文档库 最新最全的文档下载
当前位置:文档库 › 云大数学建模实验三

云大数学建模实验三

云大数学建模实验三
云大数学建模实验三

1.有10个同类企业的生产性固定资产年平均值和工业总产值资料如下:

企业编号

生产性固定资产价值(万元)

工业总产值(万元)

1 318 524

2 910 1019

3 200 638

4 409 81

5 5 415 913

6 502 928

7 314 605

8 1210 1516

9 1022 1219 10 1225 1624 合计

6525

9801

(1)说明两变量之间的相关方向; (2)建立直线回归方程; (3)计算估计标准误差;

(4)估计生产性固定资产为1100万元时总产值(因变量)的可能值。

答:(1)利用MA TLAB 作图:

x=[318 910 200 409 415 502 314 1210 1022 1225]';

y=[524 1019 638 815 913 928 605 1516 1219 1624]';

plot(x,y,'go')

由上MA TLAB 生成的图形可知,生产性固定资

产价值与工业总产值之间的关系是非线性的,但是工业总产值随生产性固定资产价值的增加而增加,由此可知,两变量之间存在正相关。

(2)若设'生产型固定资产价值'为x,'工业总产值'为y,则回归模型为:y=β0+β1x MATLAB 的实现程序如下:

x=[318 910 200 409 415 502 314 1210 1022 1225]'; y=[524 1019 638 815 913 928 605 1516 1219 1624]'; x=[ones(10,1),x];

[b,bint,r,rint,stats]=regress(y,x); b,bint,stats,rcoplot(r,rint) 解得:b =395.5670 0.8958 bint =210.4845 580.6495 0.6500 1.1417 stats = 1.0e+04 *

0.0001 0.0071 0.0000 1.6035 则y=395.567+0.8958x

400

600800

1000

1200

1400

1600

1800

(3)由于方差n

r

d

∑=

2

,利用MATLAB 求得d=113.2595

(4)利用(2)求得的回归方程,可以得出当x=1100时,y=1380.9万元 故,当生产型固定资产为1100万元时,总产值可能为1380.9元。

2.设某公司下属10个门市部有关资料如下:

(1)确立适宜的回归模型;

(2)计算有关指标,判断这三种经济现象之间的相关紧密度。

(1)设销售利润率为y,职工平均销售额为x1,流通费用水平为x2,回归模型为

利用SPSS 进行回归

故α=-6.7691 b 1=2.9070 b 2=0.9578, y=-6.7691+2.9070x 1+0.9578x 2

(2)有显著性水平可知,流通费用水平的显著性水平为0.131>0.05,对销售利润率影响不大,职工平均销售额的显著性水平为0,对销售利润率影响很大。

2

211x b x b y ++=α

3.为比较5种品牌的合成木板的耐久性,对每个品牌取4个样品作摩擦实验测量磨损量,得以下数据:

品牌A 2.2 2.1 2.4 2.5

品牌B 2.2 2.3 2.4 2.6

品牌C 2.2 2.0 1.9 2.1

品牌D 2.4 2.7 2.6 2.7

品牌E 2.3 2.5 2.3 2.4

(1)它们的耐久性有无明显差异?

(2)有选择的作两品牌的比较,能得出什么结果?

(1)利用MA TLAB求解:

x=[2.2 2.2 2.2 2.4 2.3;2.1 2.3 2 2.7 2.5;2.4 2.4 1.9 2.6 2.3;2.5 2.6 2.1 2.7 2.4];

p=anova1(x)

解得:

p =

0.0019

因为p=0.0019<0.05,则拒绝H0。另一方面经查表得:F(0.05,2,9)= 3.06。由方差分析表知F=7.19 > F(0.05,4,15), 所以拒绝H0,即认为不同品牌的合成木板对产品的耐久性有显著影响。

(2)每种产品的均值为:

2.3000 2.3750 2.0500 2.6000 2.3750

从五种品牌的平均值可以判断出这种品牌总体耐久性的好坏,利用ttest2做两两比较:

A与B:

x=[2.2 2.1 2.4 2.5];

y=[2.2 2.3 2.4 2.6];

[h,sig,ci]=ttest2(x,y,0.05,-1)

h = 0

sig =0.2852

ci = -Inf 0.1679

同理得出:

A B C D E

A 0 0 1 0

B 0 1 0 0

C 0 1 1 1

D 1 0 1 1

E 0 0 1 1

可以发现A与B、C、E,B与D、E,无显著差异;

A与D,B与C,C与D、E,D与E有显著差异。

4.将土质基本相同的一块耕地分为五块,每块又分成均等的4小块。在每块地内把4个品种的小麦分种4小块内,每小块的播种量相同,测量收获量如下:

A1 A2 A3 A4 A5

B1 32.3 34.0 34.7 36.0 35.5

B2 33.2 33.6 36.8 34.3 36.1

B3 30.8 34.4 32.3 35.8 32.8

B4 29.5 36.2 28.1 28.5 29.4 考察地块和品种对小麦的收获量有无显著影响?并在必要时做进一步比较。

利用MATLAB求解:

x=[32.3 34.0 34.7 36.0 35.5;33.2 33.6 36.8 34.3 36.1; 30.8 34.4 32.3 35.8 32.8;29.5 26.2 28.1 28.5 29.4];

anova2(x,1)

ans =

0.2353 0.0001

由于P1=0.2353>0.05,所以地块对小麦的收获量无显著影响;

P2=0.0001<0.05,所以品种对小麦的收获量有非常显著影响。

各品种的均值为:34.5000 34.8000 33.2200 28.3400

所以,B4与其他品种相比有较大差异。进一步的分析可以发现,将B2种在A3地块中小麦的收获量最大。

5.为了研究合成纤维收缩率和拉伸倍数对纤维弹性的影响进行了一些试验。收缩率取0,4,8,12四个水平;拉伸倍数取460,520,580,640四个水平,对二者的每个组合重复做两次实验,所得数据如下:

460 520 580 640

0 71 73 72 73 75 73 77 75

4 73 7

5 7

6 74 78 7

7 74 74

8 76 73 79 77 74 75 74 73

12 75 73 73 72 70 71 69 69

(1)收缩率,拉伸倍数及其交互作用对弹性有无显著影响?

(2)使弹性达到最大的生产条件是什么?

(1)利用MA TLAB求解:

x=[71 72 75 77;73 73 73 75;73 76 78 74;75 74 77 74;76 79 74 74;73 77 75 73;75 73 70 69;73 72 71 69];

anova2(x,2)

ans =

0.1363 0.0000 0.0006

由于0.1363>0.05,拉伸倍数对弹性无显著影响;0.0000<0.05,收缩水平对弹性有非常显著的影响;

0.0006<0.05,收缩率与拉伸倍数交互作用对弹性有显著影响。

(2)弹性达到最大,需将收缩率取到8,拉伸倍数达到520。

6.某地调查居民心理问题的存在状况,资料如下表所示,试绘制线图比较不同性别和年龄组的居民心理问题检出情况。

年龄分组(岁)

心理问题检出率(%)

男性(1) 女性(2)

15—10.57 19.73

25—11.57 11.98

35—9.57 15.50

45—11.71 13.85

55—13.51 12.91

65—15.02 16.77

75—16.00 21.04

在同一年龄段中,男性的心理问题检出率普遍比女性低,但在55到64年龄段中,女性的心理检出率低于男性的。

男性:在15到24年龄段心理问题稍微有上升,而25到34年龄段稍微有所下降,但是总体波动范围不大,从35岁以后,心理问题比率呈上升一直趋势;

女性:从15 到24年龄段,心理问题比率逐渐下降,且波动范围较大,25到34年龄段略有上升,35到55年龄段略有下降,不过极不明显,从55岁以后出现一直上升的趋势。

7.为研究儿童生长发育的分期,调查1253名1月至7岁儿童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm)资料。资料作如下整理:先把1月至7岁化成19个月份段,分月份算出各指标的平均值,将第一月的各指标平均值与出生时的各指标平均值比较,求出月平均增长率(%),然后第2月起各月份指标平均值均与前一月比较,亦求出月平均增长率(%),结果见下表。欲将儿童生长发育为四期,故指定聚类的类别数为4,请通过聚类分析确定四个儿童生长发育期的起止区间。

利用SPSS分析:

Initial Cluster Centers

Iteration History(a)

1 .000 .000 2.457 1.269

2 .000 .000 .000 .000

a Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 2. The minimum distance between initial

centers is 10.520.

Final Cluster Centers

Cluster

1 2 3 4

height 11.03 5.47 2.86 .91

weight 50.30 19.30 7.75 1.47

sittingheight 11.27 7.18 2.11 .66

bust 11.81 5.20 2.09 .48

ANOVA

Cluster Error

Mean Square df Mean Square df

F Sig.

height 37.581 3 .369 15 101.785 .000 weight 817.116 3 1.355 15 603.259 .000 sittingheight 46.099 3 .236 15 195.493 .000 bust 45.409 3 .282 15 161.115 .000 The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Initial Centers(初始聚类)给出了四个类中心的初始位置,对照原始数据可以知道四个类别分别是使用了第1、2、3、72月作为其初始位置。

Iteration History(迭代记录)可以看到迭代两次后收敛。

Final Cluster Centers(最终聚心间的距离)为最终的类中心的位置;ANOVA(方差分析表)可以看出:四种变量的显著水平sig均小于0.05,说明在0.05的显著水平下,各类的均值有显著差异,并且在四种变量中,体重在儿童生长发育期中的作用最大。

8.你到海边度假,听到当地气象台的天气预报每天下雨的机会是40%,用蒙特卡罗方法模拟你的假期中有4天连续下雨的概率。

由题意可以知道,每天下雨的机会是40%,不妨假设该地的天气为一条长为5的线段,在2:3处划分成两个部分,则长为2的线段代表下雨。利用蒲丰投针的方法,当投针次数足够大时,连续4次投到长为2的线段的概率即为4天连续下雨的概率。

利用MA TLAB实现:

function [ p ] = rain(N)

c=0;s=0;

x=unifrnd(0,5,1,N);

for n=1:

if x(n)<=2;

c=c+1; %c为连续落到小于2的次数

else

c=0;

end

if c>=4;

s=s+1; %s为连续4次落到小于2的次数

c=c-1;

end

end

p=s/N;

end

>> rain(10000)

ans =

0.0271

>> rain(10000000)

ans =

0.0256

所以,假期中有4天连续下雨的概率约为0.0256。

9.一个带有船只卸货的港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,相邻两艘船到达的时间间隔在15分钟到145分钟之间变化。一艘船只卸货的时间由所卸货物的类型决定,在45分钟到90分钟之间变化,请回答以下问题:

(1)每艘船只在港口的平均时间和最长时间是多少?

(2)若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只得平均等待时间和最长等待时间是多少?

(3)卸货设备空闲时间的百分比是多少?

(4)船只排队最长的长度是多少?

问题假设

1.来往的船只是无穷的;

2.等待的船只数量没有限制;

3.到达港口的船只按先后顺序依次进行卸货,即“先到先卸货”;

4.船只到来间隔时间为均匀分布U[15,145],每艘船卸货时间为均匀分布U[45,90]。

符号说明

w:总等待时间;

Xi:第i艘船的到达时刻;

ti:相邻两艘船到达的时间间隔(ti=Xi+1 - Xi );

Si:第i艘船接受服务的时间;

Di:第i艘船的排队等待时间;

Ci:第i个艘船接受服务后离开的时刻(Ci =Xi+Si+Di)。

利用MA TLAB实现:

n = input('n=');

m=0;

x = zeros(1,n);y = zeros(1,n); D = zeros(1,n);

leng = zeros(1,n);

t = unifrnd(15,145,1,n);

s = unifrnd(45,90,1,n);

x(1)=t(1);

for i=2:n

y(i) = x(i-1) + t(i);

j=i-1;

c(j) = x(j) + s(j)+ D(j);

if c(j) < y(i)

D(i) = 0;

T2(i) = y(i)-c(j); %T2用来计算空闲的时间else

D(i) = c(j) - y(i);

T2(i) = 0;

end

x(i) = y(i);

T1(i) = D(i)+s(i); %T1从到达到离开的时间

for k = 2:n

if c(j) > y(k)

m = m+1;

end

leng(j) = m; %计算每艘船在卸货的时候,等待的船只个数end

m = 0;

end

average1=mean(T1)

max1=max(T1)

average2=mean(D)

max2=max(D)

rate= sum(T2(i))/(sum(T2(i))+sum(s(i-1)))

模拟结果:

n=100

average1 = 100.0019 max1 = 226.6395

average2 =

33.2211 max2 = 148.5664

rate =

0.1087 n=

99

所以,当有100艘船驶入港口时

(1)每艘船只在港口的平均时间和最长时间是100.0019和226.6395分种。

若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是33.2211和148.5664分种。

(2)卸货设备空闲时间的百分比是10.87%。

(4)船只排队最长的长度是同一时间有99艘船在等待卸货。

数学建模习题

数学建模与数学实验课程练习 练习集锦 1简述数学建模的一般过程及建模过程中需要注意的问题。 2 简述数学模型及数学建模的特点。 3 简述数学建模的常用分类方法。 4求方程 06 /12 625 .05 .04 )(=------=x x x x f 的模最大的根的近似 值(精确到小数点后两位)。 5在抢渡长江模型中,如果水流速度 1.8/v m s =为常数,人的游泳速度 1.5/u m s =为常数,江面宽度为1200H m =,终点位置在起点下游 1000L m =处的条件,确定游泳者的最佳游泳路径及最短游泳时间。 6沿江的某一侧区域将建两个水厂,在江边建一个取水口。现需要设计最优的管线铺设方案,通过管线从取水口向水厂送水。水厂与江岸的位置见右图。 如果不用共用管线,城区单位建设费用是郊区的2倍。 (1) 对于最优方案,用α表示,βγ。 (2) 求最优取 水口位置。 7在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 (,0) P x

31/52a b P c d e f ?? ??=?? ???? , (1)确定矩阵P 的未知元素。 (2)求P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取)。 8在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取)。 9考虑下表数据 (1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 10考虑微分方程

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模实验三--Lorenz模型与食饵模型

数学建模实验三 Lorenz 模型与食饵模型 一、实验目的 1、学习用Mathematica 求常微分方程的解析解和数值解,并进行定性分析; 2、学习用MATLAB 求常微分方程的解析解和数值解,并进行定性分析。 二、实验材料 2.1问题 图3.3.1是著名的洛仑兹(E.N.Lorenz)混沌吸引子,洛仑兹吸引子已成为混沌理论的徽标,好比行星轨道图代表着哥白尼、开普勒理论一样。洛仑兹是学数学出身的,1948年起在美国麻省理工学院(MIT )作动力气象学博士后工作,1963年他在《大气科学杂志》上发表的论文《确定性非周期流》是混沌研究史上光辉的著作。以前科学家们不自觉地认为微分方程的解只有那么几类:1)发散轨道;2)不动点;3)极限环 ;4)极限环面。除此以外,大概没有新的运动类型了,这是人们的一种主观猜测,谁也没有给出证明。事实上这种想法是非常错误的。1963年美国麻省理工学院气象科学家洛仑兹给出一个具体模型,就是著名的Lorenz 模型,清楚地展示了一种新型运动体制:混沌运动,轨道既不收敛到极限环上也不跑掉。而今Lorenz 模型在科学与工程计算中经常运用的问题。例如,数据加密中。我们能否绘制出洛仑兹吸引子呢? 图3.3.1 洛仑兹(E.N.Lorenz)混沌吸引子 假设狐狸和兔子共同生活在同一个有限区域内,有足够多的食物供兔子享用,而狐狸仅以兔子为食物.x 为兔子数量,y 表狐狸数量。假定在没有狐狸的情况下,兔子增长率为400%。如果没有兔子,狐狸将被饿死,死亡率为90%。狐狸与兔子相互作用的关系是,狐狸的存在使兔子受到威胁,且狐狸越多兔子增长受到阻碍越大,设增长的减小与狐狸总数成正比,比例系数为0.02。而兔子的存在又为狐狸提供食物,设狐狸在单位时间的死亡率的减少与兔子的数量成正比,设比例系数为0.001。建立数学模型,并说明这个简单的生态系统是如何变化的。 2.2预备知识 1、求解常微分方程的Euler 折线法 求初值问题 ? ??=='00)(),,(y x y y x f y (12.1)

《数学建模实验》

《数学建模》上机作业 信科05-3 韩亚 0511010305

实验1 线性规划模型 一、实验名称:线性规划模型—设备的最优配备问题。 二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。 三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。 四、实验要求: 1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。 2、利用相应的数值方法求解此问题的数学模型。 3、谈一谈你对这类线性规划问题的理解。 4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。 5、用软件lindo 或lingo 求解上述问题。(选做题) 6、编写单纯形算法的MATLAB 程序。(选做题) 五、实验内容: 解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为: 12 11109871211109711109871211109875.232427252628252528262729) 2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-= 整理后得: 900 24255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z 由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学建模实验报告

内江师范学院 中学数学建模 实验报告册 编制数学建模组审定牟廉明 专业: 班级:级班 学号: 姓名: 数学与信息科学学院 2016年3月 说明 1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告; 2.要求学生要认真做实验,主要就是指不得迟到、早退与旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格; 3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求与目的,不得抄袭她人的实验报告; 4.实验成绩评定分为优秀、合格、不合格,实验只就是对学生的动手能力进

行考核,跟据所做的的情况酌情给分。根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师: 实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机 实验日期:年月日实验地点: 实验目的: 掌握优化问题的建模思想与方法,熟悉优化问题的软件实现。 实验准备: 1.在开始本实验之前,请回顾教科书的相关内容; 2.需要一台准备安装Windows XP Professional操作系统与装有数学软件的计算机。 实验内容及要求 原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产与管理成本,规定切割模式不能超过3种,如何下料最节省? 实验过程: 摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。按工艺要求,确定下料方案,使用料最省,或利润最大就是典型的优化问题。以此次钢管下料问题我们采用数学中的线性规划模型、对模型进行了合理的理论证明与推导,然后借助于解决线性规划的专业软件Lingo 11、0对题目所提供的数据进行计算从而得出最优解。 关键词:钢管下料、线性规划、最优解 问题一 一、问题分析: (1)我们要分析应该怎样去切割才能满足客户的需要而且又能使得所用原料比较少; (2)我们要去确定应该怎样去切割才就是比较合理的,我们切割时要保证使用原料的较少 的前提下又能保证浪费得比较少; (3)由题意我们易得一根长为17米的原料钢管可以分别切割成如下6种情况(如表一): 表一:切割模式表 模式 4m钢管根数 6m钢管根数8m钢管根数余料/m 1 4 0 0 1 2 1 2 0 1 3 2 0 1 1 4 2 1 0 3 5 0 1 1 3 6 0 0 2 1

《数学建模与数学实验》课程论文

10级信息《数学建模与数学实验(实践)》任务书 一、设计目的 通过《数学建模与数学实验(实践)》实践环节,掌握本门课程的众多数学建模方法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C 语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。 二、设计教学内容 1线性规划(掌握线性规划的模型、算法以及Matlab 实现)。整数线性规划(掌握整数线性规划形式和解法)。 2微分方程建模(掌握根据规律建立微分方程模型及解法;微分方程模型的Matlab 实现)。 3最短路问题(掌握最短路问题及算法,了解利用最短路问题解决实际问题)。 行遍性问题(了解行遍性问题,掌握其TSP算法)。 4回归分析(掌握一元线性回归和多元线性回归,掌握回归的Matlab实现)。 5计算机模拟(掌握Monte-carlo方法、了解随机数的产生;能够用Monte-carlo 解决实际问题)。 6插值与拟合(了解数据拟合基本原理,掌握用利用Matlab工具箱解决曲线拟合问题)。 三、设计时间 2012—2013学年第1学期:第16周共计一周 目录 一、10级信息《数学建模与数学实验(实践)》任务书 (1) 二、饭店餐桌的布局问题 (3) 摘要 (3)

问题重述 (3) 模型假设 (3) 模型分析 (4) 模型的建立和求解 (4) 模型推广 (9) 参考文献 (9) 三、白酒配比销售问题 (10) 摘要 (10) 问题重述 (11) 问题分析 (12) 模型假设 (12) 符号及变量说明 (12) 模型的建立与求解 (13) 模型的检验 (18) 模型的评价与推广 (19) 附录 (21) 饭店餐桌的布局问题 摘要 饭店餐桌的布局对于一个饭店有着很重要的作用。本文讨论的就是饭店餐桌的布局问题,根据实际需求及规定建立模型,同时考虑餐桌的类型及规格,尤其是餐桌的摆放技巧,保证使饭店能容纳的人数达到最大。根据所需餐桌的数量

数学建模实验三 Lorenz模型与食饵模型

数学建模实验三Lorenz模型与食饵模型 一、实验目的 1、学习用Mathematica求常微分方程的解析解和数值解,并进行定性分析; 2、学习用MATLAB求常微分方程的解析解和数值解,并进行定性分析。 二、实验材料 2.1问题 图3.3.1是著名的洛仑兹(E.N.Lorenz)混沌吸引子,洛仑兹吸引子已成为混沌理论的徽标,好比行星轨道图代表着哥白尼、开普勒理论一样。洛仑兹是学数学出身的,1948年起在美国麻省理工学院(MIT)作动力气象学博士后工作,1963年他在《大气科学杂志》上发表的论文《确定性非周期流》是混沌研究史上光辉的著作。以前科学家们不自觉地认为微分方程的解只有那么几类:1)发散轨道;2)不动点;3)极限环;4)极限环面。除此以外,大概没有新的运动类型了,这是人们的一种主观猜测,谁也没有给出证明。事实上这种想法是非常错误的。1963年美国麻省理工学院气象科学家洛仑兹给出一个具体模型,就是著名的Lorenz 模型,清楚地展示了一种新型运动体制:混沌运动,轨道既不收敛到极限环上也不跑掉。而今Lorenz 模型在科学与工程计算中经常运用的问题。例如,数据加密中。我们能否绘制出洛仑兹吸引子呢? 图3.3.1 洛仑兹(E.N.Lorenz)混沌吸引子 假设狐狸和兔子共同生活在同一个有限区域内,有足够多的食物供兔子享用,而狐狸仅以兔子为食物.x为兔子数量,y表狐狸数量。假定在没有狐狸的情况下,兔子增长率为400%。如果没有兔子,狐狸将被饿死,死亡率为90%。狐狸与兔子相互作用的关系是,狐狸的存在使兔子受到威胁,且狐狸越多兔子增长受到阻碍越大,设增长的减小与狐狸总数成正比,比例系数为0.02。而兔子的存在又为狐狸提供食物,设狐狸在单位时间的死亡率的减少与兔子的数量成正比,设比例系数为0.001。建立数学模型,并说明这个简单的生态系统是如何变化的。 2.2预备知识 1、求解常微分方程的Euler折线法 求初值问题

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

数学建模与数学实验

数学建模与数学实验 实验报告 班级: 数学师范153 姓名:付爽 学号:1502012060 实验名称: 数列极限与函数极限

基础实验 基础实验一数列极限与函数极限第一部分实验指导书解读 一、实验目的 从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。 二、实验使用软件 Mathematic 5.0 三.实验的基本理论即方法 1割圆术

中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。 “割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。 以n S 表示单位圆的圆内接正1 23-?n 多边形面积,则其极限 为圆周率π。用下列Mathematica 程序可以从量和形两个角度考察数列{n S }的收敛情况: m=2;n=15;k=10; For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正1 23-?n 多边形边长) s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正1 23-?n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1]; Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图)

《数学建模与数学实验》上机实验报告

成都信息工程大学 《数学建模与数学实验》上机实验报告 专业信息与计算科学班级姓名学号 实验日期成绩等级教师评阅日期 [问题描述] 下表给出了某一海域以码为单位的直角坐标Oxy 上一点(x,y)(水面一点)以英尺为单位的水深z,水深数据是在低潮时测得的,船的吃水深为5英尺,问在矩形区域(75,200)x (-50,150)里那些地方船要避免进入。 [模型] 设水面一点的坐标为(x,y,z),用基点和插值函数在矩形区域(75,200)*(-50,150)内做二维插值、三次插值,然后在作出等高线图。

[求解方法] 使用matlab求解: M文件:water.m x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx = 75:0.5:200; cy = -50:0.5:150; [cx,cy]=meshgrid(cx,cy); 作出曲面图: 代码如下: >> water >> cz=griddata(x,y,z,cx,cy,'cubic'); >> meshz(cx,cy,cz) >> xlabel('X'),ylabel('Y'),zlabel('Z') >> 作出等高线图: 代码如下: >> water >> cz=griddata(x,y,z,cx,cy,'cubic'); >> figure(2) >> contour(cx,cy,cz,[-5,-5],'r') >> hold on >> plot(x,y,'*') >> xlabel('X'),ylabel('Y') [结果]

数学建模实践一实验列表

数学建模实践(一)实验项目列表 一、Well-mix类(10分): 1-1、实验编号:1720800— 实验名称:Penna模型 实验学时:8学时 内容简介: 相关文献资料:T.J.P. Penna, A bit-string model for biological aging, Journal of Statistical Physics, 78 (1995) 1629-1633. 1-2、实验编号:1720800— 实验名称:少数者博弈模型 实验学时: 8学时 内容简介: 相关文献资料:D. Challet, Y.C. Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A, 246 (1997) 407-418. 1-3、实验编号:1720800— 实验名称:财富交换模型 实验学时: 8学时 内容简介: 相关文献资料:A. Dragulescu, V.M. Yakovenko, Statistical mechanics of money, European Physical Journal B, 17 (2000) 723-729. 1-4、实验编号:1720800— 实验名称:人类行为动力学模型 实验学时: 8学时 内容简介: 相关文献资料:A.-L. Barabasi, The origin of bursts and heavy tails in human dynamics, Nature, 435 (2005) 207-211. 1-5、实验编号:1720800— 实验名称:命名博弈模型 实验学时: 8学时 内容简介: 相关文献资料:A. Baronchelli, M. Felici, V. Loreto, E. Caglioti, L. Steels, Sharp transition towards shared vocabularies in multi-agent systems, Journal of Statistical Mechanics: Theory and Experiment, 2006 (2006) P06014. 1-6、实验编号:1720800— 实验名称:鼓掌同步模型 实验学时: 8学时 内容简介: 相关文献资料:[1] Z. Neda, E. Ravasz, Y. Brechet, T. Vicsek, A.L. Barabasi, The sound of many hands clapping - Tumultuous applause can transform itself into waves of synchronized clapping, Nature, 403 (2000) 849-850. [2]、Z. Neda, E. Ravasz, T. Vicsek, Y. Brechet, A.L. Barabasi, Physics of the rhythmic applause, Physical Review E, 61 (2000) 6987-6992. 1-7、实验编号:1720800— 实验名称:行人流的社会力模型

相关文档
相关文档 最新文档