文档库 最新最全的文档下载
当前位置:文档库 › 测定发电机内氢气的湿度

测定发电机内氢气的湿度

测定发电机内氢气的湿度
测定发电机内氢气的湿度

测定氢气湿度的压力修正

1.目前化学运行值班人员利用现有表计所测得的氢气湿度并不是真正的发电机内的氢气湿度所对应的露点温

度,而是在大气压下的氢气湿度,必须按如下方法将其修正到运行氢压下

2.已知:

a 氢气湿度计测定的氢气湿度露点温度值为t1(℃);

b 氢气湿度计测湿元件所在处的氢气绝对压力(大气压力按0.1 MPa计)为p1(MPa);

c 在氢气湿度标准中对被测对象氢气所规定的氢气绝对压力(大气压力+运行氢压)为p2;

(1)按表一,由t1查得与该露点温度值对应的饱和水蒸汽压值es1(Pa).

(2)由es1、p2和p1,按如下公式求得被测对象氢气在p2下的饱和水蒸气压值es2(Pa).

es2= es1(p2/ p1)

(3)按表一,由es2查得与该饱和水蒸汽压值对应的温度值t2(℃);该温度t2即为在氢气湿度标准中所规定的氢气绝对压力p2下的被测对象氢气湿度的露点温度值.

(4)例:一台发电机的运行氢气表压为0.3 Mpa,在常压下测得发电机的氢气湿度为露点温度-18.6℃,问此时该发电机在运行氢压下的氢气湿度为露点温度多少度?

●由题意知: t1=-18.6℃, p1=0.1 Mpa和p2=0.3+0.1=0.4 Mpa;

●由t1在表一中查得与-18.6℃对应的饱和水蒸气压es1=118.038 Pa;

●由es1、p2、p1,求得在运行氢压下的饱和水蒸气压es2=118.038*(0.4/0.1)=472.152 Pa

●由es2在表一中查得与472.152 Pa对应的温度值t2=-3.1℃,此温度即为该发电机在运行氢压下

的氢气湿度露点温度值.

表一:冰的饱和水蒸气气压(0℃∽-100℃) Pa

氢气湿度换算表

发电机气体置换措施(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 发电机气体置换措施(标准版)

发电机气体置换措施(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 一、发电机气体置换要求及注意事项 1、在进行气体置换时机组应禁止一切明火作业。除气体置换工作外,其他工作票一律收回。 2、气体置换应在发电机处于静止状态时进行,同时应保持密封油系统运行正常。汽机盘车电机及行车电机均应停电。 3、气体置换应采用N2或CO2气体作为中间置换介质,严禁直接充入空气排出氢气。 4、置换操作中充排氢气时,氢气流速不宜太高。 5、置换前由化学抽样测定置换用的CO2气体或N2的纯度>98%,水分含量按重量计应<0.1%。 6、发电机置换前发电机内氢气纯度或机组补氢气源纯度不低于96%,氢气湿度小于-10度。 7、发电机气体采样化验纯度的方式要求:当充入CO2气体时,应从顶部取样;当充入氢气时,应从底部取样。

8、充氢时应做好与化学氢站的联系工作,保证氢气充足。 9、发电机系统有检修工作时,在机组启动期间,必须经过试验检查确认发电机系统严密性试验合格时,方可进行系统充氢工作。 10、当用压缩空气对发电机打压时,应注意压缩空气的控制指标(检测含水量)。 11、发电机采用N2或CO2气体置换空气,当N2或CO2纯度达95%时为合格, 12、发电机充氢,当发电机氢气纯度达96%时为合格。 13、当用中间气体排氢时,CO2纯度>95%,N2纯度>97%后,方可引入空气。 14、发电机气体置换应将发电机氢气干燥器、氢气纯度仪、湿度仪、发电机油水继电器包括在内。 15、发电机气体置换过程中,发电机内部压力应保持在 0.1MPa-0.2MPa范围内。整个过程中,应加强对密封油系统的监视检查,防止发电机进油。 16、发电机内充有CO2气体的时间一般不允许超过24小时,最好在6小时内排出。 17、发电机充氢过程开始前,必须检查压缩空气至发电机的回路

氢冷发电机氢气湿度超标原因分析及处理示范文本

氢冷发电机氢气湿度超标原因分析及处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

氢冷发电机氢气湿度超标原因分析及处 理示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 江油发电厂2×330MW机组发电机是法国阿尔斯通公 司生产的,型号为T255 460,额定功率330MW,冷却方式为 水氢氢。发电机在设计时无氢气除湿装置和氢气湿度监测 装置,其结构与国产发电机有差异,转子冷却介质氢气在机内 实现循环,未配置体外除湿装置。自1990年投运以来,该厂 对机内氢气质量只监测控制了纯度。 根据国内同类型机组运行的实际情况,于1997年8月 江油发电厂在31号发电机安装了芬兰VAISALA公司 生产的型号为HMP264型在线氢气湿度监测仪,该仪器具 有较高的准确度和较好的防爆性,及具有安装、运行、维护 方便等特点。自投运以来,运行状况良好。

1 问题的发现 1.1 日常运行监督的发电机机内氢气情况 表1 31号发电机氢气质量 1.2 问题的发现 在1998年9月13月2时运行人员抄表时发现31号发电机氢气湿度仪无显示,经化学仪表检修人员检查发现湿度仪探头芯片损坏,处理后,测得氢气湿度高达22g/L。同时,电气运行人员从发电机底部氢气冷却系统液位计排出积水,积水经化学分析其硬度为40μmol/L。根据1991年9月部颁氢气湿度标准:“发电机内氢气温度应不大于10g/m3,有条件的机组应使湿度进一步降低,达到4g/m3。据此判断31号发电机氢气湿度超标。由于氢气湿度超标,将降低发电机绝缘水平,使发电机定子绝缘薄弱处发生相间短路事故;降低发电机转子绝缘水平,严重的匝间短路可导致轴振和机组磁化;使发电机转子护环产生应力腐蚀裂纹,缩短发电机

氢气湿度大的原因危害及处理

发电机氢气湿度大的原因、危害及处理 近期我厂#2发电机组出现正常运行中氢气湿度大的现象,现通过排查和加装体外滤油机的方式,问题得到初步缓解。 我厂汽轮发电机是由哈尔滨电机厂有限责任公司生产,型号是QFSN-300-2,额定功率300MW,冷却方式为水氢氢。定子线圈(包括定子引线,定子过渡引线和出线)采用水内冷,转子线圈采用氢内冷,定子铁心及端部构件采用氢气表面冷却。氢气利用装在转子两端的轴流式风扇进行强制循环,并通过发电机两端氢冷器进行冷却。 正常运行中,机内氢气湿度应控制在露点-5℃或4g/m3以下,当机内氢气湿度大于露点-5℃(或4g/m3)时,应检查氢气干燥器是否失效,同时进行排污和补充新鲜氢气,使氢气湿度恢复至正常值。 氢气湿度超标对发电机有非常大的危害: 1、氢气湿度超标易造成发电机定子线圈端部短路事故。氢气湿度越大,氢气中水分越大,气体的介电强度越低,定子绕组受潮,降低绝缘电阻,从而降低了绝缘表面放电电压,容易发生闪络和绝缘击穿事故。 2、氢气湿度超标易造成发电机转子护环产生应力腐蚀。发电机氢气湿度高,将对其接触的金属产生应力腐蚀,而应力腐蚀与金属氢脆相互起到催化作用。由于应力腐蚀使护环产生裂纹,同时绝缘瓦松动,绝缘瓦同护环端部转子线圈摩擦,引起转子线圈接地或短路。 3、影响发电机的运行效率。由于氢气中湿度大、水分大,使气体密度增大,增加了发电机通风损耗,降低了发电机的运行效率。 造成发电机氢气湿度大的原因主要有以下几点: 1、制氢站来氢湿度大 2、氢气干燥装置工作不正常 3、机组轴封压力高或轴加风机工作不正常,使润滑油中带水 4、密封油进入发电机内 5、氢冷器泄漏 6、定冷水系统泄漏 发电机氢气湿度大的处理方法: 1、对氢气湿度仪进行校验,确保仪表的准确性。 2、对补氢系统进行必要的完善,在机前补氢管道、输氢管道最低点适当增加排污放水点,在向发电机补氢前,先进行输氢母管的排污放水,并测定母管氢气纯度、湿度合格才能向发电机内补氢。 3、确保氢气干燥器运行正常。干燥器对补充氢气进行干燥处理,使送入发电机内的氢气湿度合格。 4、检查氢气冷却器管道无破裂无沙眼,阀门接口严密。 5、对发电机密封瓦进行处理,防止密封油进入发电机内。 6、严密监视发电机密封油中含水情况,加强密封油质处理,确保油中含水量合格。 7、保证平衡阀、压差阀的正常投运,防止发电机进油。并切实控制好发电机的运行风温及内冷水温。 8、在保证机组真空的前提下,汽机轴封压力不超限。加强对轴加风机的检查维护,保证轴封加热器的微负压。当发生较大的工况变化,如机组启动、停运过程或较大幅度变负荷时,须及时调整轴封进汽压力。

发电机氢气纯度湿度偏高分析及防范示范文本

发电机氢气纯度湿度偏高分析及防范示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

发电机氢气纯度湿度偏高分析及防范示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 前言 目前,我国加入电网运行的300 MW及以上大型汽轮 发电机已有近200台,这些机组已成为我国电网的主力机 组。其冷却方式绝大部分为水-氢-氢(即定子线圈水内 冷,转子绕组定子铁芯及构件表面氢冷却),简称氢冷发 电机。它们具有效率高,冷却效果好,安全可靠等优势。 采用氢气冷却的发电机在运行和备用期间,发电机内腔充 压0.3 MPa,氢气与大气之间采用密封油系统隔绝。由于 油氢之间的直接接触,若运行维护和控制不当,极易造成 发电机进油,以及氢气纯度、湿度不合格,给大型发电机 的安全稳定可靠运行带来潜在的危害。

1 氢气纯度、湿度不合格以及机内进油的危害 氢气纯度不合格,将导致冷却效率降低,造成机内构件局部过热,同时有害气体的存在还会造成绝缘老化、铁芯及其金属部件腐蚀。 氢气湿度过大,对发电机定子绝缘的影响更大,一是水分在运行中蒸发为水蒸汽,使微细击穿点之间氢气介质导电率升高。二是水汽吸附在绝缘层上,侵入绝缘内部的水将造成内部导体与外部绝缘表面电位相等,成为等电位体,威胁发电机定子绝缘,诱发发电机绝缘事故。油进入发电机内,将直接导致发电机绝缘腐蚀、老化,若油中含水量超标,油中水分蒸发,则导致与氢气湿度过大的同样后果。此外,油进入发电机,如果未及时排出,油在机内蒸发产生油烟蒸汽,其危害也是十分可怕的。 所以,潮湿环境对大型发电机的运行是十分不利的。它将对发电机护环产生腐蚀作用,并溶解和凝聚其它有害

发电机氢油水系统

发电机氢油水系统

发电机氢油水控制系统 目录 第一部分:发电机氢气控制系统 第二部分:发电机密封油控制系统 第三部分:发电机定子线圈冷却水控制系统 第四部分:氢油水控制系统主要测点

第一部分发电机氢气控制系统 1. 用途与功能 发电机氢气控制系统专用于氢冷汽轮发电机,具有以下功能: a. 使用中间介质(一般为CO2)实现发电机内部气体置换; b. 通过压力调节器自动保持发电机内氢气压力在需要值; c. 通过氢气干燥器除去机内氢气中的水份; d. 通过真空净油型密封油系统,以保持机内氢气纯度在较高水平; e. 采用相应的表计对机内氢气压力、纯度、温度以及油水漏入量进行监测显示,超限时发出报警信号。 2. 主要技术参数 2.1 发电机内额定运行参数: a. 氢气压力:0.5MPa.(g) b. 氢气温度:46℃ c. 氢气纯度:98% d. 氢气耗量:19m3/d 2.2 对供给发电机的氢气要求 a. 压力不高于3.2MPa.(g) b. 纯度不低于98% c. 露点温度.≤–20℃ 2.3 发电机充氢容积150m3 3. 工作原理 3.1 发电机内空气和氢气不允许直接置换,以免形成具有爆炸浓度的混合气体。通常应采用CO2气体作为中间介质实现机内空气和氢气的置换。本氢气控制系统设置有专用管路、CO2控制排、置换控制阀和气体置换盘用以实现机内气体间接置换。 3.2 发电机内氢气不可避免地会混合在密封油中,并随着密封油回油被带出发电机,有时还可能出现其他漏气点。因此机内氢压总是呈下降趋势,氢压下降可能引起机内温度上升,故机内氢压必须保持在规定的范围之内,本控制系统在氢气的控制排中设置有两套氢气减压器,用以实现机内氢气压力的自动调节。 3.3 氢气中的含水量过高对发电机将造成多方面的不良影响,通常均在机外设置专用的氢气干燥器,它的进氢管路接至转子风扇的高压侧,它的回氢管路接至风扇的低压侧,从而使机内部份氢气不断地流进干燥器内得到干燥。

发电机氢气冷却系统

毕业设计(论文) ` 题目发电机氢气冷却系统报告 院系自动化系 专业班级自动化专业1302班 学生姓名杨晓丹 指导教师马进

发电机氢气冷却系统报告 摘要 发电机在运行的过程中由于能量转换、电磁作用和机械摩擦会产生一定的热量。为了使发电机温度不超过与绝缘耐热等级相应的极限温度,应采取冷却措施使这些部件有效地散热。氢气比重小、比热大、导热系数较大、化学性质较稳定,是冷却发电机转子常用的介质。氢气在发电机的腔室内循环,依次穿过冷热风室,由冷却器冷却。发电机中的氢气容易发生泄漏,需要在轴与静密封瓦之间形成油膜封住气体。在发电机检修后,发电机内充满空气,为防止氢气与空气混合产生安全隐患,充入氢气时应先做气密实验,再从下至上向发电机内充满二氧化碳,最后从上至下向发电机内充满氢气。 关键词:发电机;氢气冷却;气体置换;密封油系统

Report of hydrogen cooling system for generator Abstract Generator in the process of running due to energy conversion, electromagnetic and mechanical friction generates heat.Hydrogen cooling system is used to limited the generator temperature exceed the limiting temperature of thermal class for electric machine insulation.Because of Hydrogen gas has small specific gravity,large specific heat,large coefficient of thermal conductivity and relatively stable chemical properties,it is the commonly used medium cooling generator rotor.Hydrogen is circulated in the generator hydrogen and cooled by corner cooler.In order to limite hydrogen leakage,oil seals the space between the shaft and static seal tile.After the generator maintenance, air is full of inside the generators.There was a safe hidden trouble if hydrogen is mixed into the oxygen.Carbon is blowed from the from the bottom to the full of generator to replace air after Sealing experiment was passed.And hydrogen is blowed from the from the full to the bottom of generator to replace carbon. Keywords:Generator;Hydrogen cooling;Gas replacement;Seal oil system

氢冷发电机氢气湿度大原因分析及处理

氢冷发电机氢气湿度大原因分析及处理 发表时间:2018-04-12T10:31:31.593Z 来源:《电力设备》2017年第32期作者:谭金宝1 周振宇1 王京1 牛欣欣2 [导读] 摘要:我国大型发电机普遍采用氢气冷却,所以发电机氢气湿度超标威胁着发电机的安全运行,容易造成发电机短路事故。 (1.国家电投南阳热电有限责任公司河南南阳 473000;2.国家电投豫新发电有限公司河南新乡 453000) 摘要:我国大型发电机普遍采用氢气冷却,所以发电机氢气湿度超标威胁着发电机的安全运行,容易造成发电机短路事故。本文以我公司发电机氢气湿度超标、汽轮机润滑油不合格为例,通过分析、排查、发电机电流互感器套管处理,阐述了同类问题处理过程、运行监控和预防措施。 关键词:发电机;氢气;湿度大;分析处理 一、国内和我厂发电机氢气湿度的有关规定 《氢冷发电机氢气湿度的技术要求》(DL/T 651-1998)规定了氢冷发电机氢气湿度在运行氢压下的上下限值及充氢、备氢时补充氢气的允许湿度值;相关文献对氢气湿度过高、过低的危害也有明确的描述。 1.氢气湿度标准 1)我厂《运行规程》规定:任何运行方式下,发电机内氢气的绝对湿度必须低于4.0g/m3(或露点温度-18℃),即在机外常压下取样化验时氢气中的水汽浓度不高于1g/ m3。当机内氢气绝对湿度升高至4.0g/m3(或露点温度-18℃)以上时,必要时可采取频繁充入干燥氢气的方法来降低氢气湿度(但注意不要使氢气湿度降低太多)。转子停转时,可用降低氢压或充入干燥氢气的方法维持这个湿度。发电机内氢气的绝对湿度大于4.0g/m3(或露点温度-18℃)以上,但不超过10g/m3(或露点温度-10℃),机外常压下取样化验热氢气中的水汽浓度不超过2.5g/ m3 的情况下运行,每年只允许运行3次,每次运行的持续时间不得超过72小时。 2)供发电机充氢、补氢用的新鲜氢气在常压下的允许湿度为:新建电厂Td≤50 ℃,已建电厂Td≤25 ℃。 2.氢气湿度超标对发电机的危害 1)氢气湿度高对绝缘性能的影响 发电机内氢气湿度过高,降低定子的绝缘电气强度,易使定子绝缘薄弱处发生相间短路。200 MW发电机定子端部绝缘存在水接头和引线两处薄弱环节,均处于高电位,如氢气中含水或水汽严重时,会使绝缘薄弱处对其它线棒击穿放电。氢气相对湿度超出一定限值(80%),定子绝缘缺陷就会加速发展。氢气湿度高,相对湿度超出75%,会使转子绝缘强度下降,甚至导致无法开机。 2)氢气湿度高对转子护环的影响 氢气湿度过高,使发电机转子护环产生应力腐蚀纹损并使裂纹快速发展。发生应力腐蚀有3个必要条件:材质,有较大的应力,有腐蚀介质。在相对湿度大于50%时,裂纹扩展速率呈指数增加。 3)氢气湿度过低对发电机某些部件的影响 氢气湿度过低,可导致发电机某些部件受损,如可导致定子端部垫块收缩和支撑环裂纹,相对湿度小于0.5%,可认为是干气。 二、我公司#1发电机氢气湿度增大及其它参数情况 1.氢气湿度升高过程 2016年8月13日#1机组开机,8月15日至8月23日,发电机氢气湿度逐步由从-9℃至0℃;8月23日至8月31日,发电机氢气湿度逐步增高至+6℃,9月2日湿度剧增至+15℃;看历史曲线,机组加负荷阶段对应湿度增大过程,白天湿度较大,夜晚湿度相对低2℃,与环境温度有正向关系。 2.#2瓦漏汽情况 #1机组于2012年6月进行了A修,#2瓦将梳齿汽封改造为刷式汽封。2016年6月#2瓦漏汽量开始增大,采取遮挡的方式对热工电缆进行防护,8月23日#2瓦漏汽将热工电缆烤焦。 三、发电机湿度大原因分析排查 9月5日,机组停运后,邀请省电科院、发电机厂家、公司技术人员进行分析、检查。 1)汽封漏气导致润滑油带水。从2016年8月14日后,主油箱油位逐步增高,因所有冷油器已确认不漏,只有汽封漏气所致。查看历史曲线,7月份,主油箱油位-45mm,上下波动在5mm以内。8月14日以来,主油箱油位逐步增高,从8月14日的-12mm,到9月4日升至 +12.21mm,油箱油位增大约20mm。 2)发电机励端氢侧密封瓦损坏。从2016年8月14日后,氢侧密封油压励端有一个明显下降的台阶,此后励端氢侧密封油压低于空侧密封油压约0.01MPa,机组运行中测量氢侧密封油箱补油阀管路发热,励端氢侧密封油回油温度低于汽端氢侧密封油回油温度13 ℃,,说明空侧向氢侧密封油箱补油,油又回流到励端空侧,分析存在励端氢侧密封瓦与轴颈配合间隙超标问题,空侧密封油带水进入氢侧密封油,是造成氢气湿度大的因素之一。 3)定子内冷水打压。2016年09月14对内冷水系统打压,水压0.4 MPa,2小时下降0.1 MPa。打开发电机出线小间人孔门,发现下面积水达7Kg,C相出线CT渗漏水,随后又发现中性点A相CT渗漏水,共查出两个泄漏点。 4)环境温度影响发电机氢气湿度。外界环境与循环水正相关,氢气冷却器为循环水冷却,间接影响发电机氢气温度,同理,氢气干躁器也间接影响发电机氢气温度,表现为发电机风温在2-5℃内变化,氢气温度也在2-5℃内规律性波动。 四、发电机停机后处理 1.氢气冷却器查漏:停机后对氢气冷却器进行注水查漏,保持风压0.3 MPa,8小时未见汽泡产生,判断氢冷器不漏。 2. 揭瓦检查:揭开#5瓦,没有发现过热烧瓦现象,说明油质正常,没有因油质乳化对轴瓦造成损伤。 3.渗漏CT处理 在排查出两个CT漏水点后,考虑发电机出线及中性点套管漏氢问题早已存在而没有及时解决,决定请厂家更换6组CT入水联接O形垫和套管氢侧密封垫,彻底解决因垫子老化造成的水、氢渗漏。工作完成后对发电机将进行水压试验、风压试验、手包绝缘试验、直流耐压试验等,内冷水保持45℃对发电机内加热驱潮,封人孔门,上述试验合格,发电机恢复备用。

发电机氢系统介绍

发电部培训专题(发电机氢系统简介修改版)*本介绍参照了技术协议部分内容

1发电机氢气系统简介说明: 1.1发电机由于存在着损耗的原因,会导致发电机本体及线圈发热,如果不 及时将这些热量及时释放掉,将会导致发电机绝缘老化,影响发电机使用寿命,甚至引发其它恶性的电气事故的发生。因此大、小发电机都有自己的一套冷却装置。 1.2大型发电机是一种高电压、大电流的电气设备,因此对于它的冷却方式 的选择,是确保发电机安全运行的一项重要手段,发电机根据容量等技术参数选择不同的冷却方式,如空冷、氢冷、水氢氢、双水内冷等。在这些方式中,双水内冷冷却效果是最好的,但由于双水内冷存在着连接部件漏水这一难以解决的问题,在我国80年代投产的多台引进的捷克机组中多次发生此类事故,所以目前我国发电机至今仍多采用的是氢气冷却这种方式,我厂发电机用的是水-氢-氢冷却方式。 1.3之所以目前多采用氢气冷却的原因是氢气有着以下优点: a.氢气比重比较小,相对于其它气体来说它的阻力损耗比较小。 b.氢气是不助燃的气体。 c.氢气比热较其它气体来说大一些。 d.氢气化学价比较稳定。 1.4但用氢气冷却这种方式也存在很大的缺点: a.它是可燃物,使的生产危险点控制更加严格。 b.它需要专用的密封装置,增加了系统的复杂性。

2主要技术参数 2.1发电机内额定运行参数: a.氢气压力:0.414MPa. b.氢气温度:不大于46℃ c.氢气纯度:大于98% d.氢气耗量:小于13~19立方米/天 e.氢气含氧量:小于2% f.氢气含水量:不大于25克/立方米 2.2对供给发电机的氢气要求 a.供氢气压力不高于3.2MPa.(g) b.供氢气纯度不低于99.5% c.氢气露点温度.≤–21℃ 2.3置换时的损耗值: 备注 序号内容单位数 值 1 发电机充氢容积立方米117 2 驱赶机内空气时耗用二氧化碳立方米300 CO2纯度98% 以上 3 驱赶机内二氧化碳时耗用的氢气立方米300

关于发电机氢气露点高的原因及防范措施 温凯

关于发电机氢气露点高的原因及防范措施温凯 摘要:叙述了水氢氢冷却发电机氢气湿度大的影响因素及处理办法,内蒙古大 唐国际托克托发电有限责任公司3-12发电机组,发电机由东方电机股份公司制造,水-氢-氢冷却方式,发电机氢气干燥系统采用QXG-3型吸附式氢气干燥器。我国 发电机运行规程规定,发电机内氢气纯度不能低于96%,露点温度应在-25-0℃。 关键词:发电机;氢气;露点; 干燥器;措施 一、氢气露点超标的危害 露点是指气体中的水分从未饱和水蒸气变成饱和水蒸气的湿度。氢气湿度大 是影响发电机绝缘性能的主要因素之一。运行中发电机内氢气湿度超过0℃,不 仅会降低氢气纯度,导致气体平均密度增加,使通风摩擦损耗增大,而且水分在 运行中蒸发为水蒸气,水汽吸附在绝缘层上,侵入绝缘内部的水将造成内部导体 与外部绝缘表面电位相等,成为等电位体,危害发电机定子、转子绕组绝缘强度,并因此发生击穿闪络,造成发电机事故;此外,还可能使转子护环产生应力腐蚀 裂纹。运行中发电机内氢气湿度低于-25℃,会使气体过于干燥,绝缘收缩,这样还可能导致定子端部垫块的收缩和支撑环的裂纹。 二、发电机内氢气露点升高的原因 2.1氢气本身带有一定的水分;氢站出口氢气湿度过大、氢气冷却器漏水或定子直接水冷系统漏水、干燥器工作不正常等,都会导致氢气湿度过大。经验总结,大多是氢气露点升高是由于氢气干燥器不能正常工作导致的。 2.2机组启动前遗留在发电机内的水汽,逐渐扩散到氢气中,造成氢气湿度增大,露点升高。 2.3氢冷器发生泄漏也可能使氢气露点升高,冷却器铜管破裂或制造存在砂眼,铜管质量不良,冷却器密封垫不严,并且在运行中冷却器通关内水压比铜管外氢 压高,将发生冷却水直接漏入氢气内,造成氢气湿度增大。虽然氢压大于水压, 大师仍有可能扩散到氢气系统中。 2.4 润滑油中含水量大,发电机在正压下运行,为避免氢气泄漏,配有相应的 密封油系统。轴封蒸汽与润滑油的接触会导致润滑油含水量增加,而密封油又是 与氢气直接接触的。由于密封油是使用经冷却后的润滑油,因而由轴封蒸汽进入 润滑油中的水分会使发电机会使发电机氢气的湿度不断增大,这就是引起发电机 氢气露点升高的根源。 2.5发电机定子冷却水温度低于冷氢温度使部分氢气过冷却。 三、 QXG-3型吸附式氢气干燥器工作原理及不正常工作的原因 3.1工作原理:该干燥器是一种全自动,双塔式连续运行的氢气干燥设备。自动连续运行是由PLC运行“控制程序”对设备进行控制实现的。运行过程分为定时 运行和高效运行两种模式。定时运行模式为每个吸收塔进行8小时的吸湿过程和 8小时的再生过程。再生过程又分为4小时加热和4小时冷却。 3.1.1吸湿过程:假设A塔进行吸湿过程,B塔进行再生过程。吸湿过程是: 氢气从发电机高压端出来流进入设备,经底部的四通阀导向流进A塔的底部,经 内置风机吹送流经干燥吸湿层,水分被干燥剂吸收,然后氢气经上部四通阀流出 干燥器,返回发电机低压端入口。这一过程持续8小时。 3.1.2再生过程:假设A塔进行吸湿过程,B塔进行再生过程。B塔内埋置在 干燥剂中的电加热器加热干燥剂,使其将吸收的水分放出,封闭在再生系统内的 氢气经B吸收塔内置风机的推动流过干燥剂吸收层,将释放出的水蒸汽带走,然

发电机氢气湿度超标的原因分析及预防措施 刘春旭

发电机氢气湿度超标的原因分析及预防措施刘春旭 发表时间:2019-07-09T15:29:33.050Z 来源:《电力设备》2019年第6期作者:刘春旭 [导读] 摘要:氢冷发电机组氢气湿度超标是影响氢气纯度的主要原因,氢气中含水增大会使发电机定子线圈端部发生局部短路事故,造成发电机转子护环产生应力腐蚀,使发电机氢气纯度降低,气体密度增大,增加了通风损耗,同时也增大了排污、补氢次数和补氢量,降低了发电机的运行效率,严重的影响机组安全、经济运行。 (大庆中油电能公司热电一公司) 摘要:氢冷发电机组氢气湿度超标是影响氢气纯度的主要原因,氢气中含水增大会使发电机定子线圈端部发生局部短路事故,造成发电机转子护环产生应力腐蚀,使发电机氢气纯度降低,气体密度增大,增加了通风损耗,同时也增大了排污、补氢次数和补氢量,降低了发电机的运行效率,严重的影响机组安全、经济运行。 关键词:氢气湿度;危害;预防措施 1 概述 1.1 中油热电一公司三台200MW发电机,由哈尔滨发电机厂生产,型号:QFSN-200-2型,发电机定子线圈及引出线采用水内冷,转子线圈、定子铁芯采用氢气冷却。 1.2 发电机充氢后要求氢气纯度>96%,含氧量<2%,氢气含水量<12g/m3。为了降低发电机氢气湿度,在4.5米内冷水系统旁加装了一台型号:BLNG-2F型氢气干燥器,它利用发电机风扇的压头,使部分氢气通过干燥器进行干燥,除去氢气中水分,提高发电机内的氢气纯度。 1.3 我厂密封油系统为双流环式密封油系统,即向密封瓦双路供油,在密封瓦内形成双环流供油形式。即有空侧和氢侧分别独立的两路油。双回路供油系统具有二路油源,空侧油源来自主油箱,氢侧油源来自发电机双环密封的内环氢侧密封油的回油;一路供向密封瓦外环空气侧的空侧油,一路供向密封瓦内环氢气侧的氢侧油。其中空侧油中混有空气,氢侧油中混有氢气。两个油流在密封瓦中各自成为一个独立的油循环系统,空、氢侧油压通过平衡阀和压差阀保持密封油压与氢压的差值,对平衡阀、差压阀等关键部件的动作精度及可靠性要求极高。 2 氢气湿度超标的危害性 2.1 氢气湿度高使发电机转子护环产生应力裂纹损伤,并使裂纹快速发展。发电机转子护环的应力腐蚀开裂与氢气介质湿度有很大的关系,在相对湿度大于50%时,裂纹扩展速率呈指数增加。 2.2 发电机内氢气湿度过高会降低定子的绝缘电气强度,易使定子绝缘薄弱处发生相间短路。如由于制造方面的原因,200MW发电机定子端部绝缘水接头和引线两端存在薄弱环节,均处于高电位,如氢气中含水或水、汽严重时,会使绝缘薄弱处对其线棒发生击穿放电。氢气相对湿度超过75%,会使转子绝缘强度下降,甚至无法启机。 2.3 含水油、烟进入发电机内,使得发电机的氢气纯度降低,气体密度增加,即增加了发电机的通风损耗,同时也增加了排污、补氢次数和补氢量,影响机组运行的经济性。 2.4 含水油烟进入发电机中,随氢气一起在发电机内的风路里循环,遇冷后,可在风道内任何部位表面凝结成油滴。沉积在风道的油污将严重影响风道的散热能力,轻者造成温度升高,重者可产生风道阻塞,使局部过热,尤其是转子风道。造成发电机无法正常运行。 3 氢气湿度超标的原因 3.1 氢站来氢未达到标准。 目前,制氢站制取氢气的方法为水电解法。电解槽产生的氢气依次经过分离器、洗涤器、冷却器,最后储存在储氢罐内。从工艺流程看,氢气经过洗涤器后水蒸气含量处于饱和状态,其含水量取决于温度,随着温度的提高而增大,在流程中设置冷却器就是为了通过降低氢气的温度而得到降低氢气含水量的目的。 3.2 补充进入密封油系统的润滑油中水分超标 3.2.1 主油箱油中含水量超标。 从系统设置可以知道,空侧密封油来自于主油箱,经过空侧密封油泵升压送至发电机密封瓦的双环密封的外环,回油经油氢分离器后靠静压回至主油箱。密封油中带水,在密封瓦处蒸发形成水蒸气进入发电机使氢气纯度下降,湿度增加。 3.2.2 汽轮机轴封漏汽。汽轮机轴封系统检修时轴封间隙调整过大或运行中发生轴封片与汽轮机大轴摩擦,使轴封径向间隙增大,导致汽轮机端部轴封向外跑汽,汽轮机轴端汽封漏汽窜入汽轮机轴瓦内造成油中进水。由于主油箱的油是氢冷系统密封油的油源,主油箱含水量偏大,必然导致密封油含水量偏大,最终导致氢气含水量上升。 3.2.3 冷油器泄露。冷油器运行中出现铜管、管板渗漏,同时运行操作不符合规定,造成冷却水压大于油压,使水进入油中。 3.2.4 轴封回汽冷却器换热面积不足。轴封回汽冷却器经堵漏处理后使冷却面减小,并且老机组轴封漏汽量在增加,造成轴封回汽不畅,使轴封回汽压力升高,漏汽量增加,造成油中进水。 3.2.5 汽轮机一次漏汽量大。机组负荷增大时,漏汽压力升高、漏汽流量增加使汽轮机一漏相互产生排挤,造成漏汽不畅,使轴封回汽腔室压力升高,造成高压缸前、后汽封和中压缸前汽封漏汽量增大,并通过油档窜入相应轴承的回油中,导致油中带水。 3.2.6 排烟机出力过大。#2、3排烟机运行时会使轴承室、回油管、主油箱内形成微负压,排烟机出力过大形成的负压过高,使工作环境中的空气从系统间隙处不断吸入,空气中的水蒸汽进入油系统后凝结成水,导致油中带水。 3.2.7 润滑油滤油机滤水效率不足。润滑油在线滤油设备滤水效果不佳,或因滤油设备故障无法保证连续平稳运行,使油中含水量不断增加。 3.2.8 运行调整不及时。机组负荷增大时,二次漏气压力增大,运行人员未及时调整二漏倒八抽截门以降低二次漏汽压力,使轴封发生漏汽通过油挡窜入轴瓦回油中。 3.3 发电机内冷水漏泄 氢冷发电机水系统泄漏,主要包括氢冷却器及内冷水系统的泄漏,虽然氢压大于水压,但水、汽仍有可能扩散到氢气系统中,导致氢气湿度增大。

氢冷发电机氢气湿度超标原因分析及处理标准版本

文件编号:RHD-QB-K5357 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 氢冷发电机氢气湿度超标原因分析及处理标准 版本

氢冷发电机氢气湿度超标原因分析 及处理标准版本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 江油发电厂2×330MW机组发电机是法国阿尔斯通公司生产的,型号为T255 460,额定功率330MW,冷却方式为水氢氢。发电机在设计时无氢气除湿装置和氢气湿度监测装置,其结构与国产发电机有差异,转子冷却介质氢气在机内实现循环,未配置体外除湿装置。自1990年投运以来,该厂对机内氢气质量只监测控制了纯度。 根据国内同类型机组运行的实际情况,于1997年8月江油发电厂在31号发电机安装了芬兰VAISALA公司生产的型号为HMP264型在线氢气湿

度监测仪,该仪器具有较高的准确度和较好的防爆性,及具有安装、运行、维护方便等特点。自投运以来,运行状况良好。 1 问题的发现 1.1 日常运行监督的发电机机内氢气情况 表1 31号发电机氢气质量 1.2 问题的发现 在1998年9月13月2时运行人员抄表时发现31号发电机氢气湿度仪无显示,经化学仪表检修人员检查发现湿度仪探头芯片损坏,处理后,测得氢气湿度高达22g/L。同时,电气运行人员从发电机底部氢气冷却系统液位计排出积水,积水经化学分析其硬度为40μmol/L。根据1991年9月部颁氢气湿度标准:“发电机内氢气温度应不大于10g/m3,有条件的机组应使湿度进一步降低,达到4g/m3。据此判

氢冷发电机氢气湿度超标原因分析及处理正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.氢冷发电机氢气湿度超标原因分析及处理正式版

氢冷发电机氢气湿度超标原因分析及 处理正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 江油发电厂2×330MW机组发电机是法国阿尔斯通公司生产的,型号为T255 460,额定功率330MW,冷却方式为水氢氢。发电机在设计时无氢气除湿装置和氢气湿度监测装置,其结构与国产发电机有差异,转子冷却介质氢气在机内实现循环,未配置体外除湿装置。自1990年投运以来,该厂对机内氢气质量只监测控制了纯度。 根据国内同类型机组运行的实际情况,于1997年8月江油发电厂在31号发电机安装了芬兰VAISALA公司生产的型号为HMP264型在线氢气湿度监测仪,该

仪器具有较高的准确度和较好的防爆性,及具有安装、运行、维护方便等特点。自投运以来,运行状况良好。 1 问题的发现 1.1 日常运行监督的发电机机内氢气情况 表1 31号发电机氢气质量 1.2 问题的发现 在1998年9月13月2时运行人员抄表时发现31号发电机氢气湿度仪无显示,经化学仪表检修人员检查发现湿度仪探头芯片损坏,处理后,测得氢气湿度高达22g/L。同时,电气运行人员从发电机底部氢气冷却系统液位计排出积水,积水经化学分析其硬度为40μmol/L。根据1991年9

发电机组气体置换安全技术措施详细版

文件编号:GD/FS-4550 (解决方案范本系列) 发电机组气体置换安全技 术措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

发电机组气体置换安全技术措施详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1 发电机充排氢说明: 发电机充氢、排氢采用置换方法。当发电机内是空气(氢气),禁止直接向机内充入氢气(或空气),以避免机内形成具有爆炸浓度的空-氢混合气体。为此发电机及氢气管路系统必须进行气体置换,系统中设置有专用二氧化碳汇流排,可将标准气瓶中的二氧化碳通入发电机,驱赶发电机内的空气(氢气),然后再用氢气(空气)驱赶中间气体,使发电机内在气体置换过程中,空气、氢气不直接接触。 2 发电机从运行状态转换到检修状态的置换工作:

2.1 首先在发电机氢气系统泄压后,应用二氧化碳置换出发电机内的氢气,当从发电机顶部排气门取样分析二氧化碳浓度达到96%以上时,再用空气置换发电机内的二氧化碳,当从发电机底部排气门取样分析二氧化碳浓度小于5%(或监测氧气含量不小于20%)时,空气置换完毕。置换过程中应注意,在置换各个阶段的末期,要对发电机氢气各系统死角进行排污,以防止死角残余有氢气与空气混合造成危险隐患。 3 作业条件 3.1氢气纯度仪、湿度仪、油水探测器、防爆压力开关均能正常使用。 3.2氢密封油系统能正常投用,氢、油差压阀,空、氢侧压力平衡阀整定结束。 3.3现场照明、通风、通讯、消防设施齐全,道

发电机氢气湿度变化大原因分析

发电机氢气湿度变化大原因分析 【摘要】氢冷发电机在运行中,发电机氢气湿度是一项很重要的监测指标。维持发电机内的氢气湿度在合适的范围内是保证氢冷发电机安全运行的必要条件。氢气湿度的变化与密封油、除湿装置等相关系统的运行质量有着密切的联系。本文主要对影响发电机内氢气湿度变化的原因进行了分析,并提出了相应的处理和防范措施。 【关键词】氢气;湿度;分析;处理 1引言华电能源哈尔滨第三发电厂#1汽轮发电机组所用发电机为哈尔滨电机厂生产的型号为QFSN-200-2型氢冷发电机。发电机采用定子绕组水内冷、转子绕组氢内冷、定子铁芯及其它器件氢气表面冷却的水-氢-氢冷却方式。发电机设有密封油系统,通过双流环式密封瓦将氢气密封在发电机内。为了降低运行中的发电机内的氢气湿度,发电机还装有一台以二氧化铝为介质的吸附式氢干燥器。在氢吸附式干燥器入、出口管处装有氢温湿度仪表对发电机内氢气温度、湿度情况进行在线监视。从近期运行情况看,运行中氢气湿度变化大,有时还发生氢气湿度超标现象,氢湿度最大时露点温度超过5℃。 2氢气湿度大的危害湿度过大,水汽在氢气温度过低时会产生结露,降低发电机绝缘,存在极大地安全隐患,而氢气湿度大还会增加发电机的通风损耗使发电机的运行效率降低。而过于干燥的环境也会使发电机内的某些部件因机内过于干燥而产生裂纹。因此一般规定控制发电机内的氢气湿度不应低于-25℃露点温度。而实际运行中氢气湿度超标通常是指发电机内的氢气湿度超过0℃露点温度。根据哈尔滨第三发电厂《200MW机组集控运行规程》的规定,运行中发电机内的氢气湿度应控制在露点温度-25~0℃之间。 3湿度的概念湿度指的是气体中的水、汽含量。其表示方法有绝对湿度、相对湿度、露点温度等。 绝对湿度:湿气中水、汽的质量与湿气总体积之比。(单位表示为g/m?)相对湿度:压力为P、温度为T的湿气中水汽摩尔分数与相同压力P、温度T下纯水表面的饱和水汽摩尔分数之比。(单位表示为%) 露点温度:压力为P、温度为T、混合比为R的湿气中,在给定压力下湿气被水饱和时的温度。(单位表示为℃) 虽然相对湿度的概念有现实意义,但露点温度更直观一些,现在哈三电厂就是用露点温度来表示发电机氢气湿度。、#1机组在氢系统上装有氢温湿度测量仪表,能够及时监测发电机内氢气露点的变化情况。 4 发电机氢气湿度变化大原因分析 由于氢气从氢站供出前经过了除湿过程,合格后才供出,因此发电机内氢气湿度大主要是有外来水汽进入了氢气内造成。针对发电机氢气湿度变化的影响因素,我们对与之相关的内冷水系统、氢冷却器系统、密封油系统、除湿装置进行逐条分析。 4.1内冷水系统根据规程规定,在正常运行中发电机内冷水压力应低于氢压0.05MP,但最高不应超过0.2MP。而#1机组发电机氢压一般维持在0.25MP 到0.3MP之间,几乎没有低于0.25MP的时候,因此内冷水进入发电机内的情况基本可以排除。 4.2 氢冷却器系统发电机内的氢气通过四角布置的四个氢冷器冷却。氢冷

发电机组气体置换安全技术措施

编号:AQ-JS-02398 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 发电机组气体置换安全技术措 施 Safety technical measures for gas replacement of generator set

发电机组气体置换安全技术措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1发电机充排氢说明: 发电机充氢、排氢采用置换方法。当发电机内是空气(氢气),禁止直接向机内充入氢气(或空气),以避免机内形成具有爆炸浓度的空-氢混合气体。为此发电机及氢气管路系统必须进行气体置换,系统中设置有专用二氧化碳汇流排,可将标准气瓶中的二氧化碳通入发电机,驱赶发电机内的空气(氢气),然后再用氢气(空气)驱赶中间气体,使发电机内在气体置换过程中,空气、氢气不直接接触。 2发电机从运行状态转换到检修状态的置换工作: 2.1首先在发电机氢气系统泄压后,应用二氧化碳置换出发电机内的氢气,当从发电机顶部排气门取样分析二氧化碳浓度达到96%以上时,再用空气置换发电机内的二氧化碳,当从发电机底部排气门取样分析二氧化碳浓度小于5%(或监测氧气含量不小于20%)

时,空气置换完毕。置换过程中应注意,在置换各个阶段的末期,要对发电机氢气各系统死角进行排污,以防止死角残余有氢气与空气混合造成危险隐患。 3作业条件 3.1氢气纯度仪、湿度仪、油水探测器、防爆压力开关均能正常使用。 3.2氢密封油系统能正常投用,氢、油差压阀,空、氢侧压力平衡阀整定结束。 3.3现场照明、通风、通讯、消防设施齐全,道路畅通。 3.4准备足够的CO2瓶大约63-65瓶。 3.5压缩空气系统应投用。 4作业措施 4.1CO2置换空气 4.1.1将CO2瓶连接至气体控制站汇流排上。 4.1.2检查气体阀门状态,排尽检漏仪积存液体。 4.1.3投入密封油系统、氢水油系统工况监测柜。

相关文档
相关文档 最新文档