文档库 最新最全的文档下载
当前位置:文档库 › 江苏省数学竞赛提优教案:第20讲 共点共线共圆问题

江苏省数学竞赛提优教案:第20讲 共点共线共圆问题

江苏省数学竞赛提优教案:第20讲 共点共线共圆问题
江苏省数学竞赛提优教案:第20讲 共点共线共圆问题

第20讲 共点、共线与共圆问题

本节主要内容有共点、共线与共圆概念及常用证明方法.所谓共点,指n 条(n ≥3)直线经过同一点.或n 个(n ≥3)圆经过同一点; 共线,指的三个及以上的点在同一条直线上; 共圆,指不在一条直线上的三点确定一个圆,以及有四点或四个以上的点在同一个圆上.证明中常用到Menelaus 定理、Ceva 定理、Fermat 点、Simson 线、Euler 线、四点共圆等知识.

A 类例题

例1 设线段AB 的中点为C ,以AC 为对角线作平行四边形AECD 、

BFCG ,又作平行四边形CFHD 、CGKE ,求证:H 、C 、K 三点共线.

分析 C 为AB 中点,若C 为HK 的中点,则AKBH 为平行四边形.反之,若平行四边形成立,则H 、C 、K 共线.

证明 连AK 、DG 、BH .

∵ AD ∥EC ∥KG ,AD =EC =KG ,∴ 四边形AKGD 是平行四边形. ∴ AK ∥GD ,AK =GD .

同理,BH ∥GD ,BH =GD ,∴ BH ∥AK ,BH =AK ,

∴ 四边形AKBH 是平行四边形.故AB 、HK 互相平分,即HK 经过AB 的中点C . ∴ H 、C 、K 三点共线.

说明 证明具有特殊的性质的几个点共线.

例2 求证:过圆内接四边形各边中点向对边所作的四条垂线,交于一点.

分析 画出图形,是必要的,可以研究一下两条垂线的交点的性质,不难发现证明的方法.

证明 若ABCD 是特殊图形(矩形、等腰梯形),易知结论成立.

如图,设圆内接四边形ABCD 的对边互不平行.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,EE '⊥CD ,FF '⊥DA ,GG '⊥AB ,HH '⊥BC ,垂足分别为E ',F ',G ',H '.

K H

G

E

F

B C

D

A

设EE '与GG '交于点P .∵ E 为AB 中点,∴ OE ⊥AB ,∴OE ∥EE '. 同理,OG ∥EE '.∴ OEPG 为平行四边形. ∴ OP 、EG 互相平分.即OP 经过EG 中点M . 同理,设FF '与HH '交于Q ,则OQ 经过FH 中点N . ∵ E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点, ∴ EFGH 是平行四边形,∴EG 、FH 互相平分,即EG 的中点就是FH 的中点于是M 与N 重合.

∴ OP 、OQ 都经过点M 且OP =OQ =2OM . ∴ P 、Q 重合,即四条垂线交于一点.

说明 本题利用了两条直线的交点具有某种性质来证明三线共点.

例3 ⊙O 1与⊙O 2相交于点A 、B ,P 为BA 延长线上一点, 割线PCD 交⊙O 1于C 、D ,割线PEF 交⊙O 2于E 、F , 求证:C 、D 、E 、F 四点共圆.

分析 可以通过C 、D 、E 、F 连成的四边形的对角互补或 四边形的外角等于内对角来证明.

证明 链接CE 、D F ,PC ·PD =PA ·PB =PE ·PF .

于是,ΔPCE ∽ΔPFD , ∴ ∠PEC =∠PDF . ∴ C 、D 、E 、F 共圆.

情景再现

1.⊙I 内切于⊿ABC ,D 为BC 上的切点,M 、N 分别为AD 、BC 的中点,求证:M 、I 、N 三点共线.

M Q H'E'

F'

G'

P O

H

G

F

E

D C

B

A

2. 证明三角形的三条高所在直线交于一点;三条中线交于一点;三条角平分线交于一点.

3. 设PQ 、QR 是⊙O 的内接正九边形的相邻两边.A 为PQ 中点,B 为垂直于QR 的半径的中点.求∠BAO .

B 类例题

例4 设等腰三角形ABC 的两腰AB 、AC 分别与⊙O 切于点D 、E ,从点B 作此圆的切线,其切点为F ,设BC 中点为M ,求证:E 、F 、M 三点共线.

分析 显然此圆和三角形的位置需要分情况讨论,要证明E 、F 、M 三点共线,可以证明连线成角为0?或180?,于是有下面的证明.

证明 ∵△ABC 是等腰三角形,AB =AC ,

∴ 直线AO 是∠BAC 的平分线.故AO 所在直线通过点M . ∴ ∠OMB =90?,又∠ODB =90?,∴D 、O 、M 、B 四点共圆.

∴ ∠DFM =∠DOM .且∠ABM +∠DOM =180?. ∵ ∠DFE =1

2∠DOE =∠ABM .

∴ ∠DFE +∠DFM =180?. ∴ E 、F 、M 共线.

如果切点F 在三角形外,则由D 、B 、F 、M 、O 共圆, 得∠DFM =∠DBM .

而∠DBM =∠AOD =1

2∠DOE =∠DFE .∴ ∠DFM =∠DFE .

∴ F 、M 、E 共线.

说明 证明三点共线常证明连线成角为0?或180?.

例5 以锐角△ABC 的BC 边上的高AH 为直径作圆,分别交AB 、

AC 于M 、N ,过A 作直线l A ⊥MN ,用同样的方法作出直线l B ,l C ,

求证:l A 、l B 、l C 交于一点.

分析 如果能证明这三条直线都经过三角形的外心,则此三线共点.

O

M

F

E D

C

B

A

D

A

B

C

E

F

M

O

O

D

N

M

H

C

B

A

证明 取△ABC 的外接圆O ,连HN ,DB .则∠CAD 与∠MNH 都是∠ANM 的余角, ∴ ∠MNH =∠CAD ,

∵ ∠MNH =∠MAH ,∠CAD =∠CBD ,∴ ∠CBD =∠MAH , ∵ ∠BAH +∠ABH =90?,∴ ∠CBD +∠CBA =90?.

∴ l A 是⊙O 的直径.即AB 过⊙O 的圆心O .同理l B 、l C 都过点O . 即l A 、l B 、l C 交于一点.

例6 在ΔABC 的边AB 、BC 、CA 上分别取点D 、E 、F ,使DE =BE ,

EF =EC .证明:ΔADF 的外接圆圆心在∠DEF 的平分线上.

分析 设O 为ΔADF 的外接圆圆心,于是OA =OD =OF .若EO 是∠DEF 的平分线,则出现了等线段对等角的情况,这在圆中有此性质.故应证明O 、D 、E 、F 共圆.

证明 ∵ EC =EF ,∴ ∠2=180?-2∠C ,同理,∠1=180?-2∠B , ∴ ∠DEF =180?-∠1-∠2=2(∠B +∠C )-180?

=2(180?-∠A )-180?=180?-2∠A .

但O 为ΔADF 的外接圆圆心,∴∠DOF =2∠A ,∴∠DEF +∠DOF =180?,

∴ O 、D 、E 、F 四点共圆.但OD =OF ,∴∠DEO =∠OEF ,即O 在∠DEF 的角平分线上.

情景再现

4. 菱形ABCD 中,∠A =120°,○

·O 为△ABC 外接圆,M 为其上一点,连接MC 交AB 于E ,AM 交CB 延长线于F .求证:D ,E ,F 三点共线.

5.设P 、Q 、R 分别为△ABC 的外接圆O 上弧BC 、CA 、AB

的中点.PR 、PQ 分别交AB 、AC 于点D 、E ,求证:DE ∥BC .

C

B

A D F

E

O

1

2

O

E D

R Q

P C

B

A

6.以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,△ABC 的高为AH ,求证:AH 、BF 、

CD 三线交于一点.

7.

ABCD ,求证:EE 'GG '是平行四边

形.

C 类例题

例7 设AD 、BE 、CF 为△ABC 的三条高,从点D 引AB 、

BE 、CF 、AC 的垂线DP 、DQ 、DR 、DS ,垂足分别为P 、Q 、R 、S ,求证:P 、Q 、R 、S 四点共线.

分析 这里有多个四点共圆,又有多个垂线.四点共圆,可以看成圆的内接三角形与圆上一点.故适用于Simson 线.

证明 设H 为垂心.

由∠HDB =∠HFB =90 ,∴ H 、D 、B 、F 四点共圆. ∵ DP ⊥BF ,DQ ⊥BH ,DR ⊥HF ,P 、Q 、R 分别为垂足.

∴ P 、Q 、R 共线,(△HBF 的Simson 线).同理,Q 、R 、S 共线(△CEH 的Simson 线). ∴ P 、Q 、R 、S 共线.

说明 利用几何名定理(Simson 线等)证明三点共线是常用方法.

S R

Q

P

F E D

C

B

A

G

E F D A B

C

E' F'

G'

M

H C B

例8 设A 1、B 1、C 1是直线l 1上三点,A 2、B 2、C 2是直线l 2上三点.A 1B 2与A 2B 1交于L ,A 1C 2

与A 2C 1交于M ,B 1C 2与B 2C 1交于N ,求证:L 、M 、N 三点共线.

分析 图中有许多三点共线,可以利用这些三点共线来证明L 、M 、N 三点共线.所以可以选定一个三角形,这个三角形的三边上分别有L 、M 、N 三点.

设A 1C 2与A 2B 1、B 2C 1交于P 、Q ,A 2B 1与B 2C 1交于R . 则只要证明PM MQ ·QN NR ·

RL

LP

=1,则由Menelaues 定理的逆定理可证明L 、M 、N 三点共线.

证明 A 2C 1截△PQR 得,PM MQ ·

QC 1C 1R ·RA 2

A 2P

=1,

B 1

C 2截△PQR 得,QN NR ·RB 1B 1P ·PC 2

C 2Q =1,

A 1

B 2截△PQR 得,RL LP ·PA 1A 1Q ·QB 2

B 2R =1,

l 1截△PQR 得,PB 1B 1R ·RC 1C 1Q ·QA 1

A 1P =1,

l 2截△PQR 得,RB 2B 2Q ·QC 2C 2P ·PA 2

A 2R

=1.

五式相乘,即得PM MQ ·QN NR ·

RL

LP

=1,从而L 、M 、N 三点共线.

说明 本题利用了Menelaues 定理及其逆定理证明三点共线.

例9 四边形内接于⊙O ,对角线AC 、BD 交于点P ,设△PAB 、△PBC 、△PCD 、△PDA 的外接圆圆心分别为O 1、O 2、O 3、O 4,求证:OP 、O 1O 3、O 2O 4共点.(1990年全国联赛)

证明 ∵O 为⊿ABC 的外心,∴ OA=OB .

R

Q

P l 2

l 1

N M L

C 2

B 2

A 2

C 1

B 1

A 1

O O A

B

C

D

P

1O O O 2

34

E

F

1

2

3

∵O1为⊿PAB的外心,∴O1A=O1B.

∴OO1⊥AB.

作⊿PCD的外接圆⊙O3,延长PO3与所作圆交于点E,并与AB交于点F,连DE,则∠1=∠2=∠3,∠EPD=∠BPF,

∴∠PFB=∠EDP=90?.

∴PO3⊥AB,即OO1∥PO3.

同理,OO3∥PO1.即OO1PO3是平行四边形.

∴O1O3与PO互相平分,即O1O3过PO的中点.

同理,O2O4过PO中点.

∴OP、O1O3、O2O4三直线共点.

例10 ΔABC是等腰三角形,AB=AC,若M是BC的中点,O是直线AM上的点,使OB⊥AB;Q是BC上不同于B、C的任一点;E在直线AB上,F在直线AC上,使E、Q、F不同且共线.求证:OQ⊥EF当且仅当QE=QF.

分析证明“当且仅当”时,既要由已知OQ⊥EF证明QE=QF,

也要由QE=QF证明OQ⊥EF.

证明连OE、OF、OC

先证OQ⊥EF?QE=QF.

OB⊥AB,OQ⊥QE?O、Q、B、E四点共圆?∠OEQ=∠OBM.

由对称性知OC⊥CA,OQ⊥QF?O、Q、F、C四点共圆?∠OFQ=

∠OCQ,又∠OBC=∠OCB?∠OEF=∠OFE?OE=OF?QE=QF.

再证QE=QF?OQ⊥EF.(用同一法)

过Q作E'F'⊥OQ,交AB于E',交AC于F'.由上证,可得QE'=QF'.

若E'F'与EF不重合,则EF与E'F'互相平分于Q,则

EE'F'F为平行四边形,EE'∥FF',这与AB不与AC平行矛

盾.从而E'F'与EF重合.

情景再现

8.以△ABC的三边为边向形外作正方形ABDE、BCFG、

R

Q

P

N

M

L

K

H

G F

C

E

D

B

A

A

B C

M

O

Q

E

F

ACHK ,设L 、M 、N 分别为DE 、FG 、HK 的中点.求证:AM 、BN 、CL 交于一点.

9.如图,已知两个半径不相等的圆⊙O 1,⊙O 2相交于M 、N 两点,⊙O 1,⊙O 2分别与⊙O 内切于点S 、T ,求证:OM ⊥MN 的充要条件是S 、N 、T 三点共线.

10.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N.以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q.求证:M ,N ,P ,Q 四点共圆. (第19届美国数学奥林匹克)

A

B

C

K M

N

P

Q

B ′

C ′

习题20

1.选择题:

(1) 如图,在四边形ABCD 的对角线的延长线上取一点P ,过P 作两条直线分别交AB 、BC 、CD 、DA 于点R 、Q 、N 、M ,

记t =AR RB ·BQ QC ·

CN ND ·DM

MA

,则t 的值

A .t >1

B .t =1

C .t <1

D .t 的值不定

(2)如图,在不等边三角形ABC 内取异于内心的点P ,连接PA 、

PB 、PC ,把角A 、B 、C 分成α、α’、β、、γ、γ’,记M =

sin αsin βsin γ,N =sin α’sin β’sin γ’.则

A .M >N

B .M =N

C .M

D .不能确定

2.填空题:

(1)如图,若AB BC =

DF FB =2,则DE

EC

= . (2)三角形三个旁切圆与三角形三边BC 、CA 、AB 切于点D 、E 、F ,则AF FB ·BD DC ·CE

EA

= .

3.(Desargues 定理)已知直线AA 1、BB 1、CC 1相交于点O ,直线AB 与A 1B 1

交于点X ,BC 与B 1C 1交于点Y ,CA 与C 1A 1交于点Z ,求证:X 、Y 、Z 共线.

F

E

A

D

αα'

β

β'

γ

γ'

A

B

C

P

γβ

D

I a

C

B

A

A B

C

D

P

M

N R

Q

Z

Y

X

C 1

C B 1 B

A 1 A O

4.已知△ABC外有三点M、N、R,且∠BAR=∠CAN

=α,∠CBM=∠ABR=β,∠ACN=∠BCM=γ,证明:

AM、BN、CR三线交于一点.

5.设P为正方形ABCD的边CD上任一点,过A、D、P作一圆

交BD于Q,过C、P、Q作一圆交BD于R,求证:A、P、R三点共

线.

6.如图,两个全等三角形ABC与A'B'C',它们的对应边也互相平行,因而两个三角形内部的公共部分构成一个六边形,求证:此六边形的三条对角线UX、VY、WZ交于一点.

7.⊙O1,⊙O2外切于点P,QR为两圆的公切线,其中

Q、R分别为⊙O1,⊙O2上的切点,过Q且垂直于QO2的直

线与过R且垂直于RO1的直线交于点I,IN⊥O1O2,垂足为

N,IN与QR交于点M,证明:PM、RO1、QO2三条直线交于一点.

P

M

N

I

O2 O1

R

Q

A'

B

2018年上海市高三数学竞赛试题含答案解析

2018年上海市高三数学竞赛试题 一、填空题(本大题满分60分,前4小题每小题7分,后4小题每小题8分) 1.集合22{(,)100,x y x y +≤且,}x y Z ∈的元素个数是. 2.设函数()f x 是R R →的函数,满足对一切R x ∈,都有()(2)2f x xf x +-=,则()f x 的解析式为()f x =. 3.已知椭圆22 221(0)x y a b a b +=>>,F 为椭圆的右焦点,AB 为过中心O 的弦,则ABF ?面积的最大值为. 4.设集合111111{,,,,,}2711131532 A =的非空子集为1263,,,A A A ,记集合i A 中的所有元素的积为(1,2,,63)i p i = (单元数集的元素积是这个元素本身),则1263p p p +++ =. 5.已知一个等腰三角形的底边长为3,则它的一条底角的角平分线长的取值范围是. 6.设实数,,a b c 满足2221a b c ++=,记ab bc ca ++的最大值和最小值分别为M 和m , 则M m -=. 7.在三棱锥P ABC -中,已知1,AB AC PB PC ===则22ABC PBC S S ??+的取值范围是. 8.在平面直角坐标系xoy 中,有2018个圆:⊙1A ,⊙2A ,…,⊙2018A 其中⊙k A 的圆心为21(,)4k k k A a a ,半径为21(1,2,,2018)4k a k = ,这里12201812018a a a >>>= ,且⊙k A 与⊙1k A +外切(1,2,,2017)k = ,则1a =. 二、解答题(本大题满分60分,每小题15分) 9.已知三个有限集合,,A B C 满足A B C =? . (1)求证:1()2 A B C A B C ≥++ (这里,X 表示有限集合X 的元素个数); (2)举例说明(1)中的等号可能成立. 10.求不定方程25x y z w +++=的满足x y <的正整数解(,,,)x y z w 的组数. 11.设,,, abcd 是实数,求2222a b c d ab ac ad bc bd cd a b c d +++++++++++++的 最小值.

江苏省高等数学竞赛题(本科一级)

2008年江苏省高等数学竞赛题(本科一级) 一.填空题(每题5分,共40分) 1.a =,b =时,2lim arctan 2 x ax x x bx x p +=--2. a =,b =时()ln(1)1x f x ax bx =-++在0x ?时关 于x 的无穷小的阶数最高。 3.2420 sin cos x xdx p =ò4.通过点()1,1,1-与直线,2,2x t y z t ===+的平面方程为 5.设222,x z x y =-则(2,1)n n z y ??= 6.设D 为,0,1y x x y ===围成区域,则 arctan D ydxdy=蝌7.设G 为222(0)x y x y +=?上从(0,0)O 到(2,0)A 的一段弧,则 ()()x x ye x dx e xy dy G ++-ò= 8.幂级数1 n n nx ¥ =?的和函数为,收敛域为。二.(8分)设数列{}n x 为1223,33,,33(1,2,)n n x x x x n +==-=-+=L L 证明:数列{}n x 收敛,并求其极限 三.(8分)设()f x 在[],a b 上具有连续的导数,求证 / 1 max ()()()b b a x b a a f x f x dx f x dx b a #?-蝌四.(8分)1)证明曲面:(cos )cos ,sin ,(cos )sin x b a y a z b a q j q q j S =+==+()02,02q p j p ##()0a b <<为旋转曲面 2)求旋转曲面S 所围成立体的体积 五.(10分)函数(,)u x y 具有连续的二阶偏导数,算子 A 定义为

江苏省高等数学竞赛试题汇总

2010年江苏省《高等数学》竞赛试题(本科二级) 一 填空题(每题4分,共32分) 1.0sin sin(sin ) lim sin x x x x →-= 2.1y x =+,/ y = 3.2cos y x =,()()n y x = 4.21x x e dx x -=? 5.4 2 1 1dx x +∞ =-? 6.圆222 222042219x y z x y z x y z +-+=?? ?++--+≤??的面积为 7.(2,)x z f x y y =-,f 可微,//12(3,2)2,(3,2)3f f ==,则(,)(2,1)x y dz == 8.级数1 1(1)! 2!n n n n n ∞ =+-∑的和为 . 二.(10分) 设()f x 在[],a b 上连续,且()()b b a a b f x dx xf x dx =??,求证:存在点(),a b ξ∈,使 得()0a f x dx ξ =?. 三.(10分)已知正方体1111ABCD A B C D -的边长为2,E 为11D C 的中点,F 为侧面正方形11BCC B 的中点,(1)试求过点1,,A E F 的平面与底面ABCD 所成二面角的值。(2)试求过点1,,A E F 的平面截正方体所得到的截面的面积. 四(12分)已知ABCD 是等腰梯形,//,8BC AD AB BC CD ++=,求,,AB BC AD 的长,使得梯形绕AD 旋转一周所得旋转体的体积最大。 五(12分)求二重积分()22cos sin D x y dxdy +??,其中22:1,0,0D x y x y +≤≥≥

高中数学竞赛校本课程

高中数学竞赛校本课程 一、课程目标 数学是研究空间形式和数量关系的学科,也是研究模式与秩序的一门学科。数学本身的特点决定了它作为科学基础的地位,中学数学的内容与其中蕴含的数学思想方法,尤其是通过数学学习培养的思考问题、解决问题的数学能力将在更深一层次的科学研究中大有作为。 1、夯实学生数学基础,使学生熟练掌握各种数学基本技能;全面提高学生演绎推理、直觉猜想、归纳抽象、体系构建、算法设计等诸多方面的能力,并在此基础上培养学生学习新的数学知识的能力,数学地提出、分析、解决问题的能力,数学表达与交流的能力;发展学生数学应用意识与数学创新意识。 2、努力扩展学生的数学视野,全面渗透研究性学习,激发学生学习数学的兴趣,使学生能欣赏数学的美学魅力,认识数学的价值,崇尚数学的思考,培养从事科学研究的精神与方法。 3、多角度衔接高等教育,大胆引入现代数学基本理念,为学生继续从事高深科学领域的学习奠定所必需的数学基础。 二、课程设计理念与课程内容特色 本课程始终围绕学生群体设计,从他们的学习与发展的实际学情为基本出发点。课程的内容的选择是严格的,它具有鲜明的针对性,能体现数学教学的特点。本课程设计向要突现以下几点: 1、注重发展学生的数学综合能力 “学以致用”,数学知识的学习必须进入运用的层次,接受实践的考验。20世纪下半叶以来,数学的最大发展是应用,这也对数学教学产生了深刻的影响。本课程在数学知识的理论应用与实践运用上大大加强,数学的融会贯通与“数学建模”成为主体;加强了数学各分支间的结合,以重要的数学思想方法来贯穿数学学习。 2、重视数学思想与数学方法养成的创新学习理念 传授数学知识不是数学教学的重点,‘授人以鱼,不若授之以渔’。引导学生掌握解决问题的科学的数学思想与数学方法是本课程的核心。课程不完全以知识系统为主线,很多例题与练习是为了凸现其中的蕴含的数学思想方法而设计。本课程试图通过数学思想方法的养成为学生形成正确的,积极主动的学习方式创造有利条件,为学生提供“提出问题,探索研究,实践应用”的空间,帮助学生形成独立思考、自主钻研的习惯,培养学生的自主能力,提高理性的数学思维,养成勇于创新的科学理念。 3、拓展数学视野,形成开放体系,努力增强时代感 由于本课程的学习对象为具备教好的数学基础与学习能力的学生,因此在内容上必须有一定的深度与广度,要能够印发学生的思考,要有新的知识内容与视角,传统的 数学课程内容长期以来已经模式化,可选择性不强,本课程大胆突破高考限制,引入“向量几何”、“矩阵理论”、“概率统计”、“线性规划”、“微积分初步”等现代数学内容,摆脱以往数学课程内容的被动与滞后,是本课程力图突破的一点。此外,本课程通过每个章节设置的“本章阅读”介绍著名数学家、数学趣题、数学发展史以及最新数学进展来拓展学生的视野,提高学习数学兴趣。 三、课程内容与数学计划 高一上学期 第一章.集合与命题 第二章.函数 第三章.不等式 第四章.三角函数

上海市高三数学竞赛解答 供参考

2017年上海市高三数学竞赛()解答(供参 考) 一、填空题:(本大题满分60分,前4小题每小题7分,后4小题每小题8分) 1、函数y = lg[arcsin(2x 2-x )] 的定义域是__________,值域是__________ . 【答案】]121(∪)021-[,,,]2 πlg ∞(,- 【提示】求定义域:]10(∈2(2 ,-x)x ,求值域: ]2 π 0(∈2arcsin(2 ,-x)x . 2、数列{}n a 是递增数列,满足:a n +12+a n 2+81 = 18(a n +a n +1) + 2a n a n +1 , n = 1,2,……,而且a 1 = 1,则数列{}n a 的通项公式a n = __________ . 【答案】a n = (3n -4)2 或者 (3n -2)2 【提示】(方法一)找规律+数学归纳法 / 代入检验。 计算可得:

归纳得:a n = (3n -4)2 或者 (3n -2)2(数学归纳法证明 / 代入检验略)。 (方法二)严格推导(注意舍去增根) 原方程变形可得:a n +12-(2a n +18)a n +1+a n 2-18a n +81 = 0 ; 由求根公式可得:2 1+)3±(=6±9=n n n n a a a a + ; 开方可得:|3±|=1+n n a a ; 计算可得:a 2 = 4或者16,当a 2 = 4,a 3 = 25;当a 2 = 16,a 3 = 49,

由已知数列{}n a 是递增数列,所以当n ≥ 3,n ∈N *时,3±= 1+n n a a , 进而3=1++n n a a , (小根不满足“数列{}n a 是递增数列”因此舍去); 可证数列n a 从第三项开始等差数列,验证可得前两项也符合,本题有两解。 3、用一张正方形纸片(不能裁剪)完全包住一个侧棱长和底边长均为1的 正四棱锥,则这个正方形的边长至少是__________ . 【答案】2 2 6+ 【提示】将正四棱锥的四条侧棱剪开,把四个侧面分别沿着各自的底边翻折下来,使得四个侧面等边三角形和底面正方形共面,那么能包住此“侧面展开图”图形的最小正方形即符合题意。 4、一个口袋中有10张卡片,分别写着数字0,1,2,……,9 ,从中任意

江苏省高等数学竞赛试题剖析

2010年江苏省高等数学竞赛试题(本科一级) 一.填空(每题4分,共32分) 1.() () 3 sin sin lim sin x x x x →-= 2.设函数,f ?可导,()()arctan tan y f x x ?=+,则y '= 3. 2cos y x =,则()n y = 4.21x x dx x e +=? 5. 4211dx x +∞=-? 6.圆222 222042219x y z x y z x y z +-+=? ?++--+≤?的面积为 7.设2,,x f x y f y ?? - ???可微,()()123,22,3,23f f ''==,则()() ,2,1x y dz == 8.级数()()1 111! 2!n n n n n ∞ =+--∑的和为 二.(10分)设()f x 在[]0,c 上二阶可导,证明:存在()0,c ξ∈, 使得()()()()()3 0212 c c c f x dx f f c f ξ''=+-? 三.(10分)已知正方体1111ABCD A B C D -的边长为2,E 为11D C 的中点,F 为侧面正方形11BCC B 的中点,(1)试求过点1,,A E F 的平面与底面ABCD 所成二面角的值。(2)试求过点1,,A E F 的平面截正方体所得到的截面的面积. 四(12分)已知ABCD 是等腰梯形,//,8BC AD AB BC CD ++=,求,,AB BC AD 的长,使得梯形绕AD 旋转一周所得旋转体的体积最大。 五(12分)求二重积分()22cos sin D x y dxdy +??,其中22:1D x y +≤ 六.(12分)应用高斯公式计算()222ax by cz dS ∑ ++??,(,,a b c 为常数) 其中222:2x y y z ∑++=.

江苏省第一届至第十届高等数学竞赛本科三级试题

江苏省第一届(1991年)高等数学竞赛 本科竞赛试题(有改动) 一、填空题(每小题5分,共50分) 1.函数sin sin y x x =(其中2 x π ≤ )的反函数为________________________。 2.当0→x 时,34sin sin cos x x x x -+x 与n x 为同阶无穷小,则n =____________。 3.在1x =时有极大值6,在3x =时有极小值2的最低幂次多项式的表达式是 _____________________________________。 4.设(1)()n m n n d x p x dx -=,n m ,是正整数,则(1)p =________________。 5. 22 2 [cos()]sin x x xdx π π - +=? _______________________________。 6. 若函数)(t x x =由?=--x t dt e t 102 所确定的隐函数,则==0 2 2t dt x d 。 7.已知微分方程()y y y x x ?'= +有特解ln x y x =,则()x ?=________________________。 8.直线21x z y =?? =?绕z 轴旋转,得到的旋转面的方程为_______________________________。 9.已知a 为单位向量,b a 3+垂直于b a 57-,b a 4-垂直于b a 27-,则向量b a 、的夹 角为____________。 10. =? ????????? ??+???? ??+???? ??+∞→n n n n n n 12222 2212111lim 。 二、(7分) 设数列{}n a 满足1,2,21≥+=->+n a a a n n n ,求n n a ∞ →lim 。 三、(7分)求c 的值,使? =++b a dx c x c x 0)cos()(,其中a b >。

高中数学竞赛教案讲义(7)解三角形

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2 c b a p ++=为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足) sin(sin a b a a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2-2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2 -2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+=

2019年上海市高中数学竞赛(新知杯)试题(附解答)

2019年上海市高中数学竞赛(新知杯)试卷 (2019年3月22日 星期日 上午8:30~10:30) 【说明】解答本试卷不得使用计算器 一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分) 1. 设1210,, ,(1,)a a a ∈+∞,则 1210 1210 20092009 2009 2009log log log log a a a a a a +++的最小值是 。 2. 已知,*x y N ∈,且1 2121999x y -+++=++++,则将y 表示成x 的函数,其解 析式是y = 。 3. 已知函数2 ()|2|f x x =-,若()()f a f b =,且0a b <<,则ab 的取值范围是 。 4. 满足方程2 2 22 13log [2cos ()]2cos ()4 xy y y xy + =-++的所有实数对(,)x y = 。 5. 若 []a 表示不超过实数 a 的最大整数,则方程 2 [tan ]2sin x x =的解是 。 6. 不等式22 3242x x ≤?+?的解集是 。 7. 设A 是由不超过2009的所有正整数构成的集合,即{1,2, ,2009}A =,集合L A ?, 且L 中任意两个不同元素之差都不等于4,则集合L 元素个数的最大可能值是 。 8. 给出一个凸10边形及其所有对角线,在以该凸10边形的顶点及所有对角线的交点为顶点的三角形中,至少有两个顶点是该凸10边形顶点的三角形有 个。 二、解答题 9.(本题满分14分)设函数()f x 定义于闭区间[0,1],满足(0)0,(1)1f f ==,且对任意 ,[0,1],x y x y ∈≤,都有22( )(1)()()2 x y f a f x a f y +=-+,其中常数a 满足01a <<,求a 的值。 10. (本题满分14分)如图,A 是双曲线2 214 x y -=的右顶点,过点A 的两条互相垂直的直线分别与双曲线的右支交于点,M N ,问直线MN 这样的定点,请说明理由;如果存在这样的定点P 11. (本题满分16分)设,A B 是集合12345{,,,,}a a a a a 的两个不同子集,使得A 不是B 的 子集,B 也不是A 的子集,求不同的有序集合对(,)A B 的组数。 12. (本题满分16分)设正整数构成的数列{}n a 使得1091081019k k k a a a --++ +≤对一切

高中数学竞赛教案讲义(17)整数问题

第十七章 整数问题 一、常用定义定理 1.整除:设a,b ∈Z,a ≠0,如果存在q ∈Z 使得b=aq ,那么称b 可被a 整除,记作a|b ,且称b 是a 的倍数,a 是b 的约数。b 不能被a 整除,记作a b. 2 带余数除法:设a,b 是两个给定的整数,a ≠0,那么,一定存在唯一一对整数q 与r ,满足b=aq+r,0≤r<|a|,当r=0时a|b 。3.辗转相除法:设u 0,u 1是给定的两个整数,u 1≠0,u 1 u 0,由2可得下面k+1个等式:u 0=q 0u 1+u 2,01且n 为整数,则k a k a a p p p n 2121 ,其中p j (j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。 6.同余:设m ≠0,若m|(a-b),即a-b=km ,则称a 与b 模同m 同余,记为a ≡b(modm),也称b 是a 对模m 的剩余。 7.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (modm),则y 1,y 2,…,y s 称为模m 的完全剩余系。 8.Fermat 小定理:若p 为素数,p>a,(a,p)=1,则a p-1≡1(modp),且对任意整数a,有a p ≡a(modp). 9.若(a,m)=1,则)(m a ≡1(modm), (m)称欧拉函数。 10.(欧拉函数值的计算公式)若k a k a a p p p m 2121 ,则 (m)=.)11(1 k i i p m 11.(孙子定理)设m 1,m 2,…,m k 是k 个两两互质的正整数,则同余组: x ≡b 1(modm 1),x ≡b 2(modm 2),…,x ≡b k (modm k )有唯一解, x ≡'1M M 1b 1+'2M M 2b 2+…+'k M M k b k (modM), 其中M=m 1m 2m k ;i M =i m M ,i=1,2,…,k ;i i M M '≡1(modm i ),i=1,2,…,k. 二、方法与例题 1.奇偶分析法。 例1 有n 个整数,它们的和为0,乘积为n ,(n>1),求证:4|n 。 2.不等分析法。 例2 试求所有的正整数n ,使方程x 3+y 3+z 3=nx 2y 2z 2有正整数解。

2016年上海市高中数学竞赛试题及答案

2016年上海市高中数学竞赛试题及答案 一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分) 1.已知函数()2f x ax bx c =++(0a ≠,,,a b c 均为常数),函数()1f x 的图象与函数()f x 的图象关于y 轴对称,函数()2f x 的图象与函数()1f x 的图象关于直线1y =对称,则函数 ()2f x 的解析式为 . 答案:()22 2.f x ax bx c =-+-+ 解 在函数()y f x =的表达式中用x -代替x ,得()2 1f x ax bx c =-+,在函数()1y f x =的 表达式中用2y -代替y ,得()2 2 2.f x ax bx c =-+-+ 2.复数z 满足1z =,2 22 3w z z =-在复平面上对应的动点W 所表示曲线的普通方程是 . 答案:2 2 1.25 y x += 解 设,z a bi w x yi =+=+,则22 1a b +=, ()()()() ()()()()()2 2 2 2 2 2 22 2222 333210. a bi x yi a bi a bi a bi a bi a bi a bi a bi a b abi -+=+- =+- ++-=+--=-+ 从而2 2 ,10x a b y ab =-=,于是()22 2 22224 1.25 y x a b a b +=-+= 3.关于x 的方程arctan 2arctan 26 x x π --= 的解是 . 答案:2log x = 解 因为( )()tan arctan 2tan arctan 2221x x x x --?=?=,所以arctan 2arctan 22 x x π -+= , 解得arctan 2,arctan 23 6 x x π π -= = ,则22log x x == 4.红、蓝、绿、白四颗骰子,每颗骰子的六个面上的数字为1,2,3,4,5,6,则同时掷这四颗骰子使得四颗骰子向上的数的乘积等于36,共有 种可能. 答案:48.

2018年江苏省高等数学竞赛本科一级试题与评分标准

2018本一试题解答与评分标准 一.填空题( 每小题4分,共20分) (1) 设()()()()12ln arctan ,,,1u x f u x y f x u x ??-+===+则 1 d d x y x == . (2) () 2 2 sin cos2d x x x π+=? . (3) () 2 20 1 d 1x x +∞ =+? . (4) 已知函数(),,F u v w 可微,()()0,0,01,0,0,02,u v F F ''==()0,0,03,w F '=函数 (),z f x y =由() 22223,4,0F x y z x y z x y z -+-+=确定,满足()1,20,f =则 ()1,2x f '= . (5) 设Γ是区域 (){}2 2,4,0x y x y y x +≤≤≤|的边界曲线,取逆时针方向, 则 ()()()() () 3 3 1e d e d y y x y y x x y xy y Γ -+-+++=? . 一.答案: (1) 1;5 (2) 2 ;23 π - (3) ;4π (4)2;- (5) 6.π 二. 解下列两题( 每小题5分,共10分) (1) 求极限 ()()()()2 132321lim ;24222n n n n n →∞?? ???-?- ? ????-??? (2) 求极限 () 2244 44lim sin .x y x xy y x y x y →∞ →∞ ++?++ 解 (1) 记 ()() 2 222 221321,242n n a n ???-= ?? ?因为 ()() () 2 212112k k k -?+<()*,k ∈N (1分)所以 ()()() ()()2 2 222 2 2321133557 21210,2462222n n n n n a n n n -?-???--<=???? ?<-(2分) 因为 () 2 21 lim 0,2n n n →∞ -=应用夹逼准则得 lim 0.n n a →∞= (2分) (2) 应用不等式的性质得 () 222222442222,2,x xy y x y xy x y x y x y ++≤++≤++≥(2分)

2018年江苏省高等数学竞赛本科一级试题与评分标准

2018年江苏省高等数学竞赛本科一级试题与评分标准

2018本一试题解答与评分标准 一.填空题( 每小题4分,共20分) (1) 设()()()()12ln arctan ,,,1u x f u x y f x u x ??-+===+则 1 d d x y x == . (2) () 2 2 sin cos2d x x x π+= ? . (3) () 2 20 1 d 1x x +∞ = +? . (4) 已知函数 () ,,F u v w 可微,()()0,0,01,0,0,02,u v F F ''==()0,0,03,w F '=函数 () ,z f x y =由() 2 2223,4,0 F x y z x y z x y z -+-+=确定,满足 ()1,20,f =则 ()1,2x f '= . (5) 设Γ是区域(){} 2 2,4,0x y x y y x +≤≤≤|的边界曲线,取 ()()()()()3 3 1e d e d y y x y y x x y xy y Γ -+-+++=?

解 (1) 记 ()() 2 222 221321, 242n n a n ???-= ?? ?因为()() () 2 212112k k k -?+<()* ,k ∈N (1分)所以 ()()() ()()2 2 222 2 2321133557 21210,2462222n n n n n a n n n -?-???--<= ???? ?<-(2分) 因为 () 2 21 lim 0,2n n n →∞ -=应用夹逼准则得 lim 0. n n a →∞ = (2分) (2) 应用不等式的性质得 ( ) 222222442222,2, x xy y x y xy x y x y x y ++≤++≤++≥(2分) () ()22224444 22 22211 0sin 2x y x xy y x y x y x y y x +++≤?+≤= ++,(1分) 因为 2 211lim 0,x y y x →∞→∞?? += ???应用夹逼准则得 () 2244 44lim sin 0.x y x xy y x y x y →∞ →∞ ++?+=+(2分) 三.(10分)已知函数()f x 在x a =处可导()a ∈R ,数列{}{},n n x y 满足: (),, n x a a δ∈-() ,n y a a δ∈+ ()0, δ>且 lim ,n n x a →∞=lim ,n n y a →∞= 试求 ()() lim .n n n n n n n x f y y f x y x →∞ -- 解 由 () f x 在 x a =处可导得 ()()()lim , x a f x f a f a x a →-'=- ( 2分) ()()()()lim , n n n f x f a f a f a x a -→∞ -''==- ()()()()lim , n n n f y f a f a f a y a +→∞ -''==- ( 2分)

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

上海市高中数学竞赛

上海市高中数学竞赛 说明:解答本试题不得使用计算器 一、填空题(本题满分60分,前4小题每题7分,后4小题每题8分) 1.方程组2 71211x x y x y ++?=??+=??的解集为 . 2.在平面直角坐标系中,长度为1的线段AB 在x 轴上移动(点A 在点B 的左边),点P 、Q 的坐标分别为(0,1)、(1,2),则直线AP 与直线BQ 交点R 轨迹的普通方程为 . 3.已知M 是椭圆x 216+y 29=1在第一象限弧上的一点,MN ⊥y 轴,垂足为N ,当△OMN 的面积最大时,它的内切圆的半径r = 4.已知△ABC 外接圆半径为1,角A 、B 、C 的平分线分别交△ABC 外接圆于A 1、B 1、C 1,则 AA 1cos A 2+BB 1cos B 2+CC 1cos C 2sin A +sin B +sin C 的值为 . 5.设f (x )=a sin[(x +1) π]+b 3x -1+2,其中a 、b 为实常数,若f (lg5)=5,则f (lg20)的值为 . 6.在平面直角坐标系中,O 为坐标原点,点A (3,a ),B (3,b )使∠AOB =45°,其中a 、b 均为整数,且a b >,则满足条件的数对(a ,b )共有 组. 7.已知圆C 的方程为x 2+y 2-4x -2y +1=0(圆心为C ),直线y =(tan10°)x +2与圆C 交于A 、B 两点,则直线AC ,BC 倾斜角之和为 . 8.甲、乙两运动员乒乓球比赛在进行中,甲必须再胜2局才最后获胜;乙必须再胜3局才最后获 胜.若甲、乙两人每局取胜的概率都为12,则甲最后获胜的概率是 . 二、解答题: 9.(本题满分为14分)对于两个实数a 、b ,min{a ,b }表示a 、b 中较小的数,求所有非零实数x , 使min{x +4x ,4}≥8·min{x ,1x }. 10. (本题满分为14分)如图,在△ABC ,Q 为BC 中点,点M ,N 分别在边AB ,AC 上,且

江苏省第一届至第十界高等数学竞赛本科一级真题

江苏省第一届(1991年)高等数学竞赛 本科竞赛试题(有改动) 一、填空题(每小题5分,共50分) 1.函数sin sin y x x =(其中2 x π ≤ )的反函数为________________________。 2.当0→x 时,34sin sin cos x x x x -+x 与n x 为同阶无穷小,则n =____________。 3.在1x =时有极大值6,在3x =时有极小值2的最低幂次多项式的表达式是 _____________________________________。 4.设(1)()n m n n d x p x dx -=,n m ,是正整数,则(1)p =________________。 5. 22 2 [cos()]sin x x xdx π π - +=? _______________________________。 6. 若函数)(t x x =由?=--x t dt e t 102 所确定的隐函数,则==0 22t dt x d 。 7.已知微分方程()y y y x x ?'= +有特解ln x y x =,则()x ?=________________________。 8.直线21 x z y =?? =?绕z 轴旋转,得到的旋转面的方程为_______________________________。 9.已知a v 为单位向量,b a ??3+垂直于b a ??57-,b a ??4-垂直于b a ??27-,则向量b a ??、的夹 角为____________。 10. =? ????????? ? ?+???? ? ?+???? ? ? +∞→n n n n n n 122 22 2 2 1211 1lim Λ 。 二、(7分) 设数列{}n a 满足1,2,21≥+=->+n a a a n n n ,求n n a ∞ →lim 。 三、(7分)求c 的值,使 ? =++b a c x c x 0)cos()(,其中a b >。

高中数学竞赛教案集

第六章 不等式 第一教时 教材:不等式、不等式的综合性质 目的:首先让学生掌握不等式的一个等价关系,了解并会证明不等式的基本性质ⅠⅡ。 过程: 一、引入新课 1.世界上所有的事物不等是绝对的,相等是相对的。 2.过去我们已经接触过许多不等式 从而提出课题 二、几个与不等式有关的名称 (例略) 1.“同向不等式与异向不等式” 2.“绝对不等式与矛盾不等式” 三、不等式的一个等价关系(充要条件) 1.从实数与数轴上的点一一对应谈起 0>-?>b a b a 0=-?=b a b a 0<-?x 从而2 2)1(+x >124++x x 小结:步骤:作差—变形—判断—结论

例三 比较大小1. 2 31-和10 解:∵ 232 31+=- ∵02524562)10()23(22<-=-=-+ ∴ 2 31-<10 2. a b 和m a m b ++ ),,(+∈R m b a 解:(取差) a b m a m b ++) () (m a a a b m +-= ∵),,(+∈R m b a ∴当a b >时 a b >m a m b ++;当a b =时a b =m a m b ++;当a b <时a b a 且1≠a ,0>t 比较t a log 21与2 1 log +t a 的大小 解:02 )1(212 ≥-=-+t t t ∴t t ≥+21 当1>a 时 t a log 21≤21log +t a ;当10<,那么a b <;如果a b <,那么b a >(对称性) 证:∵b a > ∴0>-b a 由正数的相反数是负数 0)(<--b a 0<-a b a b < 2.性质2:如果b a >,c b > 那么c a >(传递性) 证:∵b a >,c b > ∴0>-b a ,0>-c b ∵两个正数的和仍是正数 ∴+-)(b a 0)(>-c b 0>-c a ∴c a > 由对称性、性质2可以表示为如果b c <且a b <那么a c < 五、小结:1.不等式的概念 2.一个充要条件 3.性质1、2 六、作业:P5练习 P8 习题6.1 1—3 补充题:1.若142=+y x ,比较2 2y x +与 20 1 的大小

相关文档 最新文档