文档库 最新最全的文档下载
当前位置:文档库 › 通风管道阻力计算

通风管道阻力计算

通风管道阻力计算
通风管道阻力计算

通风管道阻力计算是一款可以帮助用户计算通风管道阻力的工具,该工具使用方便,操作简单,用户只需在软件中输入相关数据,然后点击“计算”按钮,即可获得相应的计算结果了。通风管道阻力计算说明:

1.计算方法:

根据陆耀庆编《使用供暖空调设计手册》提供的方法计算。

2.数据输入:

风管尺寸:输入圆管直径和矩形管的边长。

风量:风管内的风量。

风管长度:如果给出风管长度,它

将计算该管段的总阻力。

3.结果输出:

数据输入完成后,按“计算”按扭,在结果输出栏将给出计算结果。

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通风管道摩擦阻力计算及原理:

根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:

ΔPm=λν2ρl/8Rs

对于圆形风管,摩擦阻力计算公式可改写为:

ΔPm=λν2ρl/2D

圆形风管单位长度的摩擦阻力(比摩阻)为:

Rs=λν2ρ/2D

λ————摩擦阻力系数

ν————风管内空气的平均流速,m/s;

ρ————空气的密度,Kg/m3;

l ————风管长度,m

Rs————风管的水力半径,m; Rs=f/P

f————管道中充满流体部分的横断面积,m2;

P————湿周,在通风、空调系统中既为风管的周长,m;

D————圆形风管直径,m。

矩形风管的摩擦阻力计算:

我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。

当量直径有流速当量直径和流量当量直径两种:

流速当量直径:Dv=2ab/(a+b)

流量当量直径:DL=1.3(ab)0.625/(a+b)0.25

在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

局部阻力计算及原理:

当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

局部阻力按下式计算:

ξ————局部阻力系数。

局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:

1. 弯头

布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。2. 三通

三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部

阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。.

在管道设计时应注意以下几点:

1. 渐扩管和渐缩管中心角最好是在8~15o。

2. 三通的直管阻力与支管阻力要分别计算。

3. 尽量降低出风口的流速。

以下为常见管段的比摩阻

规格(mmxmm) 流速 (m/s) 当量直径 (mm) 比摩阻 (Pa/m)

1600x400——15 —— 640—— 3.4

1400x300 ——13 ——495—— 4.5

1200x300 ——12 ——480—— 4.8

1000x300 ——10 ——460 ——2.5

800x300 ——9 ——436 ——2 600x300 ——8 ——400 ——1.8 500x300 ——6 ——375 ——1.2 400x300 ——5 ——342 ——0.8 300x300—— 4 ——200 ——1.3 600x250 ——6 ——350 ——1.3 400x250 ——4 ——307 ——0.6 常见弯头的局部阻力:

分流三通:9~24 Pa

矩形送出三通:6~16Pa

渐缩管:6~12Pa

乙字弯:50~198Pa

通风管道阻力如何计算

通风管道阻力如何计算(圆形风管/矩形风管) 发布:2012-08-09 10:50:45 通风管道阻力如何计算?通风管道是通风系统、通风工程中很重要的一个环节,通风管道的好与坏关系到通风工程的成败与否,关系到通风系统运转的优良与低劣,所以说通风管道设计是否合理是整个通风空调工程中不可不做为重中之重的 一部分,通风管道设计的各种问题我们都要认真对待。 当空气在通风管道内流动,通风管道内阻力可分两种:Ⅰ摩擦阻力(沿程阻力):空气本身粘滞性以及与管壁间摩擦产生的沿程能量损失Ⅱ局部阻力:空 气流经通风管道中管件及设备时,因为流速大小和方向变化以及产生涡流造成 比较集中的能量损失 一、摩擦阻力(沿程阻力) 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下 面公式计算: ΔPm=λν2ρl/8Rs 圆形风管摩擦阻力计算公式可写为:ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D 以上公式中: λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s ρ————空气的密度,K g/m3 l ————风管长度,m Rs————风管的水力半径,m

f————管道中充满流体部分的横断面积,m2 P————湿周,在通风、空调系统中既为风管的周长,m D————圆形风管直径,m 特别注意的是矩形风管的摩擦阻力计算: 日常使用的风阻线图是根据圆形风管得出,首先我们要把矩形风管断面尺寸折算成相当的圆形风管得出,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种 流速当量直径:D v=2ab/(a+b) 流量当量直径:D L=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算时,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:

风管阻力计算

通风管道阻力计算 对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。否则别的就更不用考虑了。管道内风量主要是由风管内阻力影响的。 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。 一:摩擦阻力(沿程阻力)计算 摩擦阻力(沿程阻力)计算一:(公式推导法) 根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D 以上各式中: ΔPm———摩擦阻力(沿程阻力),Pa。 λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式: 其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】 莫台曲线图

表1-1 一般通风管道中K、Re、λ的经验取值 ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s) ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】 L ———风管长度,m 【横断面形状不变的管道长度】 D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直 径:;圆形风管D为风管直径】 摩擦阻力(沿程阻力)计算二:(比摩阻法)

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

谈通风管道局部阻力计算方法

谈通风管道局部阻力计算方法 胡宝林 在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件与重杂物分离器、供料器、卸料器、除尘器等设备上产生。由于管件形状与设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300a P 左右,离心式籽棉卸料器压损为400a P 左右,这些都就是实测数据,由于规格结构不同差异也会很大,所以仅供参考。只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。局部阻力就是管道阻力的重要组成部分,一个4R D = 90°弯头的阻力相当于2、5~6、5m 的直管沿程阻力。由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下与带料运行时的局部阻力系数的变化及局部阻力计算方法。 一、纯空气输送时局部阻力与系数 1、局部阻力 当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。在产生局部损失的地方,由于主流与边界分离与漩涡的存在,质点间的摩擦与撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式: 2 2 j d H H ρυξξ=?=? 式中:j H —局部阻力,a P ; ξ—局部阻力系数,实验取得或公式计算; d H —动压,a P ; ρ—空气密度,1、2053/kg m (20°℃); υ—空气流速,/m s

通风管道阻力的计算与公式

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算

我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1.弯头 布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2.三通

风管阻力计算

厦门中央空调风管阻力计算. 确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。 2.在计算草图上进行管段编号,并标注管段的长度和风量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。 3.选定系统最不利环路,一般指最远或局部阻力最多得环路。 4.根据造价和运行费用的综合最经济的原则,选择合理的空气流速。根据经验总结,风管内的空气流速可按P111表6.3确定。 5.根据给定风量和选定流速,逐段计算管道断面尺寸,并使其符合表6.1所列的矩形风管统一规格。然后根据选定了的断面尺寸和风量,计算出风道内实际流速。 通过矩形风管的风量G可按下式计算: G=3600abυ (m3/h) 式中a,b—分别为风管断面净宽和净高,m。 6.计算风管的沿程阻力 根据沿程阻力计算公式:?Py=?pyl 查《风管单位长度沿程压力损失计算表》求出单位长度摩擦阻力损失?py,再根据管长l,计算出管段的摩擦阻力损失。 7.计算各管段局部阻力 根据局部阻力计算公式:?Pj=ζ×υ2ρ/2 查《局部阻力系数ζ计算表》取得局部阻力系数ζ值,求出局部阻力损失。 8.计算系统的总阻力,?P=∑(?pyl +?Pj )。 9.检查并联管路的阻力平衡情况。 10.根据系统的总风量、总阻力选择风机。 假定流速法,你可以看看空调简明手册参数都可以查 消声器、静压箱总结 一、概念 (一)消声器 1。阻式消声器:是通过吸声材料来吸收声能降低噪音,一般的微穿孔板消声器就属于这个类型,一般是用来消除高、中频噪声。但是由于结构的原因,在高温、高湿、高速的情况下不适用。 2。抗式消声器:是通过改变截面来消声的。我们常用的消声静压箱都是这个原理。一般降低中、低频噪音。对风系统没有具体的要求。 3。阻抗复合式:当然是结合二者的结构原理。可以消除低中高频噪音。但是对风系统的要求同阻式消声器 4、对于一般的民用空调通风系统,我个人认为选用阻抗复合消声器为好。 阻性消声器具有良好的中高频消声性能。按气流通道几何形状不同,可分为直管式、片式、折板式、迷宫式、蜂窝式、声流式、障板式、弯头式等。抗性消声器适用于消除中低频噪声或窄带噪声。按其作用原理不同,可分为扩张式、共振腔式和干涉式等多种型式。阻抗复合式消声器,有共振腔、扩张室、穿孔屏等

风路系统水力计算()

风路系统水力计算 1 水力计算方法简述 目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。 1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失 m p ?为前提 的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。 2.假定流速法 是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。各并联环路压力损失的相对差额,不宜超过15%。当通过调整管径仍无法达到要求时,应设置调节装置。 3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3) 对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。工程上为了计算方便,在将管段的沿程(摩擦)阻力损失m P ?和局部阻力损失j P ?这两项进行叠加时, 可归纳为下表的3种方法。 将m P ?与j P ?进行叠加时所采用的计算方法

2 通风、防排烟、空调系统风管内的空气流速 2.1 通风与空调系统风管内的空气流速宜按表2-1采用 风管内的空气流速(低速风管)表2-1 2.2 有消声要求的通风与空调系统,其风管内的空气流速宜按表2-2选用 风管内的空气流速(m/s)表2-2 2.3 机械通风系统的进排风口风速宜按表2-3

风管计算局部阻力系数

知识就绘力量 风管计算局部阻力系数 1.3.2局部組力廉散 竇杵彳进凤口的AM1力嬴故 A 1安装庄堵上的风曾 吗风管为短形时?门対臓逮芳H直住◎ 出这种管件的入口外装有网幡时.应进行修疋「边醴较弾时.BP S/D?h05时fo = I十氐边壁较阜时.即J/P>0.05时* 式中A—管件的局部阻力累裁*见上樂——福的 局诽阻力慕数.见管杵G-乩^-2不安在惓埴上的 權足甑妁則叭口 4 -.. 丄 ■ 02B聞4已fid100140IBD U. 026 1.00.96IKM0亠肺w0.69 4.590.30 o. os 1.0c,as IL帥0,?5 C.fl7乩站0.53仇的fe * 0,1& 1.0L*U *1) 4. so Ik 57此厲九血I.D■“ 1 1,0 ' C.UE乩50IK3i4L&2 -$50.72V.73 X06(L500-50O.So0.5D o.sa0,50心揃

577 知识就姥力量 当断简①处有期格时,按式<8.3-2)进行修正。 /?3安装在端堪上的锥形渐缩剤叭口 当断面①处有网格时,应按式(8.3 2)修正。 *4罩形进风门 若斷面①处有剧祜时.应按式<8<3-2)进行修正。 4-5带或不带凸边的渐缩型罩子。 矶?) 0 20 40 w ?0 ]00 120 1W 1W 180 L0 O.ll 0N6 0.W 044 0.18 0.27 - O.A3 <1. W 20 40 8C- 100 120 uo 160 l?J : 1.0 0.L9 0.13 0U6 0<2l 0.27 0.33 0.33 0.52 : 对于矩形罩子,&系招大角。 管件B 岀风口的局部81力系数 B-1直管出风口 瓷o = 1?0 当岀口断面处有网格时,应按式(8.3?2) 进行修正? B-2健形出风口.園风管 1 D C 10 20 M 40 60 100 13 180 O.OZL o.so 0.U 仇45 C.43 0.41 0.40 0.42 0.45 O.M 0.05 0.W 0.45 0.1( 0.W 0.33 0.30 0>35 0.42 O.ati 0.OT5 OeSO 0.42 0.36 O.2C 0.28 0.23 0.30 0.40 0.50 0.10 0.50 0.W 0.S2 0.2S 几22 0.18 0.27 C.M 0.50 0.1$ 0.60 0.37 0.Z7 9.20 ).16 0.15 0.25 0-37 0.50 ? 0?3 0.50 0.27 0.18 _ !>.13 3.11 0.12 0.23 0.36 C.50 0.1 0.2 0.3 0.4 0.5 0?b 0.7 0.8 ?.9 ■ 0 2?$ 1.8 i?5 1.1 1.3 1.2 l.Z 1.1 l.l 15 1.3 o.$o o.a 0.41 0.30 0.29 0.2S 0-25

风管选择计算

1. 风量 (1)通过圆形风管的风量 通过圆形风管的风量L (m 3/h )按下式计算: L=900πd 2 V (11.2-1) 式中d ——风管内径,m ; V ——管内风速,m/s 。 (2)通过矩形风管的风量 通过矩形风管的风量L (m 3/h )按下式计算: L=3600abV (11.2-2) 式中 a ,b ——风管断面的净宽和净高,m 。 2. 风管沿程压力损失 风管盐城摩擦损失m P ?(Pa ),可按下式计算: l p P m m ?=? (11.2-3) 式中 m p ?——单位管长沿程摩擦阻力,Pa/m ; l ——风管长度,m 。 3. 单位管长沿程摩擦阻力 单位管长沿程摩擦阻力m p ?,可按下式计算: 22ρ λV d p e m = ? (11.2-4) 式中 λ——摩擦阻力系数; ρ——空气密度,kg/m 3; e d ——风管当量直径,m ; 对于圆形风管: d d e =

对于非圆行风管: P F d e 4= (11.2-5) 例如,对于矩形风管: b a ab d e +=2 对于扁圆风管: )(4 2 A B A A F -+= π F ——风管的净断面积,m 2 ; P ——风管断面的湿周,m ; a ——矩形风管的一边,m ; b ——矩形风管的另一边,m ; A ——扁圆风管的短轴,m ; B ——扁圆风管的长轴,m 。 4.摩擦阻力系数 摩擦阻力系数λ,可按下式计算: )51 .271.3log( 21 λ λ e e R d K +-= (11.2-6) 式中 K ——风管内壁的绝对粗糙度,m ; e R ——雷诺数: ν e e Vd R = (11.2-7) ν——运动粘度,s m /2。 11.2.2 沿程压力损失的计算 风管沿程压力损失的确定,有两种方法可以选择。第一,按上述诸公式直接进行计算;第二,查表计算:可以按规定的制表条件事先算就单位管长沿程摩擦阻力 )/(m Pa p m ?,并编成表格供随时查用,当已知风管的计算长度为)(m l 时,即可使用式 (11.2-3)算出该段风管的沿程压力损失m P ?(Pa )了。下面仅介绍与计算表有关的内容。 1.制表条件

布质风管沿程阻力计算方法

布质风管沿程阻力计算方法.txt男人的承诺就像80岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 布质风管沿程阻力计算方法该帖被浏览了501次| 回复了1次 布质风管系统在沿管长方向上还有由于摩擦阻力和局部阻力造成的压力损失。因为压力损失与风速成正比关系,当气流沿管长方向风速越来越小时,阻力损失也不断下降。与此同时,风管个标准件以及出风口也存在局部阻力损失。布质风管系统中以直管为主,系统中三通、弯头及变径很少,一般以沿程阻力损失为主,空气横断面形状不变的管道内流动时的沿程摩擦阻力按下式计算: ——摩擦阻力系数; ——风管内空气的平均流速,m/s; ——空气的密度,kg/m3; ——风管长度,m; ——圆形风管直径(内径),m; 摩擦阻力系数是一个不定值,它与空气在风管内的流动状态和风管管壁的粗糙度有关。 根据对纤维材料和布质风管系统的综合性研究得到摩擦阻力系数不大于0.024(铁皮风管大约0.019),由于布质风管风管延长度方向上都有送风孔,管内平均风速就是风管入口速度的1/2。由此可见,布质风管风管的延程损失比传统铁皮风管要小的多。 部件局部压损计算 当布质风管风管内气流通过弯头、变径、三通等等部件时,断面或流向发生了变化,同传统风管一样会产生相应的局部压力损失: Z:局部压力损失(pa) ξ:局部阻力系数(主要由试验测得,同传统风管中类似) ρ:空气密度(kg/m3) v:风速(m/s) 为了减少布质风管系统的局部损失,我们通常进行一定的优化设计: 1.综合多种因素选择管经,尽量降低管道内风速。 2.优化异形部件设计,避免流向改变过急、断面变化过快。 根据实际工程经验,我们总结出各种布质风管部件的局部阻力值(风速=8m/s),如下表:弯头(曲率=1)等径三通变径(渐缩角30度)静压箱 10 pa 12 pa 3 pa 46 pa 例如:某超市压损计算说明 对于该超市,AHU 空调箱风量为36000CMH,选取编号AHU-14号空调箱系统,主管尺寸为2000*610mm,共有5支支管,支管管径为559mm。选取最长不利环路25米主管+20.6米支管作为计算依据; 1,沿程阻力损失计算: 主管:25米,2000*610mm,当量直径, 支管道:20.6米,559mm,, 2,局部阻力损失计算: 等径三通局部损失为12Pa,对于变径三通取20Pa. 最长不利环路压损为20+8.5+6=34.5Pa.

通风管道性能比较

通风管道性能比较 防潮性能 镀锌薄钢板风管:易受潮腐蚀生锈,在输送含湿量大的空气时更为严重。 无机玻璃钢风管:受原料配比的制约,其防潮性能的稳定性较差。 复合玻纤板风管:无易腐材料和部件,但因其为多孔材料,要防止管道内部、管端和切口处被水长期浸泡。 纤维织物风管:由于表面有冷气层,所以不会产生凝露,材料均为强疏水性材料,不易受潮。即使风管表面沾水,由于风管表面有渗透,也会迅速风干。 强度 镀锌薄钢板风管:强度较高,抗静压能力强,在断面尺寸大时必须按规定进行加固。 无机玻璃钢风管:强度较高,但比较脆弱,因其较重,不易搬运,易受碰撞导致酥裂和破损。 复合玻纤板风管:能满足一般通风空调的承压要求,最高可承受风压1500Pa。 纤维织物风管:柔性材料,但韧性好。耐压大于2000Pa。 重量 镀锌薄钢板风管:容重为7870kg/m3 ,单位面积重量为10kg/m2~16kg/m2 。 无机玻璃钢风管:容重为2100kg/m3 ,单位面积重量为11kg/m2~23kg/m2 。 复合玻纤板风管:容重为64kg/m3 ,单位面积重量为2.8 kg/m2。 纤维织物风管:这就不用说了,地球人都知道。(单位面积重量小于0.25kg/m2) 摩擦阻力 复合玻纤板风管内壁为玻璃丝布,表面粗糙度为0.2mm ,略大于镀锌薄钢板的测定值,在风管内风速小于15m/s 条件下,其沿程阻力与镀锌薄钢板风管相比不超过7%(含风管内加固撑杆增加的阻力) ,而在一般空调系统通风管道中沿程阻力只占局部阻力的10%左右(和镀锌薄钢板风管的局部阻力基本一样) ,因此玻纤风管与镀锌薄钢板风管相比增加的通风阻力不到1 % ,对整个风管系统影响不明显,基本可忽略。无机玻璃钢风管的摩擦阻力大于镀锌薄钢板风管,接近于复合玻纤板风管。纤维织物风管:约为铁皮风管的1/3。 纤维脱落 风管内壁复合玻璃丝布,具有屏蔽纤维分散的能力。在管内风速15m/s条件下,风管内壁纤维不脱落,完全符合国家卫生标准,确保室内空气质量和环境。纤维织物风管:材料是纺织物不是附着纤维,在25m/s的风速下,彩钢复合风管,纤维脱落率小于0.1%。 清洗维护 镀锌薄钢板风管:需动用先进的风管清洗技术,甚至今年流行的清洗机器人,耗资大、周期长。 无机玻璃钢风管:同铁皮风管 复合玻纤板风管:因其表面疏松多孔的结构,细菌霉菌易滋生,但不宜清洗。 纤维织物风管:拆卸后直接放入洗衣机,拆装周期短。 施工安装 镀锌薄钢板风管:管道较重,制作、安装周期长,管道尺寸及走向变更时费工费事。保温层在风管安装好后现场安装,工序繁琐,。 无机玻璃钢风管:管道笨重,不易搬运,强度较高,但比较脆弱,易受碰撞导致酥裂和破损。制作安装周期长,管道尺寸及走向变更时费工费时。消声和保温方面同镀锌薄钢板。

风管阻力计算总结

通风管道阻力计算 对于空调通风专业来说, 我们最终的目的是让整个系统达到或接近设计及业主的要求。 套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。可见无论空调是否 对新风做处理,我们送到房间的风量是一定要达到要求。 否则别的就更不用考虑了。管道内风量主 要是由风管内阻力影响的。 风管内空气流动的阻力有两种, 一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿 程能量损失,称为摩擦阻力或沿程阻力; 另一种是空气流经风管中的管件及设备时,由于流速的大 小和方向变化以及产生涡流造成比较集中的能量损失, 称为局部阻力。下边为标准工况且没有扰动 的情况下的计算,如实际不是标准工况且有扰动需要进行修正。 一:摩擦阻力(沿程阻力)计算 摩擦阻力(沿程阻力)计算一:(公式推导法) 根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻 力(沿程阻力)按下式计算:△ Pm=Xv 2p L/2D 以上各式中: △ Pm ---- 摩擦阻力(沿程阻力),Pa 。 入 ------ 摩擦阻力系数 【入根据流体不同情况而改变不具有规律性, 不可用纯公式计算, 只能靠实验得到许多不同状态的半经验公式: 1 站(K 丄 2..51 1 -5= = "Sig ------------- 亠 ----- 尸 其中最常用的公式为: 矗(几丿,《K -管壁的当量绝对粗糙度, mm 莫台曲线图 对于整 (见表1-1 ); D-风管当量直径,mm 见一下介绍);Re 雷诺数判断流体流动状态的准则数 ,(见表 1-1 );其实入一般由莫台图所得,见图】

风机管道阻力计算

管道的阻力计算 标签:管道阻力计算时间:2010-03-16 23:17:19 点击:23 回帖:0 上一篇:婴儿矫正平板足的必要性(图)下一篇:富士变频器一级代理|富士温控表 管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:

(6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:

风管沿程阻力计算方法

风管沿程阻力计算方法 布质风管系统在沿管长方向上还有由于摩擦阻力和局部阻力造成的压力损失。因为压力损失与风速成正比关系,当气流沿管长方向风速越来越小时,阻力损失也不断下降。与此同时,风管个标准件以及出风口也存在局部阻力损失。布质风管系统中以直管为主,系统中三通、弯头及变径很少,一般以沿程阻力损失为主,空气横断面形状不变的管道内流动时的沿程摩擦阻力按下式计算: ——摩擦阻力系数; ——风管内空气的平均流速,m/s; ——空气的密度,kg/m3; ——风管长度,m; ——圆形风管直径(内径),m; 摩擦阻力系数是一个不定值,它与空气在风管内的流动状态和风管管壁的粗糙度有关。 根据对纤维材料和布质风管系统的综合性研究得到摩擦阻力系数不大于0.024(铁皮风管大约0.019),由于布质风管风管延长度方向上都有送风孔,管内平均风速就是风管入口速度的1/2。由此可见,布质风管风管的延程损失比传统铁皮风管要小的多。 部件局部压损计算 当布质风管风管内气流通过弯头、变径、三通等等部件时,断面或流向发生了变化,同传统风管一样会产生相应的局部压力损失:Z:局部压力损失(pa) ξ:局部阻力系数(主要由试验测得,同传统风管中类似)ρ:空气密度(kg/m3) v:风速(m/s)

为了减少布质风管系统的局部损失,我们通常进行一定的优化设计:1.综合多种因素选择管经,尽量降低管道内风速。 2.优化异形部件设计,避免流向改变过急、断面变化过快。 根据实际工程经验,我们总结出各种布质风管部件的局部阻力值(风速=8m/s),如下表: 弯头(曲率=1)等径三通变径(渐缩角30度)静压箱 10 pa 12 pa 3 pa 46 pa 例如:某超市压损计算说明 对于该超市,AHU空调箱风量为36000CMH,选取编号AHU-14号空调箱系统,主管尺寸为2000*610mm,共有5支支管,支管管径为559mm。选取最长不利环路25米主管+20.6米支管作为计算依据;1,沿程阻力损失计算: 主管:25米,2000*610mm,当量直径, 支管道:20.6米,559mm,, 2,局部阻力损失计算: 等径三通局部损失为12Pa,对于变径三通取20Pa. 最长不利环路压损为20+8.5+6=34.5Pa. 可见布质风管系统尤其是直管系统的沿程阻力损失非常小,一般不会超过静压复得的值,所以在粗算时基本可以忽略不计!

风管沿程阻力计算方法

风管沿程阻力计算方法 摘要:布质风管又名纤维织物空气分布系统、纤维织物空气分布器、布风管、布袋风管、布风道等,是从国外引进的一项新产品新技术。它是一种由特殊纤维织成替代传统送风管道、风阀、散流器、绝热材料等的送出风末端系统。随着对布质风管送风原理的深入研究,布质风管的设计方法也日渐成熟,其中包括对布质风管管内沿程阻力的研究和计算。 关键词:布质风管布质风管系统纤维织物空气分布系统纤维织物空气分布器布风管布袋风管布风道 布质风管系统在沿管长方向上还有由于摩擦阻力和局部阻力造成的压力损失。因为压力损失与风速成正比关系,当气流沿管长方向风速越来越小时,阻力损失也不断下降。与此同时,风管个标准件以及出风口也存在局部阻力损失。布质风管系统中以直管为主,系统中三通、弯头及变径很少,一般以沿程阻力损失为主,空气横断面形状不变的管道内流动时的沿程摩擦阻力按下式计算: ——摩擦阻力系数; ——风管内空气的平均流速,m/s; ——空气的密度,kg/m3; ——风管长度,m; ——圆形风管直径(内径),m; 摩擦阻力系数是一个不定值,它与空气在风管内的流动状态和风管管壁的粗糙度有关。 根据对纤维材料和布质风管系统的综合性研究得到摩擦阻力系数不大于0.024(铁皮风管大约0.019),由于布质风管风管延长度方向上都有送风孔,管内平均风速就

是风管入口速度的1/2。由此可见,布质风管风管的延程损失比传统铁皮风管要小的多。 部件局部压损计算 当布质风管风管内气流通过弯头、变径、三通等等部件时,断面或流向发生了变化,同传统风管一样会产生相应的局部压力损失: Z:局部压力损失(pa) ξ:局部阻力系数(主要由试验测得,同传统风管中类似) ρ:空气密度(kg/m3) v:风速(m/s) 为了减少布质风管系统的局部损失,我们通常进行一定的优化设计: 1.综合多种因素选择管经,尽量降低管道内风速。 2.优化异形部件设计,避免流向改变过急、断面变化过快。 根据实际工程经验,我们总结出各种布质风管部件的局部阻力值(风速=8m/s),如下表: 弯头(曲率=1)等径三通变径(渐缩角30度)静压箱 10 pa 12 pa 3 pa 46 pa 例如:某超市压损计算说明 对于该超市,AHU 空调箱风量为36000CMH,选取编号AHU-14号空调箱系统,主管尺寸为2000*610mm,共有5支支管,支管管径为559mm。选取最长不利环路25米主管+20.6米支管作为计算依据; 1,沿程阻力损失计算: 主管:25米, 2000*610mm,当量直径, 支管道:20.6米, 559mm,,

烟气管道阻力计算

第三节 管道阻力 空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩 擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速 的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算: ρλ 242 v R R s m ?= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ; ρ——空气的密度,kg /m 3; λ——摩擦阻力系数; Rs ——风管的水力半径,m 。 对圆形风管: 4D R s = (5—4) 式中 D ——风管直径,m 。 对矩形风管 )(2b a ab R s += (5—5) 式中 a ,b ——矩形风管的边长,m 。 因此,圆形风管的单位长度摩擦阻力 ρλ 22 v D R m ?= (5—6) 摩擦阻力系数λ 与空气在风管内的流动状态和风管内壁的粗糙度有关。计算摩擦阻力系数的公式很多,美 国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下: )Re 51.27.3lg(21 λλ+-=D K (5—7) 式中 K ——风管内壁粗糙度,mm ; Re ——雷诺数。 υvd =Re (5—8) 式中 υ——风管内空气流速,m /s ; d ——风管内径,m ; ν——运动黏度,m 2/s 。 在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。图5—2是计算 圆形钢板风管的线解图。它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0. 15mm 等条件下得出的。经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得 的λ /d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。只要已知风量、管径、流 速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

风管选择计算

11.2风管的沿程压力损失 11.2.1 沿程压力损失的基本计算公式 1. 风量 (1)通过圆形风管的风量 通过圆形风管的风量L (m 3/h )按下式计算: L=900πd 2V (11.2-1) 式中d ——风管内径,m ; V ——管内风速,m/s 。 (2)通过矩形风管的风量 通过矩形风管的风量L (m 3/h )按下式计算: L=3600abV (11.2-2) 式中 a ,b ——风管断面的净宽和净高,m 。 2. 风管沿程压力损失 风管盐城摩擦损失m P ?(Pa ),可按下式计算: l p P m m ?=? (11.2-3) 式中 m p ?——单位管长沿程摩擦阻力,Pa/m ; l ——风管长度,m 。 3. 单位管长沿程摩擦阻力 单位管长沿程摩擦阻力m p ?,可按下式计算: 22ρ λV d p e m = ? (11.2-4) 式中 λ——摩擦阻力系数; ρ——空气密度,kg/m 3; e d ——风管当量直径,m ; 对于圆形风管: d d e = 对于非圆行风管: P F d e 4= (11.2-5) 例如,对于矩形风管: b a ab d e +=2

对于扁圆风管: )(4 2 A B A A F -+= π F ——风管的净断面积,m 2; P ——风管断面的湿周,m ; a ——矩形风管的一边,m ; b ——矩形风管的另一边,m ; A ——扁圆风管的短轴,m ; B ——扁圆风管的长轴,m 。 4.摩擦阻力系数 摩擦阻力系数λ,可按下式计算: )51 .271.3log( 21 λ λ e e R d K +-= (11.2-6) 式中 K ——风管内壁的绝对粗糙度,m ; e R ——雷诺数: ν e e Vd R = (11.2-7) ν——运动粘度,s m /2。 11.2.2 沿程压力损失的计算 风管沿程压力损失的确定,有两种方法可以选择。第一,按上述诸公式直接进行计算;第二,查表计算:可以按规定的制表条件事先算就单位管长沿程摩擦阻力)/(m Pa p m ?,并编成表格供随时查用,当已知风管的计算长度为)(m l 时,即可使用式(11.2-3)算出该段风管的沿程压力损失m P ?(Pa )了。下面仅介绍与计算表有关的内容。 1.制表条件 (1)风管断面尺寸 风管规格取自国家标准《通风与空调工程施工质量验收规范》(GB 50243) 。 (2)空气参数 设空气处于标准状态,即大气压力为101.325kPa ,温度为20℃,密度 3/2.1m kg =ρ,运动粘度s m /1006.1526-?=ν。 (3)风管内壁的绝对粗糙度 以m K 31015.0-?=作为钢板风管内壁绝对粗糙度的标准。其他风管的内壁绝对粗糙度见表11.2-1.

通风管道阻力计算

通风管道阻力计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l————风管长度,m; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

通风管道阻力计算

通风管道阻力计算是一款可以帮助用户计算通风管道阻力的工具,该工具使用方便,操作简单,用户只需在软件中输入相关数据,然后点击“计算”按钮,即可获得相应的计算结果了。通风管道阻力计算说明: 1.计算方法: 根据陆耀庆编《使用供暖空调设计手册》提供的方法计算。 2.数据输入: 风管尺寸:输入圆管直径和矩形管的边长。 风量:风管内的风量。 风管长度:如果给出风管长度,它 将计算该管段的总阻力。 3.结果输出: 数据输入完成后,按“计算”按扭,在结果输出栏将给出计算结果。 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 通风管道摩擦阻力计算及原理: 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D

λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算: 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。 当量直径有流速当量直径和流量当量直径两种: 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 局部阻力计算及原理: 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算:

相关文档