文档库 最新最全的文档下载
当前位置:文档库 › 聚合物基有机无机纳米复合材料的制备和性能

聚合物基有机无机纳米复合材料的制备和性能

聚合物基有机无机纳米复合材料的制备和性能
聚合物基有机无机纳米复合材料的制备和性能

(无机,有机,高分子)抗菌聚合物纳米纤维的研究进展

抗菌聚合物纳米纤维的研究进展 孙娟,姚琛,李新松* (东南大学化学化工学院,生物材料和药物释放实验室,南京210018) 摘要:静电纺丝技术是制备功能聚合物纳米纤维的一种简单而有效的方法。由电纺纳米纤维堆砌而成的无纺织物具有巨大的比表面积,赋予其广泛的应用前景。通过在电纺聚合物纳米纤维中添加各类抗菌剂或对 其表面进行化学改性,制备具有优异抗菌性能的新型功能聚合物纳米材料,将进一步拓展电纺纳米纤维在生物 医学、过滤、精密制造等领域的应用。本文基于抗菌纳米纤维的分类进行总结,介绍国内外抗菌聚合物纳米纤 维的研究现状,并对抗菌纳米纤维的未来发展进行了探讨。 关键词:聚合物纳米纤维;抗菌;静电纺丝 引言 随着社会和经济的发展,人类对生存环境和生活质量的要求越来越高,特别是健康意识不断增强。自然界中存在着大量的微生物,常常引起各种材料的分解、变质和腐败,带来重大的经济损失。而致病微生物的广泛分布,由材料携带而引发的细菌性感染,更是严重威胁着人类健康。因此,具有抗菌功能的材料的研究和开发越来越受到研究人员的重视。 静电纺丝是通过在聚合物溶液中施加外电场来制备纳米纤维的一种有效纺丝技术。静电纺丝技术制得的纤维直径范围一般在几十纳米至几微米之间,由电纺纤维堆砌构成的无纺织物具有巨大的比表面积。进一步通过各种物理化学手段,可以赋予电纺纳米纤维特殊的结构和功能。因此,电纺纳米纤维不仅可以用作高效过滤材料,而且在传感器、高性能光电材料、防护材料、纳米复合材料,特别是在生物医学领域有着广泛的应用前景[1~3]。 通过将抗菌剂和纳米纤维以物理或化学方法复合制备具有抗菌功能纳米纤维材料,是近年来电纺纳米纤维研究和开发的热点。抗菌剂和纳米纤维的结合不仅有利于抗菌剂的传输、释放和吸收,而且有利于空气的透过,并阻碍空气中灰尘、细菌的通过,还可以吸附微生物,从而达到更高的抗菌效果。本文从抗菌剂的分类出发,介绍制备抗菌电纺聚合物纳米纤维的方法,归纳了抗菌纳米纤维的研究进展。 1无机抗菌剂复合纳米纤维 无机抗菌剂具有良好的持久性、广谱抗菌性等特点,其中,银和银离子的抗菌效果最为显著[4,5]。Son 等[6]以质量分数比为80/20的丙酮和水作为混合溶剂,按不同比例将AgNO3加入到质量分数为10%醋酸纤维素溶液中,通过静电纺丝制备纳米纤维膜。在紫外光照射作用下,纤维上的银离子通过光致还原形成3~16nm的银纳米粒子,并评价了其对革兰氏阴性菌(大肠杆菌、克雷伯氏杆菌、绿脓杆菌)和革兰氏阳性菌(金黄色葡萄球菌)的抗菌效果。载银抗菌纳米纤维主要依靠纤维中游离出的银离子发挥抗菌作用,银离子和细菌细胞接触后,通过静电相互作用吸附在带负电荷的细胞壁上,取代细胞膜表面阳离子的位置,与蛋白质或其他阴离子基团结合,破坏细胞膜的结构和功能,导致细胞内容物溢出,达到抗菌目的[7~9]。 基金项目:国家自然科学基金资助项目(50573011,50673019,50903016); 作者简介:孙娟,硕士研究生,从事电纺法制备功能纳米纤维及其应用研究; *通讯联系人:E2mail:lixs@https://www.wendangku.net/doc/be14516060.html,.

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

聚合物基复合材料制备方法

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范

节能与环境——有机高分子材料与纳米材料

节能与环境作业 浅谈有机高分子材料与纳米材料 摘要: 有机高分子材料包括天然有机高分子材料和塑料和有机聚合物合成材料。 它们质地轻、原料丰富、加工方便、性能良好、用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型代表,此外,还有涂料和黏合剂等。随着合成、加工技术的发展,耐高温、高强度、高模量和具有特定性能和功能的高分子材料也应运而生。 高分子材料蓬勃发展的原因可以概括为资源丰富、种类繁多、性能良好、成形简便、成本低廉、用途广泛等方面。 关键字: 有机高分子材料纳米材料结构特性制备与合成应用 前言: 有机高分子材料和纳米材料都是应用十分广泛的两种材料,近年来,它们都在蓬勃发展。所以我选择了高分子材料和纳米材料,从材料四要素的角度进行简单的分析这两种前景广阔的材料。 正文: 有机高分子材料 有机高分子材料包括天然有机高分子材料和塑料和有机聚合物合成材料。 它们质地轻、原料丰富、加工方便、性能良好、用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型代表,此外,还有涂料和黏合剂等。随着合成、加工技术的发展,耐高温、高强度、高模量和具有特定性能和功能的高分子材料也应运而生。

高分子材料蓬勃发展的原因可以概括为资源丰富、种类繁多、性能良好、成形简便、成本低廉、用途广泛等方面。 (高分子的合成:) 有机高分子可以通过聚合反应合成,而聚合反应按机理可分为链式聚合和逐步聚合。 逐步聚合过程中,高分子链逐步变大。这类聚合反应包括:缩(合)聚(合)反应和某些非缩聚反应。逐步聚合反应包括的反映类型很多,原料单体非常广泛。基本特点是反应发生在单体所携带的基团上。 链式聚合分为自由基聚合、离子聚合和配位阴离子聚合。 (高分子的结构和性能:) 高分子的结构决定它的性能。高分子研究的内容包括:高分子的链结构和凝聚态结构。高分子的链结构又分为近程结构和远程结构。其中,近程结构包含结构单元的化学组成、结构单元的链接方式、结构单元空间立构、支化与交联、结构单元键接序列;远程结构包含高分子链尺寸和高分子链的形态;高分子的凝聚态结构比较负暂,包括非晶态结构、晶态结构、液晶结构、取向结构等。 高分具有力学性能、电性能和热性能。高分子力学性能最大的特点是高弹性和黏弹性。绝大多数高分子材料为绝缘体,但也有一些高分子的电导率在半导体范围,如反式聚乙炔,有的甚至具有导体的电导率。高分子材料与金属材料相比强度不高,不耐高温,易于老化,从而限制了它的使用。但是,随着科学技术的发展,这些不足之处正在得到逐步的弥补。 (有机高分子的应用:) 有机高分子材料种类繁多。高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机化合物中,除碳原子外,其他主要元素为氢、氧氮等。在碳原子与碳原子之间、碳原子与其他元素的原子之间能形成稳定的共价键。由于碳原子是4价,所以可以形成为数众多、结构不同的有机化合物。 聚苯乙烯一种广泛应用于制造纺织工业、电子工业和化工业的有机高分子材料,它是一种典型的线性无定形高分子。由于含有苯环,位组高大,结晶度降低,聚苯乙烯具有较大的刚度。聚苯乙烯密度低,常温下较透明,几乎不吸水;具有优良的耐蚀性;电阻高,是很好的隔热、防震、防潮和高频绝缘材料。缺点是耐冲击性差,不耐沸水,耐油性有限。 环氧塑料(EP)是环氧树脂加入固化剂后形成的热固性塑料。一般以铸型的方式成形。环氧塑料强度较高,韧性较好;具有优良的绝缘性能,耐热,耐寒,化学稳定性很高。缺点是有些毒性。环氧塑料是很好的胶粘剂,对各种材料都有很好的胶粘能力。它主要应用于制作塑料模具、精密量具、电子仪表装置、电气绝缘、印刷线路和制备各种复合材料等。 纳米材料 纳米材料是一种新材料,它是指块体中的颗粒、粉体粒度在10~100nm之间,使其某些性质发生突变的材料。微粒可以是晶体,也可以是非晶体。纳米材料中

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

聚合物基纳米复合材料的近代发展

汽车发动机地技术现状及发展趋势 摘要:自汽车发明以来,为人们地出行运输带来了极大地便利,促进了人类地大发展,一百多年后地今天,相关技术不断创新和走向成熟.但随之而来地问题则是,全球石油能源紧张,空气污染.因此,先进地发动机技术将在汽车节能、环保技术开发中起着关键地决定性地作用. 关键词:汽油直喷技术

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

高分子纳米材料及其应用

高分子纳米材料(论文)题目:高分子纳米材料及其应用 化工学院学院高分子材料与工程专业 学号0502110202 学生姓名 指导教师 二〇〇一四年十一月

高分子纳米材料及其应用 摘要:高分子纳米材料是一门新兴并且发展迅速的一门科学。其具有很多独特 的性质,应用前景非常广阔。本文主要介绍了高分子材料的性质,同时介绍了高分子纳米复合材料常见的制备方法及其在各个领域的应用。 关键词:性质;纳米复合材料;制备方法;应用 Abstract: Polymer nano-materials is an emerging and rapidly developing research direction. It has many unique properties and broad application. This paper describes the properties of polymer materials, and also introduced preparation method of the polymer nano-composite materials .The paper also introduces its application in various fields. Key words:Properties; Nano-composite materials; Preparation method; Application 1 引言 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独 特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学 反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所 以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”。[1, 2] 纳米作为一个材料的衡量尺度,其大小为1 nm (纳米) =10~9 m (米),即十亿分之一米, 大约是10个原子的尺度。最初定义的纳米材料仅仅是指1~100 nm 尺度范围的纳米颗粒及 由他们构成的纳米固体和薄膜。目前,在广义上定义的纳米材料是指三维空间尺度里至少有 一维是纳米尺寸或者由它们作为结构基本单元的材料;根据定义按照空间维度可以将纳米材 料分为三类:(1) 维度为零的纳米材料,是指纳米颗粒、原子团簇等三维空间尺度均在纳米 尺寸的材料;(2) 维度为一的纳米材料,是指纳米线、纳米管等三维空间尺度中有两维是纳 米尺度的材料;(3) 维度为二的纳米材料,是指纳米膜、超晶格等三维空间尺度中仅有一维 是纳米级的材料;[3] 2 纳米材料的性质[4, 5] 物质的尺寸一旦与原子尺寸在同一量级时,其表面电子结构和晶体结构就会发生变化, 导致纳米材料会具备一些表面效应、小尺寸效应等优异特性。 (1)量子尺寸效应。量子尺寸效应又称量子限域效应,当粒子尺寸下降到一定程度时,金属 费米能级附近的电子能级由准连续能级变为离散能级,以及能隙变宽现象均为量子尺寸 效应。材料或物质的物理性质在很多方面都是由材料的电子结构决定的,当材料尺寸小

聚合物无机物纳米复合材料

聚合物/无机物纳米复合材料 张凌燕 牛艳萍 (武汉理工大学资源与环境工程学院,武汉,430070) E-mail:zhly@https://www.wendangku.net/doc/be14516060.html,或niuyanping2004@https://www.wendangku.net/doc/be14516060.html, 摘 要:本文从聚合物/无机物纳米复合材料的类型、各种制备方法及原理、优异性能及应用等方面,总结了聚合物/无机物纳米复合材料的研究进展。 关键词:聚合物/无机物纳米复合材料;增韧;表面改性 1 前 言 纳米材料是指材料二相显微结构中至少有一相的一维尺度达到纳米级尺寸(100nm以下)的材料。纳米复合材料是指2种或2种以上的吉布斯固相至少在一个方向以纳米级大小(1~100nm)复合而成的复合材料[1]。聚合物/无机物纳米复合材料(简称OINC)是以聚合物为基体(连续相)、无机物以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料[2]。按照无机物纳米粒子形态结构,OINC可分为聚合物/无机粒子纳米复合材料、聚合物/无机纤维纳米复合材料、聚合物/片层状无机物纳米复合材料。用于制备OINC的无机物包括:粘土类如滑石粉、蒙脱土、云母、水辉石等,陶瓷如SiO2、TiO2、Al2O3、AlN、ZrO2、SiC、Si3N4等,聚硅氧烷,CaCO3,分子筛,金属氧化物如V2O5、MoO3、WO3等,层状过渡金属二硫化物或硫代亚磷酸盐如MoS2、TiS2、TaS2、MPS3(M=Mn、Cd等),层状金属盐类化合物、双氢氧化物,以及碳黑、碳纤维等[3]。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物纳米复合材料具有优于相同组分常规聚合物复合材料的力学、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。 2 无机纳米粒子的增韧机理及表面修饰 2.1 增韧机理 (1)在变形中,刚性无机粒子不会产生大的伸长变形,在大的拉应力作用下,基体和无机粒子的界面部分脱粘形成空穴,使裂纹钝化,不致发展成破坏性裂缝;无机粒子的存在产生应力集中效应,引发粒子周围的树脂基体屈服(空化、银纹、剪切带)。这种界面脱粘和屈服都需要消耗更多的能量,从而起到增韧作用。 (2)由于纳米粒子的比表面积大,表面的物理和化学缺陷越多,粒子与高分子链发生物理或化学结合的机会越多,因而与基体接触面积增大,材料受冲击时,会产生更多的微开裂,吸收更多的冲击能[4]。 2.2 表面修饰 刚性无机粒子的粒径越小,与基体接触面积越大,若能均匀分布,增韧增强的效果就越 1

聚合物基纳米复合材料的近代发展

聚合物基纳米无机复合材料的应用与发展 摘要:聚合物基纳米无机复合材料是一种性能优异的新型复合材料,已成为材料科学的新热点。本文概述了聚合物基纳米无机复合材料的发展前景及发展过程中应注意的问题。及相应的解决方法。 关键词:聚合物;纳米;无机物;复合材料 1.纳米复合材料的概念、特性、背景 1.1纳米复合材料的概念 纳米复合材料是指一种或多种组分以纳米量级的微粒,即接近分子水平的微粒复合于基质中构成的一类新型复合材料。因其分散相尺寸介于宏观与微观之间的过渡区域,从而给材料的物理和化学性质带来特殊的变化,纳米复合材料正日益受到关注,被誉为“21世纪最有前途的材料”,其研究的种类已涉及无机物、有机物及非晶态材料等。聚合物基纳米无机复合材料因其综合了有机物和无机物的各自优点,且能在力学、热学、光学、电磁学与生物学等方面赋予材料许多优异的性能,正成为材料科学研究的热点之一[1]。 1.2纳米复合材料的特性 当材料粒子尺寸进入纳米量级时,因其自身具有小尺寸效应、表面效应、量子尺寸效应,以及纳米固体粒子中大量缺陷的存在,使得聚合物基纳米无机复合材料具有与众不同的特点[2]。纳米复合材料是继单组分材料、复合材料和梯度功能材料之后的第四代材料。 1.3纳米复合材料的背景 纳米复合材料的出现先于概念的形成。早在上世纪年代末, 实际上就已出现了聚合物心纳米复合材料, 只是人们还未认识到其特殊的性能与实际应用意义〕。纳米复合材料是年代初〕提出的, 与单一相组成的纳米结晶材料和纳米相材料不同, 它是由两种或两种以上的吉布斯固相至少在一个方向以纳米级复合而成的复合材料, 这些固相可以是非晶质、半晶质、晶质或者兼而有之, 而且可以是无机、有机或二者都有。纳米相与其它相间通过化学共价键、赘合键与物理氢键等作用在纳米水平上复合, 即相分离尺寸不得超过纳米数量级。因而, 它与具有较大微相尺寸的传统的复合材料在结构和性能上有明显的区别, 近些年已成为聚合物化学和物理、物理化学和材料科学等多门学科交叉的前沿领域, 受到各国科学家和政府的重视。 2.纳米无机复合材料相关应用与发展 材料性能与组织结构有密切关系。与其他材料相比,纳米复合材料的物相之间有更加明显并呈规律变化的几何排列与空间结构属性,因此聚合物基纳米复合材料具有灵活的结构可设计性及优于一般传统复合材料的特性,在许多领域有着广泛的应用前景。 2.1吸波材料 根据目前吸波材料的发展现状,一种类型的材料很难满足日益提高的隐身技术提出的“薄、宽、轻、强”的综合要求[3 ] ,采用质量轻的有机聚合物作基体,无机吸收剂作客体进行多元复合制备吸波材料就成了必然趋势。另外,具有共轭电子体系结构,通过掺杂而成的导电聚合物(如聚乙炔、聚苯胺、聚苯硫醚、聚吡咯、聚噻吩) 本身就有较好的微波吸收性能,一些聚合物还具有红外活性或红外特征吸收带[4 ,5 ] ,利于红外吸波。聚合物基纳米无机复合材料可以方便地调节复合物的电磁参数,以达到阻抗匹配的要求,且价廉。美国F117 飞机蒙皮上的隐身材料就含有多种超微粒子,它们对不同频段的电磁波有强烈的吸收能力[6] 。

聚合物基复合材料精彩试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

有机-无机杂化膜

有机-无机杂化膜的研究进展 1.简介 传统的有机膜具有柔韧性良好、透气性高、密度低的优点,但是它们的耐溶剂性、耐腐蚀、耐温度性都较差,而单纯的无机膜虽然强度高、耐腐蚀、耐溶剂、耐高温,但比较脆,不易加工,因而制备一种兼具有两者优点的膜是目前研究的热点。有机-无机杂化膜在有机网络中引入无机质点,改善网络结构,增强了膜的机械性能,提高了热稳定性,改善和修饰膜的孔结构和分布,提高膜的渗透性和分离选择性。 2.有机-无机杂化膜的结构 有机-无机杂化膜按结构可分为3大类:(1)有机相和无机相间以共价键结合的杂化膜,图1;(2)有机相和无机相间以范德华力或氢键结合的杂化膜,图2,膜从结构上可以分为在有机基质内分散着无机纳米微粒和在无机基质中添加纳米高分子微粒;(3)有机改性的陶瓷膜,图3。

3.有机-无机杂化膜的制备方法 制备有机-无机杂化膜的方法包括:溶液-凝胶法、纳米微粒与高分子直接共混法、原位聚合法等。这里重点介绍前两种方法。 (1)溶胶-凝胶法(sol-gel) 溶胶-凝胶法是将无机前驱体溶于水或有机溶剂中形成均匀的溶液,通过水解、缩合反应生成粒子粒径为纳米级的溶胶,再经干燥转变为凝胶。 用溶胶-凝胶法制备的杂化膜内部有机和无机相易发生分离,不易得到均质膜。当无机组分均匀的分散在有机网络中,且两者间存在一定的相互作用时,易得到透明均质膜。这种相互作用可以是氢键也可以是化学键,组分间的化学键可以是M-C、M-O-Si-C或M-L(L为有机配体如多羟基配体,有机羧酸等)。引入化学键有两者方法:一是选用包含有功能性基团的烷氧基硅氧烷单体作为无机前驱体;二是加入偶联剂对有机高聚物进行改性,选用三官能团的硅氧烷,更易得到均质膜。 (2)共混法 该方法是高分子可以以溶液形式、乳业形式、熔融形式等与纳米无机微粒共混。共混法操作方便、工艺简单。用此方法得到的杂化膜中,纳米微粒空间分布参数难以确定,纳米微粒分布不均匀,易团聚,通过对纳米微粒做表面改性或加入增溶剂进行改性。Genne等人将粒径约为1微米的二氧化锆(ZrO2)掺入聚砜(PSF)中发现:当掺入少量ZrO2(10-20wt%)时,膜的表面形成小孔,渗透性很低;当ZrO2达到40%时,膜的表层形成均匀且高空隙率的结构,平均孔径约为10nm,但膜的渗透性依然不高;如果进一步增加ZrO2,膜的表层结构和孔隙率不变,但膜的渗透性随着无机组分含量的升高而增强。Wara等人在醋酸纤维素膜中加入陶瓷氧化铝(Al2O3)颗粒,虽然Al2O3的掺杂不影响表层的孔隙率,但是对膜的微孔结构有影响:当Al2O3含量较低时。在致密高聚物膜下形成了大孔(孔径约为15微米);但随着Al2O3含量增加,逐渐形成了均一的微孔网状结构。

有机纳米材料

有机纳米材料 有机(高分子) 纳米颗粒材料是纳米材料的重要组成部分, 它具有稳定的形态结构, 可通过选择聚合方式和聚合单体从分子水平上来设计合成和制备, 且易控制其尺寸大小和颗粒的均一性, 使之在具有小尺寸效应、表面效应和量子隧道效应的同时, 还具有其他特定功能, 如温度、pH、电场和磁场等响应性。由于高分子纳米颗粒材料分子结构的可设计性正日益受到科学工作者的关注, 进而也更加快了其开发应用的步伐。美国等西方发达国家在这一研究领域起步较早, 技术力量已相当强; 日本也在这一研究领域中投入大量人力和财力, 获得了众多的成果与专利; 近年来我国虽有不少科研人员开始从事该领域的工作, 并取得了一定的基础研究成果, 但总的来说与国外相比仍有一定的差距。传统合成高分子颗粒的方法很多, 如乳液聚合、沉淀聚合、种子聚合和分散聚合等。乳液聚合(无皂乳液聚合除外) 和分散聚合虽能得到纳米级颗粒材料, 但由于在颗粒(微球) 表面吸附的表面活性剂(分散稳定剂) 等脱除困难, 在生物工程与医疗上的应用受到很大限制。沉淀聚合和种子聚合等合成的微球直径较大, 表面缺少亲水性官能基团, 分散稳定性较差, 在生物工程与医疗应用方面也受到限制。近年来, 国外已有关于用分散共聚反应法合成纳米到微米级微球的报道, 其关键是亲水性或双亲性大分子单体的制备、共聚反应条件的选择和较高的脱氧要求。此方法可根据实际需要进行分子设计, 解决了分散稳定剂或表面活性剂在微球表面的物理吸附问题。作者着重对几种常见有机纳米颗料材料的制备方法与特点、性能及表征加以简单的阐述。 1 纳米颗粒材料的制备方法 111 乳液聚合法 乳液聚合法是制备聚合物的主要实施方法之一。由于乳液聚合法和聚合物乳液产品有着许多优点, 尤其是它以水为介质代表了当今由溶剂型向水性产品转换的发展方向, 这赋予了乳液聚合技术和聚合物乳液应用技术以强大的生命力。目前在世界范围内该法被用来大量制备各种类型的聚合物或聚合物乳液, 其产品已广泛地应用于各个技术领域中。乳液聚合技术发展至今已有80 余年的历史, 比较有代表性的是Harkins、Smith 及Ewart 的工作。前者提出了定性理论, 后两者则在前者的基础上提出了定量理论[1 ] , 为现代乳液聚合技术和理论奠定了基础。随着乳液聚合理论的不断深化及乳液聚合物生产水平的不断提高, 乳液聚合技术也在不断发展和创新, 派生出不少乳液聚合新的分支, 目前出现了许多新的乳液聚合方法, 如反相乳液聚合、非水质中的正相乳液聚合、无皂乳液聚合、微乳聚合、乳液缩聚、制备具有互穿网络结构乳胶粒的乳液聚合、辐射乳液聚合和种子乳液聚合等。乳液聚合体系的特点有: 反应中心胶粒直径小, 易散热; 具有高的聚合反应速度, 又可获得高分子质量的聚合物; 以水代替溶剂是发展的方向; 生产灵活性大; 聚合物乳液可直接利用; 聚合反应过程设备简单, 操作方便, 不污染环境。所生产的乳液聚合物和聚合物乳液已广泛应用于石油开采、皮革、生物医学、工业涂装, 纺织印染及建筑等各个技术领域。根据乳液聚合的动力学特征, 可将整个聚合过程分为3 个阶段[2 ] 。在加入引发剂前, 体系中没有聚合反应发生, 只是在乳化剂稳定作用和机械搅拌下, 把单体以珠滴的形式分散在水相中, 变为乳状液, 因此可称为乳化阶段。由聚合反应开始到胶束消失一段时间为阶段Ⅰ, 在这一阶段将生成大量乳胶粒, 亦称为成核阶段。胶束耗尽到单体珠滴消失一段时间为阶段Ⅱ, 在这一阶段乳胶粒不断长大, 称为乳胶

聚合物纳米复合材料

聚合物纳米复合材料的研究进展 摘要 关键字 Abstract 1.引言 纳米材料是指材料的显微组织中至少有一相的一维尺寸在1-100nm以内的材料。由于平均粒径小,表面原子多,比表面积大,表面能高,因而呈现出独特的小尺寸效应、表面效应、量子隧道等特性,具有许多材料所没有的性能。介于其超凡特性,纳米材料越来越得到广泛的关注。不少学者认为纳米材料将是21世纪最有前途的材料之一,尤其是聚合物纳米材料。本文就聚合物纳米复合材料的分类、制备、改性、应用及问题和未来展望展开叙述。 2.聚合物纳米复合材料定义与分类 2.1定义 聚合物纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,纳米单元可以是金属、无机物和高分子等。 2.2分类 根据组分不同,可分为: a)聚合物/聚合物纳米复合材料:由两种或两种以上的聚合物混在一起而其中有一纳米尺寸的聚合物分散于其它聚合物单体所构成的 复合材料。如第三代环氧树脂粘接剂,它是将预聚合的球状交联 橡胶粒子分散于环氧树脂中固化而成的。 b)聚合物/层状纳米无机物复合材料:是将层状的无机物以纳米尺度分散于聚合物中而形成的。通常采用插层法制备。目前用的最多 的是蒙脱土,蒙脱土是以片状晶体而构成的。 c)聚合物/无机纳米复合粒子复合材料:是将纳米级无机粒子填充到聚合物当中去的。由于小尺寸效应使材料具有光、电、声、磁等 功能,赋予材料良好的综合性能。 3.聚合物纳米复合材料制备 3.1插层复合法 插层复合法是目前制备聚合物纳米复合材料的主要方法。根据复合过程,插层复合法可分为两类,1)插层聚合法:原理是将聚合物单体分散,插层进入层状硅酸盐片层中,然后再原位聚合,利用聚合时放出的大量的热量克服硅酸盐片层间的库仑力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合;2)熔体插层法:原理是将插层无机物与高聚物插入层状无机的层间,该方法优

相关文档