文档库 最新最全的文档下载
当前位置:文档库 › 轴1的结构设计以及计算

轴1的结构设计以及计算

轴1的结构设计以及计算
轴1的结构设计以及计算

1.8轴1的结构设计以及计算

轴1示意图

考虑到轴上的两个齿轮分别是由轴的两端装拆,并且0轴上的齿轮与1轴上的齿轮不发生干涉现象,其中齿轮2一端除了采用轴环轴肩定位以外,另一端可以采用垫定位

如果采用套筒定位的话,会使得零件之间的间距过大,这样会增加结构的重量,所以最好是采用圆螺母和止动动垫圈定位,圆螺母固定可靠,装拆方便,可以承受较大的轴向力

1.初步估算轴的最小直径

选择轴的材料为45钢,调质处理。由参考文献[2]表,于是得3/n

d≥,

C

p

故取()mm

118

27

1073-

.

39

≥取最小直径为60mm

-

=

.

56

d845

/

546

.

245

51

2.轴的结构设计

(1)拟定轴上零件的装配方案如上图所示

(2)根据轴向定位的要求确定轴的各段直径和长度

1)装轴承段:该段轴径由滚动轴承的内圈孔来决定,轴承型号为圆锥滚子轴承30214,尺寸为5.2612570d ??=??B D ,故取1d =70mm ,1l =93.5mm 2)此处存在轴肩知轴肩高度d 07.0h ≥,2d =68mm , 2l =4mm

3)装大齿轮2段:根据大齿轮设计尺寸,故3d =75mm ,已知齿轮轮毂的宽度为90mm ,轴段长度应比轮毂宽度小,故l 3=58mm

4)齿轮的右端采用轴肩定位。轴肩高度d 07.0h ≥知 4d =73mm ,4l =4mm 5)过渡段:根据装配关系,故5d =92mm ,l 5=94.5mm

6)齿轮的左端采用轴肩定位。轴肩高度d 07.0h ≥知 4d =78mm ,4l =4mm 7)装轴承段(第7段):该段轴径由滚动轴承的内圈孔来决定,轴承型号为圆柱滚子轴承NU216,尺寸为5.3514080d ??=??B D ,故取7d =80mm ,轴段3的长度由滚动轴承宽度B ,取7l =35.5mm , 8)齿轮5段,根据齿轮5设计轴段,故d 8=80mm ,长度不长于轮

毂宽度,故l 8=82mm (3)轴上零件的周向固定

齿轮与轴的周向固定采用平键联接。同时为了保证带轮与轴的良好对中性,根据3d =75mm 查文献【2】表6-1的平键截面22x14x100,采用H7/js6的配合,滚动轴承与轴的周向定位由过的配合来保证配合为js6,螺母采用螺纹联接 (4)定向轴肩处的圆角半径R 的值见表15-2。轴端倒角取 452?

3. 轴的受力分析以及轴的校核

1)作用在齿轮上的力

作用在齿轮4的力 N F F t t 2847034==

N

F F r r 1072834== N

F F a a 5.762834==

作用在齿轮5的力 N F F t t 304.1188143==

N F F r r 645.406343== N

F F a 656.28894a 3==

2)根据轴的结构图做出轴的结构简图。在确定的轴承的支点位置a=23mm ,因此作为简支梁的轴的支承跨距为m m 177938432=+=+L L

计算支承反力)()(322333213L L F L F L L L F t t H +=+++

mm

L mm

L mm L 938469321===

N

F H 65983-= N F F F F H t t H 160843234=--=

在垂直面上 由∑=0M 得

0)()(a3

32142132

12=-++-+++M

L L L F L L F M

L F V r a r

而 2

22a2d F M a = 2

33a3d F M a =求得=4V F 6430N

2r 343F F F F r V V +=+ 求得=

3V F 6479N

总支承反力: N

F F F V H 92472

3233=+=

N

F F F V H 173212

4

2

44=+=

4)画出弯矩图

mm

N L F M M H H H .455262133

/

3

=== mm

N L F M

M

H H H .1495812344

/

4

===

mm

N L F M V V .447051133== mm N L F M V V .602547344==

mm .3966762

a 3/

3N M M M V V =-= mm

.895273

a 4/4N M

M M V V =+=

故mm

N M M M V H .6380582

323

3=+=

mm

N M M

M V H .16126112

424

4

=+= mm

N M M M V H .60383323

/2

3

/

3

/

=+= mm

N M

M

M

V H .149827824

/24

/4

/

=+=

5)轴的强度校核低速小齿轮剖面,因弯矩大有转矩还有键槽引起的应力集中,故低俗小齿轮C 剖面为危险截面。

d

t d bt d

w 2)(1.04

--

=

对于单向转动的转轴,通常转矩按脉动循环处理,取折合系数为6.0=α,对弯扭合成最大截面C 左侧剖面

()

?

ασ2

2

T M

ca +=

其中d

t d bt d w 2)(1.04--

=,d=80mm,M=m ax M ,T=T 2

带入数据计算得=ca σ31.5MPa < []1-σ=60MPa 故安全

6)校核键的强度

齿轮和轴的配合键22x14x100, 3d =65mm, dhl

4p T =σ,求得16.60p =σMPa

查表6-2的[]p

σ

=100~120MPa 故强度足够

7)校核轴承寿命

查表13-7 轴承3==3368.0F F d 6287.96N

轴承4 ==4468.0F F d 11778.28N

N

F F F

a a a

52.607723/=-=向左

3/

452.17855d a d F F F ≥=+

因此左轴承被压紧,右端被放松。 故稳定轴向力

轴承3 3a F =52.17855/4=+a d F F N 轴承4 44d a F F ==11778.28N

因此轴承3为受载较大的轴承,按照轴承3计算

e F F a ≤=9.13

3故=p N

F F a 5.1932587.041.033=+

ε

???

? ??=p c n L h 6010

6

=5018.36h<38400h

故选择的轴承满足寿命要求。

钢筋混凝土盖板涵盖板计算

钢筋混凝土盖板涵盖板计算 根据本项目的实际情况和所处地理位置,选取荷载等级和环境类别(影响保护层厚度和钢筋混凝土构件的最大裂缝宽度值得选取);按照拟定的盖板混凝土等级、主筋的直径等参考《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中的3.1.4和3.2.3规定取相应的设计值;盖板容重和土容重可根据《公路桥涵通用设计规范》(JTG D60-2004)4.2.1中的规定取值(盖板容重一般取25KN/m3,土容重一般取18KN/m 3)。 根据《公路圬工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定:盖板按两端简支的板计算,可不考虑涵台传来的水平力。 一、外力计算 参考《公路桥涵通用设计规范》(JTG D60-2004)4.1.1和4.1.3规定; 永久作用:(1)土的重力=土的容重×填土高度(m)×单位宽度(m) (2)盖板自重=盖板容重×盖板平均厚度(m)×单位宽度(m) 可变作用:由车辆荷载引起的垂直压力

根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.4的规定: 计算涵洞顶上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下做30°角分布。当几个车轮的压力扩散线相重叠时,扩散面积以最外面的扩散线为准 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1关于车辆荷载的规定: 车辆荷载顺板跨长:La=13+2×填土高×tan30(m) 车辆荷载垂直板跨长:Lb=5.5+2×填土高×tan30(m) 车轮重: P=1100kN 车轮重压强: p=P÷(La×Lb)kN/㎡ 二、内力计算及荷载组合 1)由永久作用引起的内力:跨中弯矩 M1=(土的重力+盖板自重)×L2/8 ( KNm) 边墙内侧边缘处剪力 V1=(土的重力+盖板自重)×净跨径/2(KN) 2) 由车辆荷载引起的内力:跨中弯矩 M2=车轮压强× L2/8 ( KNm) 边墙内侧边缘处剪力 V2=车轮压强×净跨径

齿轮轴的结构设计

目 录 7.轴类零件设计 7.1 I 轴的设计计算 1.求轴上的功率,转速和转矩 由前面算得P 1=5.76KW ,n 1=440r/min ,T 1=1.35 10?N mm ? 2.求作用在齿轮上的力 已知高速级小齿轮的分度圆直径为d 1=70mm 而 F t 112d T = 70 130000 2?= =3625N F r =F =αtan t 3625? ?20tan =1319N 压轴力F=1696N 1—输送带 2—电动机 3—V 带传动 4—减速器 5—联轴器

3.初步确定轴的最小直径 现初步估算轴的最小直径。选取轴的材料为45钢,调质处理据[2]表15-3,取A 0=110,于是得: d min =A 0==33 11 440 0.75110n P 26mm 因为轴上应开2个键槽,所以轴径应增大5%-7%故d=20.33mm ,又此段轴与大带轮装配,综合考虑两者要求取d min =32mm ,查[4]P 620表14-16知带轮宽B=78mm 故此段轴长取76mm 。 4.轴的结构设计 (1)拟定轴上零件的装配方案 通过分析比较,装配示意图7-1 图7-1 (2)据轴向定位的要求确定轴的各段直径和长度 1)I-II 段是与带轮连接的其d II I -=32mm ,l II I -=76mm 。 2)II-III 段用于安装轴承端盖,轴承端盖的e=9.6mm (由减速器及轴的结构设计而定)。根据轴承端盖的拆卸及便于对轴承添加润滑油的要求,取端盖与I-II 段右端的距离为38mm 。故取l III II -=58mm ,

因其右端面需制出一轴肩故取d III II -=35mm 。 3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求并据d III II -=35mm ,由轴承目录里初选6208号其尺寸为 d B D ??=40mm ?80mm ?18mm 故d IV III -=40mm 。又右边采用轴肩定位取ⅤⅣ-d =52mm 所以l ⅤⅣ-=139mm ,ⅥⅤ-d =58mm ,ⅥⅤ-l =12mm 4)取安装齿轮段轴径为d ⅦⅥ-=46mm ,齿轮左端与左轴承之间用套筒定位,已知齿轮宽度为75mm 为是套筒端面可靠地压紧齿轮,此轴段应略短于齿轮宽度故取l ⅦⅥ-=71mm 。齿轮右边Ⅶ-Ⅷ段为轴套定位,且继续选用6208轴承,则此处d ⅧⅦ-=40mm 。取l ⅧⅦ-=46mm (3)轴上零件的周向定位 齿轮,带轮与轴之间的定位均采用平键连接。按d II I -由[5]P 53表4-1查得平键截面b 810?=?h ,键槽用键槽铣刀加工长为70mm 。同时为了保证带轮与轴之间配合有良好的对中性,故选择带轮与轴之间的配合 为 67 n H ,同样齿轮与轴的连接用平键14639??,齿轮与轴之间的配合为6 7n H 轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差为m6。 (4)确定轴上圆角和倒角尺寸 参考[2]表15-2取轴端倒角为2??45.其他轴肩处圆觉角见图。 5.求轴上的载荷 先作出轴上的受力图以及轴的弯矩图和扭矩图7-2

轴的设计计算.

轴的设计计算 【一】能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 【二】知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 【三】教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 【四】教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。 【五】教学任务及内容 任务 知识点 轴的设计计算 1. 轴的分类、材料及热处理 2. 轴的结构设计 3. 轴的设计计算 一、轴的分类 (一)根据承受载荷的情况,轴可分为三类 1、心轴 工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a )和固定心轴(b)。 2、传动轴 工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 (二)按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。如牙铝的传动轴。 二、轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求: 1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。

(一)轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 (二)轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。 3、为了便于轴上零件的装配和去除毛刺,轴及轴肩端部一般均应制出45o的倒角。过盈配合轴段的装入端常加工出带锥角为30o的导向锥面。 4、为便于加工,应使轴上直径相近处的圆角、倒角、键槽、退刀槽和越程槽等尺寸一致。 (三)提高轴的疲劳强度 轴大多在变应力下工作,结构设计时应尽量减少应力集中,以提高其疲劳强度。 1、结构设计方面轴截面尺寸突变处会造成应力集中,所以对阶梯轴相邻轴段直径不宜相差太大,在轴径变化处的过渡圆角半径不宜过小。尽量避免在轴上开横孔、凹槽和加工螺纹。在重要结构中可采用凹切圆角、过渡肩环,以增加轴肩处过渡圆角半径和减小应力集中。为减小轮毂的轴压配合引起的应力集中,可开减载槽。 2、制造工艺方面提高轴的表面质量,降低表面粗糙度,对轴表面采用碾压、喷丸和 表面热处理等强化方法,均可显著提高轴的疲劳强度。

盖板涵设计规范

盖板涵设计规范

盖板涵设计规范 篇一:钢筋混凝土盖板涵设计规范 设计说明 一、技术标准与设计规范: 1、交通部部颁标准《公路工程技术标准》JTJ 001-97 2、交通部部颁标准《公路桥涵设计通用规范》JTJ 021-89 3、交通部部颁标准《公路砖石及混凝土桥涵设计规范》JTJ 022-85 4、交通部部颁标准《公路桥涵地基及基础设计规范》JTJ 024-85 5、交通部部颁标准《公路桥涵施工技术规范》JTJ 041-2000 二、技术指标 1、净跨径:1.5、2.0、2.50、3.00、4.00米 2、斜度:0o、10o、20o、30o、40o(涵洞轴线与路线法线之夹角) 3、荷载等级:汽车——20级,挂车——100;汽车——超20级,挂车——120 4、涵洞净跨径、净空及地基土的容许承载力: 三、主要材料 四、设计要点 1、盖板采用简支板计算图式进行设计。按承载能力极限

状态和正常使用极限状态分别 进行计算和验算。 2、盖板的计算高度按d1计,为提高盖板强度在盖板跨中加厚为d2。预制盖板宽度为 99cm。 3、盖板底层设受力主筋,顶层设架立钢筋,各种钢筋沿板长和板宽方向均匀布置。 4、当涵洞为斜交时,涵身部分中板以正交预制板铺设,二端洞口部分以梯形现浇钢筋混凝土板构成,梯形板支撑端短边长度99Ld50(cm),钢筋构造见相应图纸。 5、路面车辆活荷载对涵顶的压力按30 o 角进行分布;填土内摩擦角为35 o,土容重 18KN/m。 6、涵台的计算按四铰框架模式进行。 7、当涵洞跨径L<2.0M时,支撑梁可采用块石砌筑。L=2.0M时宜采用钢筋混凝土浇 筑。 8、当涵洞过水流量按无压力式涵洞设计。确定涵底坡度时,一般应小于本图册水力计 算表中设定流速下的最大坡度imax,同时应大于表中的临界坡度Ik。当设计涵底坡度小于临界坡度时,泄水能力应予折减。 9、图册中涵洞洞口形式均采用八字墙式,如采用其它形

建筑结构设计计算题

模块三钢筋混凝土受弯构件计算能力训练(课题1-7)习题答案二、计算题 1.已知梁的截面尺寸为b×h=200mm×500mm,混凝土强度等级为C25,fc =mm2,, 钢筋采用HRB335,截面弯矩设计值M=。环境类别为一类。求:受拉钢筋截面面积。 解:采用单排布筋 将已知数值代入公式及 得 16510= 两式联立得:x=186mm A= 验算 x=186mm<= 所以选用325 A=1473mm2 2.已知一单跨简支板,计算跨度l=,承受均布荷载q k=3KN/m2(不包括板的自重),如图所示;混凝土等级C30,;钢筋等级采用HPB235钢筋,即Ⅰ级钢筋,。可变荷载分项系数γQ=,永久荷载分项系数γG=,环境类别为一级,钢筋混凝土重度为25KN/m3。 求:板厚及受拉钢筋截面面积As 解:取板宽b=1000mm的板条作为计算单元;设板厚为80mm,则板自重g k=25×=m2,跨中处最大弯矩设计值: 第2题图1 由表知,环境类别为一级,混凝土强度C30时,板的混凝土保护层最小厚度为15mm,故设=20mm,故h0=80-20=60mm ,fc=,ft=,

fy=210,= 查表知, 第2题图2 选用φ8@140,As=359mm2(实际配筋与计算配筋相差小于5%),排列见图,垂直于受力钢筋放置φ6@250的分布钢筋。 验算适用条件: ⑴ ⑵ 3.已知梁的截面尺寸为b×h=250mm×450mm;受拉钢筋为4根直径为16mm的HRB335钢筋,即Ⅱ级钢筋,,As=804mm2;混凝土强度等级为C40,;承受的弯矩M=。环境类别为一类。 验算此梁截面是否安全。 解:fc=mm2,ft= N/mm2,fy=300 N/mm2。由表知,环境类别为一类的混凝土保护层最小厚度为25mm,故设a=35mm,h0=450-35=415mm 则 4.已知梁的截面尺寸为b×h=200mm×500mm,混凝土强度等级为C40,,钢筋采用HRB335,即Ⅱ级钢筋,,截面弯矩设计值M=。环境类别为一类。 求:所需受压和受拉钢筋截面面积 解:fc=mm2,fy’=fy=300N/mm2,α1=,β1=。假定受拉钢筋放两排,设a=60mm,则h0=h-a=500-60=440mm 这就说明,如果设计成单筋矩形截面,将会出现超筋情况。若不能加大截面尺寸,又不能提高混凝土等级,则应设计成双筋矩形截面。 取

齿轮的参数代号图解计算方法

传动 形式 齿轮形状主要特点 两轴平行的齿轮传动直齿圆柱齿 轮传动 1、两轮轴线互相平行。 2、齿轮的齿长方向与齿轮轴线 互相平行。 3、两轮传动方向相反。 4、此种传动形式英勇最广泛。 直齿圆柱齿 轮传动 1、两轮轴线互相平行。 2、齿轮的齿长方向与齿轮轴线 互相平行。 3、两轮传动方向相反; 斜齿圆柱齿 轮传动 1、轮齿齿长方向线与齿轮轴线 倾斜一个角度。 2、与直齿圆柱齿轮传动相比, 同时啮合的齿数增多,传动平 稳,传动的扭矩也比较大。 3、运转时存在轴向力。 4、加工制造比直齿圆柱齿轮传 动麻烦。 斜齿圆柱齿 轮传动 非圆齿轮传 动 1、目前常见的非圆齿轮有椭圆 形、扇形。 2、当主动轮等速转动时从动轮 可以实现有规则的不等速转动。 3、此种传动多见于自动化机构。

人字齿轮传 动1、具有斜齿圆柱齿轮的优点,同时运转时不产生轴向力。2、适用于传递功率大,需作正反向运转的机构中。 3、加工制造比斜齿圆柱齿轮麻烦。 传动 形式 齿轮形状主要特点 两轴相交的齿轮传动交叉轴斜齿 轮传动 1、两轮轴线不再同一平面上, 或者任意交错,或者垂直交错。 2、两轮的螺旋角可以相等,也 可以不相等。 3、两轮的螺旋方向可以相同, 也可以不相同。 蜗杆传动 1、蜗杆轴线与蜗轮轴线成垂直 交错。 2、可以实现大的传动比,传动 平稳,噪声小,有自锁。 3、传动效率较低,蜗杆线速度 受一定限制。 直齿锥齿轮 传动 1、两轮轴线相交于锥顶点,轴 交角α有三种,α〉90°,α =90°(正交),α〈90°。 2、轮齿齿线的延长线通过锥点。

斜齿锥齿轮传动 1、轮齿齿线呈斜向,或者说,齿线的延长线不通过锥点,而是 与某一圆相切。 2、两轮螺旋角相等,螺旋方向相反。 弧齿锥齿轮传动 1、轮齿齿线呈弧形。 2、两轮螺旋角相等,螺旋方向 相反。 3、与直齿锥齿轮传动相比,同 时参加啮合的齿数增多,传动平稳,传动的扭矩较大。 齿轮几何要素的名称、代号 齿顶圆:通过圆柱齿轮轮齿顶部的圆称为齿顶圆,其直径用 d a 表示。 齿根圆:通过圆柱齿轮齿根部的圆称为齿根圆,直径用 d f 表示。 齿顶高:齿顶圆 d a 与分度圆d 之间的径向距离称为齿顶高,用 h a 来表示。 齿根高:齿根圆 d f 与分度圆 d 之间的径向距离称为齿根高,用 h f 表示。 齿顶高与齿根高之和称为齿高,以h 表示,即齿顶圆与齿根圆之间的径向距离。以上所述的几何要素均与模数 m 、齿数z 有关。 齿形角:两齿轮圆心连线的节点P处,齿廓曲线的公法线(齿廓的受力方向)与两节圆的内公切线(节点P 处的瞬时运动方向)所夹的锐角,称为分度圆齿形角,以α表示,我国采用的齿形角一般为20°。 传动比:符号i ,传动比i 为主动齿轮的转速n 1(r/min )与从动齿轮的转速n 2(r/min )之比,或从动齿轮的齿数与主动齿轮的齿数之比。 即i= n 1/n 2 = z 2/z 1

轴的设计计算

第四章:轴的设计计算 第一节:输入轴的设计 :输入轴的设计: :选取轴的材料和热处理方法: 选取轴的材料为45钢,经过调质处理,硬度240=HB 。 :初步估算轴的直径: 30min n P A d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为120,高速轴功率kW P 81.7=,min /500r n =, 代入数据: mm d .85.41500 81.71203min =?≥ 考虑到轴的外伸端上开有键槽,将计算轴颈增大3%~7%后,取标准直径为45mm 。 输入轴的结构设计: 输入轴系的主要零部件包括一对深沟球轴承,考虑到轴的最小直径为45mm ,而差速器的输入齿轮分度圆为70mm ,设计输入轴为齿轮轴,且外为了便于轴上零件的装卸,采用阶梯轴结构。 (1)外伸段: 输入轴的外伸段与带轮的从动齿轮键连接,开有键槽,选取直径为mm 45,长为mm 78。 (2)密封段:

密封段与油封毡圈5019974406/-ZQ JB 配合,选取密封段长度为mm 60,直径为mm 50。 (3)齿轮段: 此段加工出轴上齿轮,根据主动轮mm B 70=,选取此段的长度为mm 100,齿轮两端的轴颈为mm 5.12,轴颈直径为mm 63。 (4)左右两端轴颈段: 左右两端轴颈跟深沟球轴承6309配合,采用过度配合k6,实现径向定位,根据轴承,25mm B =端轴颈直径为mm 60,长度左端为mm 30和右端为mm 28。 (5)退刀槽: 为保证加工到位,和保证装配时相邻零件的端面靠紧,在齿轮段两端轴颈处加工退刀槽,选取槽宽为mm 5,槽深为mm 2。 (7)倒角: 根据推介值(mm ):50~30>d ,6.15.1或取C 。 80~50>d ,2取C 。 输入轴的基本尺寸如下表:

板涵、盖板涵设计要点及施工注意事项

板涵、盖板涵设计要点及施工注意事项(一) 一、类型 1、分离式基础钢筋混凝土盖板涵洞一般适用于涵顶填土厚度0.5m~4.5m。 2、整体式基础钢筋混凝土盖板涵洞一般适用于涵顶填土厚度2.5m~7.5m。 二、上部构造设计要点 1、装配式钢筋混凝土预制板按简支板计算内力,不考虑涵台传来的水平力。 2、盖板涵设计为变厚度板,根据内力计算分别确定跨中与板端的厚度 3、计算涵洞上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下按30°扩散,当几个车轮的扩散线相重叠时扩散面积以最外边扩散线为准。 4、盖板上小填土为0.5m。 5、预制盖板按99cm和74cm两种宽度绘制,若需要变更盖板宽度时,可参照本图的陪筋根数,按实际板宽进行折算。 6、当斜交涵洞时,洞口两端盖板设计为梯形盖板,可预制安装亦可现场浇筑。 二、下部构造设计要点 1、计算涵台内力时,将分离式基础盖板涵结构型式简化成盖板与涵底铺砌为横向支撑,涵台为上下端简支的竖梁,承受台后的水平压力;对整体式基础盖板涵涵洞,按一端简支,一端固定的竖梁计算。 2、台后荷载换算成土柱高度,计算台后土压力。 3、涵洞之基底应力超出本图拟定的土的基底应力容许值范围后,不能直接使用。此时要求提高土基承载能力,在基底设置砂砾石或碎石垫层或基层材料,提高基底土承载能力。 4、部分涵顶填土厚度较小的涵洞,在荷载作用下台身产生较大的偏心距,设计适当加大了按弯曲抗拉强度验算条件计算的台身宽度。 板涵、盖板涵设计要点及施工注意事项(二) 1、涵顶填土对涵洞的竖向压力按土柱重力计算,车辆荷载以车轮着地面积的边缘向下按30o 角度分布。 2、钢筋混凝土板(明)涵,跨径1.5m者,板块间无横向联系,按单块受力计算;跨径2、 3、4 m者,板块间设企口缝,用企口榫槽混凝土连接,车辆荷载横向分布按铰接板计算。截面按叠合板设计,考虑4 cm厚的涵面混凝土铺装层参与预制板共同作用。因此要求涵面铺装层与预制板紧密结合。 3、钢筋混凝土盖板(暗)涵板块间无横向联系,按单块板受力计算,且按不同填土高度计算盖板厚度和配筋。 4、涵台利用盖板及涵底铺砌(或支撑梁)作为上、下端的支撑,构成框架体系,涵台作为上、下端简支承受台背水平土压力的竖梁进行计算。 5、为使涵台与盖板连接起到支撑作用,涵台顶面作成椅背与盖板顶面齐平抵紧。也可采用栓钉连接的方式,此时台帽应预埋与盖板锚栓孔位置相对应的锚栓钢筋。 6、对于钢筋混凝土板涵,在台帽上设置三角垫层,以使涵面形成1.5%的横坡。 7、台帽或涵台顶面,应铺设厚度不小于1cm的油毛毡垫层。 8、为了对涵洞下端起支撑作用,涵底必须铺砌。不作铺砌时,也必须每隔2~3m砌筑一条30×40cm的浆砌块石或混凝土支撑梁。 9、钢筋混凝土板涵的地基承载力不得低于0.2MPa。钢筋混凝土盖板涵涵台尺寸,大多数情况下是受地基承载力控制。当地基承载力不足时,应进行换土或另行计算尺寸。 10、盖板预制时必须在混凝土达到设计强度的70%后才允许脱底模、堆放和运输。堆放和运输时,必须在盖板端部用两点搁支,并不得使上、下面倒置。

建筑结构设计计算书

第一部分建筑设计说明 1.1.总平面设计 本设计为一幢7层宾馆,首层层高为 4.5m,二至七层层高均为3.6m,考虑通风和采光要求,采用了南北朝向。设计室内外高差为 0.45m,设置了3级台阶作为室内外的连接。 1.2.平面设计 本宾馆由客房及其他辅助用房组成。设计时力求功能分区明确,布局合理,联系紧密,尽量做到符合现代化宾馆的要求。 (1)使用部分设计 1.客房:客房是本设计的主体,占据了本设计绝大部分的建筑面积。考虑到保证有足够的采光和较好的通风要求,故将宾馆南北朝向,东西布置。 2.门厅:门厅是建筑物主要出入口的内外过渡,人流分散的交通枢纽,对于宾馆而言,门厅要给人一种开阔的感觉,给人舒适的第一感觉,因此,门厅设计的好坏关系到整幢建筑的形象。 (2)交通联系部分设计 走廊连接各个客房、楼梯和门厅各部分,以解决房屋中水平联系和疏散问题。过道的宽度应符合人流畅通和建筑防火的要求,本设计中走廊宽度为2.4m。 楼梯是建筑中各层间的垂直联系部分,是楼层人流疏散必经通道。本方案中设有三部双跑楼梯以满足需求。 为满足疏散和防火要求,本宾馆设置了两部电梯。 (3)平面组合设计 该宾馆采用内廊式,由于本建筑的特殊功能,各个客房与服务台都需要有必要的联系。 1.3.立面设计 本方案立面设计充分考虑了宾馆对采光的要求,立面布置了很多

推拉式玻璃窗,样式新颖。通彻的玻璃窗给人一种清晰明快的感觉。 在装饰方面采用乳白色的外墙,窗框为银白色铝合金,色彩搭配和谐,给人一种亲切和谐放松自由的感觉,一改过去的沉闷和死板,使旅客可以轻松自在的在宾馆休息与生活。 1.4.剖面设计 根据采光和通风要求,各房间均采用自然光,并满足窗地比的要求,窗台高900mm。 屋面排水采用有组织内排水,排水坡度为2%,结构找坡。 为了符合规范要求,本设计中采用了两部电梯,满足各分区消防和交通联系的要求。 1.5.建筑设计的体会 本建筑在设计的过程中注意到总平面布置的合理性、交通联系的方便,达到人流疏散和防火的要求,对房间的布置及使用面积的确定,达到舒适、方便。立面的造型及周围的环境做到相互协调;整个建筑满足各方面的需求。使人,建筑和环境进行完美的结合。 本次建筑设计使我们把所学到的知识运用到其中,并通过翻阅大量的资料及在老师的指导下,设计中所遇到的问题得到一一解决。这次设计让我受益匪浅,既巩固了我们的专业知识,又积累了很多的经验。

盖板涵设计要点及施工注意事项(矩形板+异型板)

板涵、盖板涵设计要点及施工注意事项 一、类型 本图按涵顶填土高度设计为两种型式 1、分离式基础钢筋混凝土盖板涵洞一般适用于涵顶填土厚度0.5m~4.5m。 2、整体式基础钢筋混凝土盖板涵洞一般适用于涵顶填土厚度2.5m~7.5m。 二、上部构造 (一)设计要点 1、装配式钢筋混凝土预制板按简支板计算内力,不考虑涵台传来的水平力。 2、盖板涵设计为变厚度板,根据内力计算分别确定跨中与板端的厚度 3、计算涵洞上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下按30°扩 散,当几个车轮的扩散线相重叠时扩散面积以最外边扩散线为准。 4、盖板上最小填土为0.5m。 5、预制盖板按99cm和74cm两种宽度绘制,若需要变更盖板宽度时,可参照本图的陪筋 根数,按实际板宽进行折算。 6、当斜交涵洞时,洞口两端盖板设计为梯形盖板,可预制安装亦可现场浇筑。 (二)盖板主要材料 (三)施工要点 1、必须在预制盖板的强度到达设计强度的70%后,方能脱模吊运。 2、盖板块件堆方时得采用两点搁置,可用钢丝绳吊装。 3、盖板上的帽石可就地浇筑安装,亦可预制砌筑。 三、下部构造

(一)设计要点 1、计算涵台内力时,将分离式基础盖板涵结构型式简化成盖板与涵底铺砌为横向支撑, 涵台为上下端简支的竖梁,承受台后的水平压力;对整体式基础盖板涵涵洞,按一端简支,一端固定的竖梁计算。 2、台后荷载换算成土柱高度,计算台后土压力。 3、涵洞之基底应力超出本图拟定的土的基底应力容许值范围后,不能直接使用本图。此 时要求提高土基承载能力,在基底设置砂砾石或碎石垫层或基层材料,提高基底土承载能力。 4、部分涵顶填土厚度较小的涵洞,在荷载作用下台身产生较大的偏心距,设计适当加大 了按弯曲抗拉强度验算条件计算的台身宽度。 5、图中未附涵台及一字墙勾缝工程数量,设计时可按具体尺寸予以计算。 (二)主要材料 (三)施工要求 1、盖板安装完毕后得用30号水泥砂浆充填台背与盖板间的空隙,当其强度达设计值的 70%后,方能于台后进行填土,要求在不小于两倍孔径范围内,采用透水性能良好的砂质土或砂砾土等,对称分层夯实。 2、涵台台身及基础应根据土质情况,每隔4~6m设沉降缝一道,缝宽2cm,用沥青麻絮 和其它具有弹性的不透水材料填塞。 3、分离式基础盖板涵洞铺砌采用7.5号砂浆砌40cm双层片石,砌筑时应保证砂浆饱满, 以起到支撑梁及承受冲刷的作用。

建筑结构设计计算书(书库设计)

目录 设计资料 (1) 楼盖平面布置 (2) 板的设计 (3) 次梁的设计 (6) 主梁的设计 (9) 楼梯设计 (15) 雨篷设计 (19)

设计资料 1.建设地点:烟台市区 2.楼面做法:水磨石地面、钢筋混凝土现浇板,20mm 石灰砂浆抹底。 3.层高:4.5m ;门:宽×高=3300mm ×3000mm ;楼梯位置见图,楼梯尺寸自定。 4.墙体为370mm 砖砌体,柱截面尺寸为400mm ×400mm 5.雨棚悬挑长度为1200。 6.使用用途为书库。 活荷载:板/次梁/主梁 5.0/5.0/5.0 L1×L2=7200mm ×6900mm 混凝土强度等级C30 钢筋品种:板,HPB300;梁,HRB500。 7200720072007200 72006900 69006900 楼盖的结构平面布置 主梁沿横向布置,次梁沿纵向布置。主梁的跨度为6.9m ,次梁的跨度为7.2m ,主梁每跨内布置两根次梁,板的跨度为2.3m ,L02/L01=7.2/2.3=3.13>3,因此按单

向板设计。 (1)按高跨比条件,要求板厚h ≥2300/40=57.5,对民用建筑的楼盖板要求h ≥60取h=80mm 。 (2)次梁截面高度应满mm l l h )600~400(12/7200~18/720012/~18/00===。考虑到楼面可变荷载比较大,取mm h 500=。截面宽度满足b=h/3~h/2=500/3~500/2=167~250,则取为mm b 200=。 (3)主梁的截面高度应mm l l h )690~460(10/6900~15/690010/~15/00===,取 mm h 600=。截面宽度取)(mm h h b 300~2002600~36002/~3===,则取为250b mm =。 板的设计 荷载 板的永久荷载标准值: 水磨石面层 2/65.0m KN mm 80钢筋混凝土板 2/22508.0m KN =?

一级直齿圆柱齿轮减速器输入轴组合结构设计计算说明书

一级直齿圆柱齿轮减速器输入轴组合 结构 设计计算说明书

2、设计步骤 (1)根据已知条件计算传动件的作用力。 ① 选择直齿圆柱齿轮的材料: 传动无特殊要求,为便于制造采用软齿面齿轮,由表5-1,大齿轮采用45#钢正火,162~217HBS ; ② 直齿轮所受转矩n P T 6 1055.9?==9.55×106×3.3/750=42020N.mm ; ③ 计算齿轮受力: 齿轮分度圆直径:d=mz 3=3×25=75mm 齿轮作用力:圆周力F t =2T/d=2×42020/75=1121N 径向力F r =F t tan α=1120.5×tan20°=408N ; (2)选择轴的材料,写出材料的机械性能: 选择轴的材料:该轴传递中小功率,转速较低,无特殊要求,故选择45优质碳素结构钢调制处理, 其机械性能由表8-1查得:σB =637MPa,σs =353MPa, σ-1=268MPa, τ-1=155MPa 由表1-5查得:轴主要承受弯曲应力、扭转应力、表面状态为车削状态,弯曲时: 34.0=σψ,扭转时: 34.0=τψ; (3)进行轴的结构设计: ① 按扭转强度条件计算轴的最小直径d min ,然后按机械设计手册圆整成 标准值: 由式(8-2)及表8-2[τT ]=30MPa ,A 0=118 得d min =A 0=118×=19.34mm, 圆整后取d min =20.0mm 计算所得为最小轴端处直径,由于该轴段需要开一个键槽,应将此处轴径增大3%~5%,即d min =(1+5%)d=21.0,圆整后取d min =25.0mm ; ② 以圆整后的轴径为基础,考虑轴上零件的固定、装拆及加工工艺性等 要求,设计其余各轴段的直径长度如下: 1) 大带轮开始左起第一段: 带轮尺寸为:d s =25mm ,宽度L=65mm 并取第一段轴端段长为l 1=63mm ; 2) 左起第二段,轴肩段: 轴肩段起定位作用,故取第二段轴径d 2=30mm 。由l 2=s-l/2-10=57.5mm ,取l 2=57.5mm ; 3) 左起第三段, 轴承段: 初步轴承型号选择,齿轮两侧安装一对6207 型(GB297-84)深沟球轴承。其宽度为17mm ,左轴承用轴套定位,右轴承用轴肩定位。 该段轴径d 3= 35mm ; 4) 左起第四段,齿轮轴段: 取轴径d 4=38mm ,齿轮宽度B=80mm ,则取l 4=78mm ; 5) 左起第五段,轴环段: 取轴径d 5=44mm ,l 5=10mm ; 6) 左起第六段,轴肩段: 取轴径d 6=40mm ;

盖板涵结构设计计算

4.8米净跨径明盖板涵整体计算 一.盖板计算 1.设计资料 汽车荷载等级:公路-I级;环境类别:I类环境; 净跨径:L =4.8m;单侧搁置长度:0.30m;计算跨径:L=5.1m; 盖板板端厚d 1=40cm;盖板板中厚d 2 =40cm;盖板宽b=6.60m;保护层厚度c=4cm; 混凝土强度等级为C30;轴心抗压强度f cd =13.8Mpa;轴心抗拉强度f td =1.39Mpa; 主拉钢筋等级为HRB335;抗拉强度设计值f sd =280Mpa; 主筋直径为25mm,外径为27mm,共45根,选用钢筋总面积A s =0.022091m2 涵顶铺装厚H 1=15cm;涵顶表处厚H 2 =1cm; 盖板容重γ 1=25kN/m3;涵顶铺装容重γ 2 =25kN/m3;涵顶铺装容重γ 3 =1kN/m3 根据《公路圬工桥涵设计规》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定:盖板按两端简支的板计算,可不考虑涵台传来的水平力

2.外力计算 1) 永久作用 (1) 涵顶铺装及涵顶表处自重 q=(γ 2·H 1 +γ 3 ·H 2 )·b=(25×0.15+1×0.01)×6.60=24.82kN/m (2) 盖板自重 g=γ 1·(d 1 +d 2 )·b/2/100=25×(40+40)×6.60/2 /100=66.00kN/m 2) 由车辆荷载引起的垂直压力(可变作用) 根据《公路桥涵设计通用规》(JTG D60-2004)中4.3.1关于车辆荷载的规定:车辆荷载顺板跨长 L a =0.2m 车轮重 P=280kN 根据《公路桥涵设计通用规》(JTG D60-2004)中4.3.2关于汽车荷载冲击力的规定:汽车荷载的局部加载,冲击系数采用1.3 车轮重压强

建筑结构设计计算步骤探讨

新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。以SATW软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。 1.完成整体参数的正确设定 计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。 (1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确 反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2 条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9 倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x, y 向的有效质量系数是否大于0.9 。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9 ,若小于0.9 ,可逐步加大振型个数,直到x,y 两个方向的有效质量系数都大于0.9 为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3 倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。 (2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15 度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。 (3)结构基本周期是计算风荷载的重要指标。设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。 上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。 2. 确定整体结构的合理性 整体结构的科学性和合理性是新规范特别强调内容。新规范用于控制结构整体性的

盖板涵计算书很全面

盖板涵计算书(参考版) 一、盖板计算 1、设计资料

其中: ①汽车荷载等级通过《公路桥涵设计通用规范》(JTG D60-2004)中 4.3.1所得: 砼轴心抗压强度、抗拉强度通过《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中3.1.4所得: ②安全结构重要性系数通过《公路桥涵设计通用规范》(JTG D60-2004)中1.0.9和4.1.6所得: ③环境类别通过《混凝土结构设计规范》(JTG D60-2004)中3.5.2所得:

④混凝土轴心抗压、抗拉强度通过《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中3.1.4所得:

⑤各结构层容重通过《公路桥涵设计通用规范》(JTG D60-2004)中 4.2.1所得: 根据《公路污工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定: 盖板按两端简支的板计算,可不考虑涵台传来的水平力。

5.0m ×2.5m 盖板涵洞整体布置图 2、外力计算 1)永久作用 (1)竖向土压力 q=K ×γ2×H =1.067965×20×0.5=10.68 kN/m (2)盖板自重 g=γ1×d=25×0.65=16.25 kN/m 2)有车辆荷载引起的垂直压力(可变作用) 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.4的规定:

计算涵洞顶上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下做30 °角分布。当几个车轮的压力扩散线相重叠时,扩散面积以最外面的扩散线为准。 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1关于车辆荷载的规定: c 轮为汽车轮胎在行车方向的着地长度 (m) ,d 轮 为汽车轮胎宽度 (m)。 车辆荷载顺板跨长: La=c 轮+2×H ×tan30°=0.2+2×0.5 m 车辆荷载垂直板跨长: Lb=d 轮+2×H ×tan30°=0.6+2×0.5m 单个车轮重: P=70*1.3=91 kN 车轮重压强: p=a b =P L L 91/(0.77735×1.17735)= 99.43 kN/m 2

浅谈建筑结构设计中的电算

浅谈建筑结构设计中的电算 摘要:在建筑结构设计计算过程中,总信息中参数的正确设定和电算结果正确的判断至关重要。本文对总信息中的参数的设定,及建筑结构规范中用于控制结构整体性的主要指标作了阐述,供相关人员参考。 关键词:总信息参数;周期比、位移比、刚度比、剪重比 结构计算复杂多样,我们应根据规范要求对建筑结构进行合理的设计,从整体到局部、分层次完成。在建筑结构设计计算过程中总信息中参数的正确设定和电算结果正确的判断至关重要。 1.总信息中参数的正确设定:前提条件、很重要,否则计算无意义。 1)混凝土容重宜取26~30:填写混凝土容重时,应考虑建筑粉刷或装饰面层的重量,且梁、柱、剪力墙截面尺寸越小容重越大,如贴面砖、花岗石,容重还要加大,设计人应综合考虑本工程梁、柱、剪力墙的截面尺寸大小及面层材料,确定一个较合适的混凝土容重值。 2)周期折减系数:应予以折减,否则会导致地震作用偏小,应根据本工程填充墙的多少来确定周期折减系数值,填充墙多取小值,填充墙少取大值,《高层建筑混凝土结构技术规程JGJ 3—2002》3.3.16条规定“计算各振型地震影响系数所采用的结构自振周期应考虑非承重墙体的刚度影响予以折减”是强制性条文,一般框架结构取0.6~0.9;剪力墙结构取0.9~1,剪力墙结构中如是全剪力墙(即无非承重墙体的)结构,周期折减系数才取1,一般其折减系数也应小于1;框剪结构取0.7~0.9。 3)计算结构的周期、位移、层刚度比时,应采用刚性楼板假定。如楼板开有大洞或楼板不连续,应再按弹性楼板计算结构内力。 4)振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。 ①振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步

轴的结构设计范例

四、低速轴系的结构设计 1、根据轴的工作条件,选择材料及热处理方法,确定许用应力,由(二)(三)已算得从动齿轮转速n 2=71.7r/min 。齿轮分度圆直径d 2=360mm 。选用45号钢调质。查①表11-1得抗拉强度MPa 650b =σ,查①表11-9得许用弯曲应力[]MPa 60b 1=-σ。 2、按扭转强度估算最小直径 由(二)知,P 2=3.87kw ,T 2=516.1N.m 查①表11-5取A=110,按①式(11-3)计算得: mm 57.417 .7187.3110n P A d 33 2==≥ 考虑轴和联轴器用一个键联接,故将轴放大5%并取标准值,即取d=45mm 。 3、轴的结构设计 (1)将轴设计成阶梯轴,按T=516.1N.m ,从②查用TL8型弹性联轴器,孔径为45mm ,长L=112mm ,与轴头配合长度为84mm 。取轴头直径为45mm ,故靠近轴头的轴身直径为52mm ,轴颈直径取55mm 。轴两端选用6011型轴承,轴承宽度B=18mm ,外径D=90mm 。轴承由套筒和轴肩实现轴向定位,圆角r=1mm 。取齿轮轴头直径为60mm ,定位环高度h=5mm ,其余圆角r=1.5mm ,挡油盘外径取D=89mm 。 (2)在(三)已经求得轮毂长为90mm ,因此轴头长度为88mm ,轴颈长度与轴承宽度相等为18mm ,齿轮两端与箱体内壁间距离各取15mm ,由于转速较低,故轴承用润滑脂,所以轴承端面与箱体内壁距离取10mm 。这样可定出跨距为158mm 。伸出箱体的轴段长度取44mm 。为了保证轴端挡圈只压在半联轴器上,应将头长度取短一些,故取轴头长度为75mm 。 3、由于是单级齿轮减速器,因此齿轮布置在中央,轴承对称布置,齿轮与轴环、套筒实现轴向定位,以平键联接及选用过渡配合H7/n6实现周向固定。齿轮轴头有装配锥度,两端轴承分别以轴肩和套筒实现轴向定位,采用过盈配合k6实现周向固定。整个轴系以两端轴承盖实现轴向定位,联轴器以轴肩、平键和选用过渡配合H7/k6实现轴向定位和周向固定。 4、草图如下:

盖板涵说明

钢筋混凝土盖板涵设计说明 一.技术标准与设计规范 1.《城市道路工程设计规范》(CJJ37-2012)。 2.《公路桥涵设计通用规范》JTG D60-2004。 3.《公路圬工桥涵设计规范》JTJ D61-2005。 4.《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004。 5.《公路涵洞设计细则》JTG/T D65-04-2007。 6.《公路桥涵施工技术规范》JTJ 041-2000。 二.设计要点 1. 技术指标 ①设计荷载:人群荷载:m2; ②净跨:米。 ③净高:、、米。 ④暗涵填土厚度:净跨米为~15米。 ⑤设计参数:土壤内摩擦角Ψ=35°。 2. 装配式钢筋混凝土盖板按两端简支板计算内力,不考虑涵台的水平压力。 3. 计算暗涵盖板内力时,涵洞顶上活载引起的竖向土压力,按车轮着地面积的边缘向下作30°角分布计算。明涵盖板则按45°角分布计算。 4. 涵台的计算按四铰框架模式进行,涵台按上、下端简支的竖梁计算。 5. 预制盖板按99厘米宽度计算及设计。 6. 为了配合路面横坡,设计明涵时应调节涵台身的高度,使台帽顶面做成与路面相一致的横坡。位于曲线段上的明涵,当需设置超高时,可用调节台帽或台身高度及台帽面坡的方法与超高横坡相适应。 7. 本图按路基边坡1:,1:设计。洞口建筑采用八字翼墙及一字墙锥坡形式; 三.建筑材料 1.洞身建筑:台身及分离式基础采用C20混凝土,整体式基础采用C20及C25混凝土,台帽采用C30混凝土,盖板采用C30混凝土,涵底铺砌采用号浆砌片石。盖板明涵顶及搭板范围内采用C40防水砼浇筑。 2.洞口建筑:除帽石用C25混凝土、勾缝采用M10砂浆,八字翼墙墙身C20砼、基础采用C20片石砼外,其余用浆砌片石。 四. 施工要求: 1. 必须在预制盖板的强度达到设计强度的70%后,方能脱模、吊运及堆放。预制盖板堆放时应在板块端部采用两点搁支,不得将顶底面倒置。 2. 明涵盖板顶面应进行拉毛处理,以使新旧混凝土紧密结合。 3. 盖板安装前,板端与台帽之间留6厘米空隙,待盖板安装好后现浇C20小石子砼填塞封头,使板端与台墙顶紧。当盖板与台帽间的C20小石子砼封头、涵底铺砌砂浆及涵台台身强度均达到设计值75% 以上时,方能于台后进行填土。台后填土顺路线方向长度,应自台身起,顶面不小于涵台高度加2米,底面不小于2米。要求采用透水性良好的材料作填料,其内摩擦角不小于35°,分层夯实,密实度应达到96 %。本图未附台后排水构造,施工时按常规方法处理。 4. 涵洞洞身两侧填土应对称均衡分层夯实,其每侧长度不应小于洞身两侧填土高度的一倍,压实度不小于96%。 5. 地基承载力达不到设计值要求时,应采取相应的处理措施。除了地基土的容许承载力基底压应力相差不大时,可采用加宽基础或做整体式基础外,可采用夯实法、砂(土)桩挤密法、砂垫层法(换土)、旋喷法等方法进行加固处理。 6. 砌筑用片石的石材强度等级不小于MU30。 7. 除岩石地基上的涵洞不设沉降缝外,洞身和基础应根据地基的土质情况每隔4~6米设沉降缝一道,翼墙与台墙设沉降缝隔开。沉降缝应贯穿整个断面(包括基础),缝宽1~2厘米,缝内用沥青麻絮填塞。 8. 位于陡坡上的涵洞,当洞底纵坡大于5%时,涵底宜每隔3~5m设置消能横隔墙或把基础做成阶梯形。当洞底纵坡大于10%时,涵洞洞身及基础应分段做成阶梯形,前后两节涵洞盖板的搭接高度不应小于其厚度的1/4。 9. 在涵台帽顶盖板支承宽度范围垫两层油毡作为支座。 10.斜交涵洞时,洞口两端设计为梯形盖板,施工时应采用现场浇筑的方法。 11.涵底铺砌采用砂浆40厘米厚片石,砌筑时必须保证砂浆饱满,以起到支撑梁及承受冲刷的作用。 12.施工时应采取可行的措施确保基础与台身、台身和台帽之间的连接牢固。

相关文档