、范围以及类型进行判断掌握,使工作人员可以迅速的做出故障准确诊断,把在检修诊断过程中的盲目性降低。调查研究法的主要方式是:第一点是问,故障诊断人员向操作电气设备的人员询问在故障发生之前、发生中和发生后的电气线路状况,问的内容应该是在电气控制线路发生事故前有没有冒烟、冒火、有无响声、发生频率、在事故发生之前有没有停机、过载或者高频率启动现象,有没有更换过原件、是否私下维修等等问题,从这些问题中可以知道,调查研究法的最主要的判断故障方式就是问,通过问就可以大致的判断出故障发生的部位以及发生故障原因等。第二点是望,望就是要对发生故障的设备部位进行观察,看的主要部分就电气设备的外观,看电气设备是否有可能会有故障发生的预兆,比如短路、接地、线路松动、断线等状况。第三点是闻,电气线路中如果出现烧坏等现象,维修人员就可以通过闻的方式进行判断,从而准确的判断线路故障发生的性质和部位。第四点是摸,在摸的时候,必须要保证电流已经切断,触摸线路是否发热,确定该条线路是否在正常运营。 2.2原理图、逻辑分析法 运用逻辑分析法的根据是控制线路中工作原理的关系和环节,并且根据线路故障的现象进行具体的分析,把检查的范围迅速缩小,从而确定故障的发生部位。运用逻辑分析法的主要前提是要根据系统电路原理图分析,准确判断故障所在的位置,使用逻辑分析法的目的是比较快捷方便,因此逻辑分析法比较适用于有复杂线路的故障检查中。由于复杂的线路中经常会有许多电气零件以及接线,如果检查维修人员逐一检查,不仅工作量大、时间长,且容易出现差错。 检查维修人员在使用逻辑分析法进行线路检查时,应该按照相应管理图纸对线路故障进行具体分析,准确的找到故障所在的位置。逻辑分析法可以帮助维修人员快速的把复杂问题进行分析,把一些比较专业复杂的问题变得简单化,避免检查人员莽撞的检查,使尽快的排除故障。 2.3实验法 实验法就是需要对电气控制线路进一步检查时,或是使用常规检查无法判断故障的时候,可以对电气控制线路的故障进行通电实验检查。但是实验法使用前提是不能把电气设备和机械设备损坏,不能把事故的范围进行扩大化。 在进行实验之前,应该尽量的把传动机与电动机分开,调节器里的相关开关在零位,把开关还原的最初的位置。如果传动机和电动机无法彻底分开,可以把主线路切断,根据检查中的实际需要把其它部位的线路也切除掉,把检查的范围进一步的缩小,同时也是为了避免故障进一步的扩大,避免意外情况的发生。如果要把电气设备打开,应该在操作设备的人员的配合下打开。 三、电气控制系统故障维修技巧探讨 1、通过有效充分利用排查的方式进行维修 利用排查法进行维修是最基本的方法,它的主要内容涉及故障代码的研究和分析、系统的自排查过程、万能表排查和短路排查四种方法。由于上述已经涉及相关内容的探讨,在这里不再多加赘述。

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

动力转向系统故障诊断与排除(1)

动力转向系统故障诊断与排除 摘要:汽车动力转向系统出现故障会影响到汽车的动力性、操纵稳定性和行驶安全性。如今,一般轿车都有动力转向系统,研究动力转向系统显得尤为重要,通过对动力转向系统的常见故障的分析,提出了有效的故障诊断和排除的方法,同时提出了定期检查的一系列针对性保养维护措施。 关键词:汽车;动力转向;故障诊断;排除 1.概述 动力转向系统主要由动力转向装置、转向操纵机构和转向传动机构三部分组成。动力转向装置是在机械转向装置的基础上加设一套转向加力装置而形成的,主要包括动力转向器、动力转向油泵、储油罐等。它的转向油泵为双作用叶片泵,转向器结构型式为齿轮齿条式。 2. 动力转向系统的常见故障及排除 动力转向系统的故障包括一般故障、转向噪声和油液渗漏等。 在进行故障排除时,由于油箱缺油、油液高度不足及系统内存在空气等都是影响动力转向系统正常工作的原因,所以在出现动力转向系统故障时,应先确认是否存在以上问题,然后再进行其它部分故障的排除。 2.1 一般故障 动力转向系统的一般故障包括转向沉重、转向冲击、转向不灵和转向回跳等。 2.1.1转向沉重 A.故障现象: 行车转向时,转动转向盘感到沉重,检查转向盘的转向动力时,其值大于30N。 B.可能存在的故障原因: a.油箱缺油或油液高度不足,系统中混入大量空气;

b. 轮胎充气不足,四轮定位不准确; c. 动力转向油泵的压力异常; d. 动力转向器与转向油泵之间的进油管堵塞; e. 齿条导向螺塞调整不当。 C.故障排除: a. 检查动力转向油泵的压力。在压力控制阀和截流阀全开的情况下测量怠速时静态油压。其值应等于或略小于1500Kpa,否则应检查动力转向器与动力转向油泵之间的进油和回油管路及软管是否堵塞、老化或变形。若油管正常,则说明转向阀有故障; b. 若被测静态油压正常,则在压力控制阀和截流阀全闭的情况下,测量油泵在怠速时的卸荷压力,其值应为7200KPa—7800KPa。若卸荷压力过低,则应检查流量控制阀与油泵总成是否正常; c. 若上述检查的卸荷压力正常,则检查转向盘向左与向右转动时的转动力,两者的差值应≤2.9N,否则应检查油缸管路是否变形或安装不当。若油缸管路正常,则应检查齿条轴是否弯曲变形,齿条导向螺塞调整是否过紧;若齿条导向螺塞调整正常,则说明转向控制阀有故障; d. 若左右两方向转向盘转向力的差值正常,则应检查并调整齿条导向螺塞,若不能消除上述故障,则应更换动力转向器;若齿条导向螺塞调整正常,则应检查动力转向装置以外的下列零件是否存在下述故障:转向轴相关零部件卡滞,转动不自如;转向轴万向节故障;各球头销装配过紧或缺油和转向系统内机件相互干涉等。 2.1.2 转向冲击或振动 A.故障现象: 当前轮达最大转向角时,车辆出现冲击或振动。 B.可能存在的故障原因: a. 齿条导向螺塞调整不当; b. 动力转向泵驱动带打滑; c. 转向泵流量控制阀卡滞。 C.故障排除: a. 检查齿条导向螺塞的调整是否正确,并视情调整。若调整无效,则应更换动力转向器; b. 若齿条导向螺塞调整正确,则应检查动力转向油泵驱动皮带是否打滑,必要时调整其预紧力或予更换。 2.1.3 转向不灵或操纵不稳 A.故障现象:汽车直线行驶时感觉行驶不稳,有向左或向右偏驶的现象。

汽车转向系统故障诊断与维修讲解

沧州职业技术学院毕业论文 汽车转向系统故障诊断与维修 2014 届机械工程系 专业汽车检测与维修 学号09 学生姓名李克俭 指导教师刘永胜 完成日期2013年12月27日

毕业论文评语及成绩 学生姓名李克 俭 专业 汽车检 测与维 修 班级 汽修 1102 学号09 毕业论文 题目 汽车转向系统故障诊断与维修指导教 师姓名刘永胜 指导教师 职称 指导教师评语: 答辩小组意见: 答辩小组组长签字:年月日成绩: 系主任签字:年月日

毕业论文任务书 题目汽车转向系统故障诊断与维修 专业 汽车检测 与维修 班级 汽修 1102 学生姓名李克俭所在系 机械工 程系 导师 姓名 刘永胜 导师 职称 一、论文内容 汽车转向系统故障的分析、检测和排除。 二、基本要求 1、熟悉掌握汽车转向系统的结构工作原理。 2、熟悉掌握汽车转向系统检测技术。 3、熟悉掌握汽车转向系统故障诊断排除原理。 三、研究方法及技术指标 1、查找文献,网络搜集资料。 2、熟悉掌握汽车转向系统故障的原因。 四、应收集的资料及参考文献 [1] 林逸,施国标.汽车电动助力转向技术的发展现状与趋势[J].公路交通科技,2001.6.2. [2] 刘波,朱俊A16-汽车转向系统维修实例[J].科技文献,2011.02.20. [3] 齐志鹏,洪湘.汽车转向悬架制动系统使用与维修问答[J].金盾出版社.2006.10. 五、进度计划 1、2013.12.9-2013.12.11定论文题目。 2、2013.12.11-2013.12.25毕业论文定稿并且提交电子版。 3、2013.12.26-2013.12.27提交毕业论文并且组织答辩。 教研室主任签字时间年月日

电力设备故障诊断系统及其应用的研究

电力设备故障诊断系统及其应用的研究 发表时间:2016-10-13T15:40:03.360Z 来源:《电力设备》2016年第14期作者:李壮优司小闯张倩张振飞 [导读] 从现阶段社会经济发展情况来看,电力行业的发展对于满足社会经济发展需求来说,具有重要的影响。 (河南平高电气股份有限公司河南平顶山 467000) 摘要:从现阶段社会经济发展情况来看,电力行业的发展对于满足社会经济发展需求来说,具有重要的影响。社会经济的快速发展,电能需求不断增加,电能供需矛盾日益紧张,基于这一点来看,保证供电稳定性与可靠性,成为现阶段电力行业发展必须关注的一个重点内容。这一过程中,电力设备故障诊断系统的应用,能够对供电设备故障问题进行有效解决,本文从电力设备故障诊断系统应用层面入手,分析了电力设备故障诊断问题。 关键词:电力设备;故障诊断;应用分析、光纤电流互感器 前言:电力设备故障诊断系统在应用过程中,根据电力设备实际情况,能够对故障问题进行智能化、自动化的分析和判断,锁定故障发生位置,保证故障维修具有较高的效率和可靠性,以保证供电的平稳性。 电力设备故障诊断系统在应用过程中,注重对互感器等信号采集设备的利用,通过在互感器中设置光纤复合绝缘子形成新型光纤电流互感器,是能够保证故障检测具有较高的效率,以满足故障维修需要的重要技术手段。换句话说,电力设备故障诊断系统在应用过程中,注重对诊断技术和诊断方法进行有效利用,保证电力设备建设具有较高的安全性和可靠性。(建议删除涂黄的,增加涂红部分) 一、电力设备故障诊断系统的功能分析 电力设备故障诊断系统在实际应用过程中,注重对电力设备故障进行有效检测,以最短的时间发现电力设备故障出处,保证电力设备故障能够在第一时间解决。电力设备故障诊断系统的功能,主要涉及到了信号采集、数据信息传输以及数据信息处理三个部分内容[1]。关于电力设备故障诊断系统功能,具体我们可以从下面分析中看出: (一)信号采集 电力设备故障诊断系统的信号采集,是发挥系统功能的关键,通过信号采集,能够对电力设备故障问题进行较好地发现。一般来说,信号采集主要目的在于对电力设备状态信息进行把握,在进行信号采集时,主要方法如下:一是定时采样,定时采样主要是指设置一定的采样时间,对电力设备运行状态进行检测;二是一次性采样,主要是指采集一次合适长度作为数据处理信号的样本;三是根据电力设备实际情况,设置自动化信息采集。信号采集工作是电力设备故障诊断系统的一个重要环节,是获取电力设备运行状态信息的关键,也是对电力设备故障进行维修的依据。 (二)数据信息传送 数据信息传送过程中,为了有效保证数据传送的准确性和可靠性,需要对数据信息进行预处理,通过数据信息转换,实现数据传输的可靠性目标。电力设备故障诊断系统在对信息传播时,由于距离相对较远,信息传输可能出现损失或是受到信号干扰,这样一来,采取数据预处理的方式,能够有效解决这一问题[2]。 (三)数据处理 数据处理主要是对电力设备状态信息进行解包处理。在对数据处理过程中,主要方法有人工智能、小波分析等方法。在分析数据信息过程中,需要对其进行频谱转换,从而保证系统能够对其进行有效分析和处理。 二、电力设备故障诊断系统应用分析 电力设备故障诊断系统在电力行业发展过程中的应用,主要涉及到了故障信号采集、故障诊断分析、故障处理三个方面内容,关于其具体应用情况,我们可以从下面分析中看出: (一)故障信号采集 目前从电力设备应用情况及发展情况来看,电力设备中普遍采用复合绝缘子,保证在架空输电线路设计中对其进行有效应用。除此之外,复合绝缘子在互感器中也得到了广泛地应用。复合绝缘子的利用,提升了电力设备的可靠性,在进行故障检测过程中,也需要对复合绝缘子的情况进行把握。电力设备故障诊断系统在应用过程中,会根据电力设备故障反馈的特征,对重要信息进行提取,从而对电力设备故障进行诊断[3]。电力设备故障反馈出的特征具有一定的复杂性和多样性特点,在特征选取时,能否对关键点进行把握,直接影响到故障处理的质量和效率,对于供电可靠性和平稳性来说,具有重要影响。基于这一点,电力设备故障诊断系统在信号采集时,注重对特征参量进行把握,选择的特征参量能够对故障情况进行突出反应,从而为电力设备故障解决提供必要依据。 (二)故障诊断分析 电力设备故障诊断系统在进行故障诊断分析过程中,注重对有效诊断方法的利用,目前来看,电力设备故障诊断系统的故障诊断方法主要有以下几种:一是根据最大隶属度模糊理论原则,对电力设备状态信息进行反馈,采用模糊数学方法,对故障进行诊断;二是利用故障特征量,对电力设备故障误差进行修复,从而对电力设备故障问题进行解决。三是对信息融合技术进行利用,应用传感器技术,对电力设备运行状态进行监控,对于出现异常的部位进行检测,实现对故障的诊断目标。电力设备故障诊断过程中,要注重结合电网实际情况,对故障诊断方法进行合理应用,从而有效地发现故障,实现对故障的解决。 (三)故障分析技术 在对电力故障进行解决过程中,电力设备故障诊断系统注重对信息化技术进行应用,实现故障分析的数字化、智能化发展。这一过程中,通过对“局域网”技术进行利用,能够实现对特定区域范围内的电力设备运行情况进行有效监督和控制,从而突破空间和时间限制,能够对电力设备运行信息进行较好的把握,以保障电力设备的平稳、可靠运行[4]。故障分析技术的应用,注重对故障产生的原因、性质进行把握,从而采取有效措施对故障问题进行解决。 结束语:随着我国社会经济的快速发展,电能需求的不断增加,供电可靠性和稳定性直接影响到了人们的日常生产和生活。基于这一点,在实际发展过程中,要注重加强对电力设备故障诊断系统的有效利用,通过技术创新,实现对故障的有效诊断,从而对故障问题进行

液压系统故障原因分析

液压系统故障原因分析 一、液压系统好长时间没有用,这次开机后,震动、噪音大。 可能是长时间放置,蓄能器氮气泄露,没起到减少脉动的作用。检查氮气的压力,补压或者更换皮囊。噪音是由于振动太大而产生的,没有了震动,就会消除。 二、油缸工作不正常,只能出不能回。 检查油缸的另一端是否出油,电磁阀是否换向,油缸内泄是不是特别严重。回油管路是否被异物堵死。 三、油缸启动压力高。 油缸启动压力高和油缸的制造质量(如活塞杆弯曲、缸筒弯曲等)、密封的形式和安装等因素有关。对于伺服油缸,启动压力高会影响其的动态特性。 对于普通油缸,启动压力的要求没有伺服油缸那样严格,但是也不能太高。一旦发现启动压力高,需要认真对油缸的零件进行尺寸复测,并检查密封的安装质量。 1、内部阻力过大。 2、外部执行部分有机械故障。 油缸的启动压力与油缸的设计结构有关,油口与活塞接触的受力面积,如油口的大小即活塞初始启动的受力面积,启动压力就高,油口与活塞接触间加工受力面积腔(启动压力腔)启动压力就很小。 四、液压系统油缸要求同步。 在支管路上加单向节流阀,价格比较便宜。要求比较高就加个分流节流阀,造价高,但效果较好。 五、液压系统维修率特别高。 主要原因是环境恶劣,液压系统是比较精密的设备,平常要多注意保养,油质要好,加油时要过滤,系统密封要好。各类检测设备要完善,需要有专业的人员对系统的工作情况进

行记录和维护。 六、液压缸动作不规则。 1、电磁阀换向不规则,需要检查电炉部分 2、电液伺服、比例阀的放大器失灵或调整不当。 3、也有就是油缸磨损严重,需修理或者更换。 4、可能是液压管路混杂有空气,需要找出混入空气的部位,然后清洗检查,重新安装和更换元辅件。

汽车转向系统故障诊断与维修-(汽车检测论文)

汽车转向系统故障诊断与维修-(汽车检测论文)

现代汽车检测与故障诊断简介: 汽车是一个复杂的技术和结构集成系统,其运行的载荷、路况和气候等工作条件复杂多变,运动的自然磨损和车辆振动等,会造成连接关系的变化。由于复杂多变的工作条件的影响,汽车的技术状态将随行驶里程的增加而恶化,其安全性、动力性、经济性和可靠性等将逐渐下降,排气污染和噪声加剧,故障发生率增加。汽车检测诊断技术对汽车的运行状态作出判断,及时发现故障,并采取相应对策,则可以提高汽车的使用可靠性,避免汽车恶性事故发生,保证交通安全,减少环境污染,改善汽车性能,提高维修效率实现“视情修理”,同时可充分发挥汽车的效能减少维修费用,获得更大的经济效益。因此,汽车检测诊断技术具有着重要的地位和作用。 一、汽车检测与故障诊断技术与方法 1. 人工深入诊断 人工深入诊断是指由诊断者利用仪器、仪表等诊断手段, 如发动机分析仪、扫描仪、万用表、示波器、频谱分析仪等通用或专用设备, 对汽车故障进行诊断, 这种诊断方法, 除能对汽车作出是否有故障和故障严重程度的判断外, 还 能对故障的性质、类别、原因及故障部位等作出判断。 2.自我诊断 现代汽车的电控系统, 都配备有自诊断功能, 电控系统的ECU 具有实时检测电 控系统故障的能力,当电控系统出现故障时, ECU 将储存相应的故障代码在ECU

的存储器中, 并起动故障保护功能, 确保汽车的运行能力、点亮立即维修指示灯, 提醒驾驶员ECU 已检测到故障, 应立即进行检查维修。自我诊断可利用诊断仪将ECU 贮存的各种信息提取出来, 进行比较和分析, 并以清晰的方式( 文字、曲线或图表) 显示出来, 诊断者可根据这些显示出来的信息, 准确快捷地判断故障的类型和发生的部位。 3.计算机辅助诊断技术 计算机辅助诊断是指一种建立在利用计算机分析功能基础上的多功能的自动化诊断系统。计算机还可通过配备的专用传感器接收诊断对象的其他机械系统的信号, 并配备有对这些信号进行自动分析诊断的软件,以实现状态信号的自动采集、特征提取、状态识别等, 并能以显示、打印、绘图等多种方式自动输出分析结果, 给出故障的性质、程度、类别、部位、原因及趋势的诊断与预报结果, 并可将大量故障信息贮存起来, 可随时通过人机对话查阅诊断对象的运行资料。 二.汽车转向系统检测与诊断 2.1传统转向系统:机械转向系统 2.1.1机械转向系统的组成 用司机体力为转向能源,所有传力件都是机械的。转向操纵机构:转向盘、转向轴、万向节(上、下)、转向传动轴。(采用万向传动装置有助于转向盘和转向器等部件和组件的通用化和系列化) 转向器:内设减速传动付,作用减速增扭。 转向传动机构:转向摇臂、转向主拉杆、转向节臂、转向节、转向梯形。

内燃机智能故障诊断系统的及应用

22 4 结语 综上,随着电动汽车的不断发展,将需要更多的直流无刷电机动力总成配套,为本动力总成提供了更广阔的市场需求。目前为止,各大跨国公司也都是刚刚介入这个新兴起的行业,技术也不完全成熟,我国与国外在新能源汽车领域差距还不大,如果能够得到更多的政府支持,加大投资力度,逐步改进电机控制器技术,提高控制策略成熟度,减小故障率,增强可靠性,完全有可能涉及大中城市的公交、出租、公务、市政、邮政等领域,进而取代进口产品,加速市场的占有率,抢占未来制高点,牢牢掌控住中国市场,走出一条符合我国国情的新能源战略路线。参考文献 [1] 祝占元.电动汽车[M].河南:黄河水利出版社,2007.[2] 李兴虎.电动汽车概论[M].北京:北京理工大学出版社, 2005. [3] 宋慧.电动汽车[M].北京:清华大学出版社,2005.[4] 陈小永.直流无刷电机控制技术研发[J].中国石油大学, 2008. [5] 吴素平,罗隆福,杨艳.基于DSP 的直流无刷电动机的无 位置传感器控制技术[J].机车电传动,2004,(1):31-33.[6] 陈玉荣,倪光正.直流无刷电机电流检测技术的研究[J]. 农机化研究,2004. 作者简介:李兴全(1975-),男,吉林农安人,锦州海伯伦汽车电子有限公司工程师,工程硕士,研究方向:汽车电子。 (责任编辑:周加转) 随着科技的发展,内燃机应用于工农业的规模越来越大,为了满足生产的需要,机械设备逐渐向大型、高速、强载、自动与智能化、连续运行及高度复杂化发展,同时系统故障发生率也相应增加。一旦发生故障,就有可能使整台设备甚至整个生产过程受到影响和破坏,造成经济损失,更严重的会发生灾难性人员伤亡事故。 1 内燃机故障机理内容 内燃机故障诊断首先是对故障机理进行研究, 其诊断主要内容包括以下几个方面: 1.1 信号采集 信号采集的主要方法有振动诊断、温度测试、压力测试、油液分析技术、无损检测技术、电涡流传感器测试。 1.2 信号分析处理及特征提取 常用的方法有函数分析法、调和分析法、参数模型法。 1.3 状态识别 由于故障的类型多且复杂,内燃机设备的故障 内燃机智能故障诊断系统的研究及应用 褚光超 刘洪波 (济南市长清区公路管理局,山东 济南 250300) 摘要: 内燃机是一种消耗热能的机器,主要应用于工农业等方面的生产。内燃机设备的故障诊断极其复杂,有一定的难度。文章主要研究内燃机的智能故障诊断系统及其应用。关键词: 内燃机;故障机理;智能系统中图分类号: U269 文献标识码:A 文章编号:1009-2374(2012)26-0022-032012年第26期(总第233期)NO.26.2012 (CumulativetyNO.233)

捷达轿车转向系统故障的诊断与检修讲解

安徽机电职业技术学院 毕业论文 捷达轿车转向系统故障的诊断与检修 系别汽车工程系 专业汽车检测与维修 班级3132 姓名王雷雷 学号1602133072 2015 ~ 2016 学年第一学期

摘要 汽车转向系统经历了纯机械转向系统、机械液压动力转向系统到电控液压动力转向系统,直到更为节能、操纵性更好的电子控制式电动助力转向系统(eps)等几个阶段,电动助力转向采用电动机直接提供动力,助力大小由电控单元控制,具有助力大小可调,路感良好,环保,耗能低,维修方便等优点。 本论文在对电动转向系统的基础上,研究了捷达轿车转向系统的结构,捷达汽车转向系统各个部分的作用、组成、主要构造、工作原理、及可能出现的故障,同时提出了对出现的故障进行维修的可行方案;采用了理论与实际相结合的方法,对每个问题都有良好的认识,对所学内容进行了良好的总结归纳,以此进一步熟悉掌握汽车转向系统的各方面知识,深化巩固所学知识,做到理论与实际相结合,在理论学习的前提下,用实际更好的理解所学内容。 关键词:转向系统;工作原理;故障;维修

Abstract Automotive steering system has experienced a pure mechanical steering system, mechanical hydraulic power steering system to the electronic control hydraulic power steering system, until more energy saving, better electronic control electric power steering system (EPS) and other stages, electric power steering motor directly to provide power, power size by the electronic control unit control, with power adjustable, good road, environmental protection, low energy consumption, maintenance and other advantages. In this paper on the basis of the electric power steering system on JETTA steering system structure,Jetta car to various parts of the system, composition, main structure, working principle, and the fault, and puts forward the feasible scheme for the maintenance of the fault; using the theory and method of combining the, to each of the questions have good understanding, to study the content of the good summary induction, in order to further familiar with the automotive steering system all aspects of knowledge, consolidating and deepening the knowledge, achieve the combination of theory and practice, the premise in the study of the theory, practice to better understanding.

故障诊断技术研究及其应用

故障诊断技术研究及其应用 1 引言 以故障为研究对象是新一代系统可靠性理论研究的重要特色,也是过程系统自动化技术从实验室走向工程的重要一环。最近二十多年来,以故障检测、故障定位、故障分离、故障辨识、故障模式识别、故障决策和容错处理为主要内容的故障诊断与处理技术,已成为机械设备维护、控制系统系统可靠性研究、复杂系统系统自动化、遥科学、复杂过程的异变分析、工程监控和容错信号处理等领域重点关注和广泛研究的问题。 诊断(Diagnostics)一词源于希腊文,含义为鉴别与判断,是指在对各种迹象和症状进行综合分析的基础上对研究对象及其所处状态进行鉴别和判断的一项技术活动[1]。故障诊断学则是专门以考察和判断对象或系统是否存在缺陷或其运行过程中是否出现异常现象为主要研究对象的一门综合性技术学科。它是诊断技术与具体工程学科相结合的产物,是一门新兴交叉学科。故障诊断与处理技术,作为一门新兴技术学科,可划分为如下三个不同的研究层次: (1) 以设备或部件为研究对象,重点分析和诊断设备的缺陷、部件的缺损或机械运转失灵,这通常属于设备故障诊断的研究范畴; (2) 以系统为研究对象,重点检测和分析系统的功能不完善、功能异常或不能够完成预期功能,这属于系统故障检测与诊断的研究范畴; (3) 以系统运行过程为研究对象,考察运行过程出现的异常变化或系统状态的非预期改变,这属于过程故障诊断的研究范畴。 概而言之,故障诊断研究的是对象故障或其功能异常、动作失败等问题,寻求发现故障和甄别故障的理论与方法。无论是设备故障诊断、系统故障诊断还是过程故障诊断,都有着广泛的研究对象、实在的问题背景和丰富的研究内容。本文将从故障诊断与处理技术的研究内容、典型方法和应用情况等三个方面,对故障诊断及相关技术的发展状况做一综述,同时简要指出本研究方向的若干前沿。 2 故障诊断与处理的主要研究内容 故障诊断与处理是一项系统工程,它包括故障分析、故障建模、故障检测、故障推断、故障决策和故障处理等五个方面的研究内容。 2.1 故障分析 故障是对象或系统的病态或非常态。要诊断故障,首先必须对故障与带故障的设备、系统、过程都有细致分析和深入研究,明确可能产生故障的环节,故障传播途径,了解故障的典型形式、表现方式、典型特征以及故障频度或发生几率,结合对象的物理背景了解故障产生的机理、故障关联性和故障危害性。 常用的故障分析方法有对象和故障环节的机理分析法、模拟法、数值仿真或系统仿真法和借助数学模型的理论分析法等。 2.2 故障建模 模型分析是现代分析的基本方法,对复杂对象的故障诊断同样具有重要应用价值。为了定量或定性地分析故障、诊断故障和处理故障,建立故障的模型和带故障对象的模型是十分

相关文档
相关文档 最新文档