文档库 最新最全的文档下载
当前位置:文档库 › Complex Amphiphilic Hyperbranched Fluoropolymers by Atom Transfer Radical

Complex Amphiphilic Hyperbranched Fluoropolymers by Atom Transfer Radical

Complex Amphiphilic Hyperbranched Fluoropolymers by Atom Transfer Radical
Complex Amphiphilic Hyperbranched Fluoropolymers by Atom Transfer Radical

Complex Amphiphilic Hyperbranched Fluoropolymers by Atom Transfer Radical Self-Condensing Vinyl(Co)polymerization

Kenya T.Powell,Chong Cheng,and Karen L.Wooley*

Center for Materials Inno V ation,Department of Chemistry and Department of Radiology,Washington Uni V ersity,Saint Louis,Missouri63130-4899

Recei V ed December18,2006;Re V ised Manuscript Recei V ed April3,2007

ABSTRACT:Amphiphilic hyperbranched fluorohomopolymer(M n)9.06kDa,M w/M n)1.90)and fluoroco-polymer(M n)17.2kDa,M w/M n)2.50)with tri(ethylene glycol)units incorporated at the molecular level were synthesized by atom transfer radical self-condensing vinyl homopolymerization of an inimer,4-[oxy(tri(ethylene glycol))bromoisobutyryl]-2,3,5,6-tetrafluorostyrene,and copolymerization of the inimer with2,3,4,5,6-pentafluo-rostyrene(1:3,inimer:monomer),using2,2′-bipyridine together with CuCl/CuCl2as the ligand/catalyst/deactivator system.The structure and composition of the fluoropolymers were characterized by1H,13C,and19F NMR spectroscopies.As detected by thermogravimetric analyses,the homopolymer and the copolymer had thermal stability up to175and210°C,respectively.Differential scanning calorimetry revealed a glass transition temperature of-19°C for the homopolymer and20°C for the copolymer.Solubility tests indicated that both polymers were soluble in a broad range of organic solvents,and the presence of tri(ethylene glycol)units resulted in the formation of water-dispersible micelles from each of the polymers.

Introduction

Investigations of the theory,design,preparation,and applica-tions of highly branched macromolecules,including dendri-mers1-12and hyperbranched polymers(HBPs),13-23have been widespread over the past two decades due to the special architectures and properties of these polymers relative to linear polymers.24-28HBPs are highly branched polymers with lower structural regularity than dendrimers.Although many types of HBPs have been prepared by various synthetic pathways, polycondensation of AB x monomers(x g2)has remained as the traditional and most common methodology for the prepara-tion of HBPs.20,29

In1995,Fre′chet et al.reported self-condensing vinyl po-lymerization(SCVP)of bifunctional AB*monomers,called inimers.30,31Inimers were so named because they possessed both a monomer group(A)and an initiator functionality(B*).These seminal studies led to a new approach in the production of HBPs.Although only a handful of suitable inimers were used in early studies,32this methodology has been extended by constituting charge-transfer complexes(CTCs)as new inimers or by copolymerization of inimers with comonomers.In2003, Wang et al.reported a copolymerization of p-chloromethylsty-rene(CMS)and chlorotrifluoroethylene(CTFE)following the atom transfer radical-SCVP(ATR-SCVP)mechanism,to give a fluorinated HBP with controlled structures.33The electron-rich CMS was believed to assemble with electron-deficient CTFE to form a CTC that served as an inimer for the SCVP system.Self-condensing vinyl copolymerization(SCVCP)of AB*inimers with comonomers has also significantly expanded the synthetic methodologies for the preparation of HBPs and has provided a broad range of HBPs with diverse compo-sition.16,34-36HBPs by SCVCP possess stable-C-C-back-bones and have structural units that can be derived from commercially available monomers.Their structural features, such as degrees of branching(DBs),can be controlled through the structures of the comonomer(s)and inimer(s),their feed ratios,and the copolymerization conditions.

We have a long-standing interest in hyperbranched fluo-ropolymers(HBFPs),37based upon their unique properties, including low coefficient of friction,low surface energy,low viscosity,enhanced solubility,and their facile production as compared with the production of their linear fluoropolymer counterparts.38Initially,our studies involved the design,syn-thesis,characterization,and applications of our first type hyperbranched fluoropolymer,HBFP(I),prepared by the poly-condensation of a bis(pentafluorobenzyl)ether of3,5-dihy-droxybenzyl alcohol in the presence of elemental sodium.37,39,40 HBFP(I)had perfluoroaromatic rings and ether linkages through-out its structure,with pentafluorobenzyl chain ends that can undergo nucleophilic aromatic substitution reactions for post-modification and derivatization.Furthermore,amphiphilic cross-linked networks were prepared from HBFP(I)and diamine-terminated poly(ethylene glycol)(DA-PEG),and their surface characteristics could be mediated by the mass ratio of HBFP to DA-PEG.40,41The amphiphilic cross-linked networks possessed enhanced anti-biofouling ability,42unusual sequestration and release behavior for a variety of small molecule guests,43and atypical mechanical performance.44We also recently reported the synthesis of our second type hyperbranched fluorocopolymer material,HBFP(II),by the ATR-SCVCP of inimer CMS with 2,3,4,5,6-pentafluorostyrene(PFS).34In contrast to HBFP(I) obtained by multistep reactions under severe reaction conditions, HBFP(II)were prepared by a one-pot synthesis using com-mercially available reactants under mild reaction conditions.The ATR-SCVCP method also allowed for ready control of fluo-rocarbon content,molecular weights,and DBs for the resulting HBFP(II).Moreover,HBFP(II)-DA-PEG amphiphilic cross-linked networks were synthesized economically,and their surfaces possessed tunable structural features,with topographical,mor-phological,and compositional heterogeneities similar to the surfaces of HBFP(I)-DA-PEG.45As a result of the thermody-namically driven phase segregation of the hydrophobic HBFP and hydrophilic PEG segments,the3-fold complexity(topog-

*Corresponding author:Tel(314)935-7136,Fax(314)935-9844, e-mail:klwooley@https://www.wendangku.net/doc/b515213623.html,.4509

Macromolecules2007,40,4509-4515

10.1021/ma0628937CCC:$37.00?2007American Chemical Society

Published on Web05/26/2007

raphy,morphology,and composition)is hypothesized to be responsible for the significant anti-biofouling behavior of the amphiphilic cross-linked networks.Because we hypothesized that the small size of the heterogeneities is also an important factor to enhance the resistance of protein adsorption and marine organism adhesion,we have a keen interest in the synthesis of amphiphilic structures with smaller surface domain sizes.In our current efforts to develop new types of hyperbranched fluorocopolymer materials,our goals are to improve the anti-biofouling characteristics by increasing the PEG content while retaining nanoscale surface heterogeneities.However,increas-ingly larger surface domain sizes were observed in cross-linked networks of HBFP (II)-PEG with mass fractions of PEG greater than 50%.These findings necessitated the creation of a HBFP with improved PEG compatibility.Additionally,the successful production of HBFP (II)by ATR-SCVCP indicates that more types of hyperbranched fluoropolymers might be prepared using the same synthetic methodology.With these concepts in mind,we have developed our third type hyperbranched fluoropoly-mers,HBFP (III),by ATRR-SCVP or SCVCP using a tri(ethylene glycol)-functionalized amphiphilic fluorinated inimer.Results and Discussion

Syntheses.In order to synthesize hyperbranched fluoropoly-mers 1and 2,having oligo(ethylene glycol)(OEG)chains incorporated within their frameworks via the ATR-SCVCP methodology,an OEG-functionalized fluorinated inimer 3that possesses a polymerizable vinylic group and an initiator functionality for ATRP was prepared (Scheme 1).The formula-tion of such a molecule began with the nucleophilic aromatic substitution of 2,3,4,5,6-pentafluorostyrene (PFS)by tri(ethylene glycol)(TEG).In the presence of NaH in THF heated at reflux for 1.5h,the reaction of PFS with 7.5equiv of TEG afforded 4in 88%yield,after chromatographic purification.Both PFS and TEG were selected on the basis of their commercial availability and laboratory convenience,in addition to their well-characterized and well-understood properties.Relative to PFS,an excess of TEG was required in the preparation of 4to suppress the side product in which both of the hydroxyl groups of TEG were arylated by PFS.Additionally,TEG,instead of longer EG segments,was chosen to maintain simplicity.Transformation of 4into the inimer,3,was accomplished by allowing 4to undergo reaction with 2-bromoisobutyryl bromide in THF at room temperature for 20h,to give 3in 88%yield,after chromatographic purification.

Homopolymerization of 3was performed using CuCl/CuCl 2/2,2-bipyridine (BiPy)as the catalyst/deactivator/ligand system ([3]0/[CuCl]0/[CuCl 2]0/[BiPy]0) 1.0/0.1/0.01/0.22)in fluo-robenzene (PhF)at 60°C,and the polymerization process was monitored by 1H NMR spectroscopy.As measured by 1H NMR spectroscopy,comparison of the vinylic proton resonances at 5.62, 6.02,and 6.62ppm with the proton resonances of methylene units on the R -positions to the ester oxygen and the phenyl ether group at 4.20-4.35ppm found that these reaction conditions gave a 70%conversion of the vinylic groups at 10h,an 80%conversion at 20h.Conversions of the alkyl halide initiating site were also observed on the basis of decreased resonance intensities of the methyl protons of the alkyl halide initiating site of 3resonating at 2.05ppm in comparison to the TEG proton signals,giving 40%and 49%conversions at 10and 20h,respectively.The polymerization was quenched at 24h,and the polymerization mixture was diluted with THF and passed through an alumina column.Concentration of the solution and repeated precipitations into hexanes then gave hyper-branched fluorohomopolymer 1in 64%yield (80%yield based upon an estimated 80%conversion of 3).As determined by size exclusion chromatography (SEC)equipped with both a differential refractometer and a dynamic light scattering detector,1had an absolute M n of 9.06kDa with a M w /M n value of 1.90(Figure 1a).

Copolymerization of 3with PFS was performed to produce an amphiphilic hyperbranched fluorocopolymer that has struc-ture somewhat similar to HBFP (II)34but possesses TEG units that were absent from HBFP (II).The feed ratio of PFS to 3was 3:1to dramatically alter the composition and structure relative to the homopolymer 1.This ratio was also selected to mimic the feed ratio of [monomer]0:[inimer]0of 3:1,which resulted in the highest fluorocarbon content for HBFP (II)and for later comparisons of DA-PEG cross-linked networks and copolymer 2with HBFP (II)-DA-PEG cross-linked networks.45The reaction was conducted with the initial feed ratios of [PFS]0/[3]0/[CuCl]0/[CuCl 2]0/[BiPy]0of 3.0/1.0/0.1/0.01/0.22,in PhF at 60°C.The copolymerization process was monitored by 1H NMR spectros-copy.Because of structural similarity,3and PFS have

Scheme 1.Syntheses of Hyperbranched Fluorohomopolymer 1and Fluorocopolymer 2by Atom Transfer Radical Vinyl

Self-Condensing Vinyl

(Co)polymerization

4510Powell et al.Macromolecules,Vol.40,No.13,2007

similar positions for the 1H NMR resonances of their vinylic protons.On the basis of quantitative 19F NMR analysis (vide infra),it was determined that the structural units of 3and PFS were present in the final copolymer 2in a ratio equivalent to that of the original feed.Thus,3and PFS possessed similar reactivity under the copolymerization conditions,and their percent conversions were equal to the total percent conversion of all vinyl groups.As detected by 1H NMR analysis,the conversion of the vinylic groups was 65%at 8h and 75%at 23h.The copolymerization was quenched at 24h,and the copolymerization mixture was diluted with THF and passed through an alumina column.Concentration of the solution and repeated precipitations into hexanes then gave hyperbranched fluorocopolymer 2in 56%yield (75%yield based upon 75%conversion of PFS and 3).As determined by SEC (Figure 1b),hyperbranched fluorocopolymer 2had an absolute M n of 17.2kDa with a M w /M n value of 2.50.As illustrated by the SEC traces of Figure 1,relative to homopolymerization of 3,copolymerization of 3with PFS actually gave polymers with higher molecular weights in a shorter polymerization time,presumably due to the higher polymerizable group-to-initiator site ratio for the copolymerization system.

NMR Spectroscopic Characterization.Both hyperbranched fluorohomopolymer 1and fluorocopolymer 2were characterized by 1H,13C,and 19F NMR spectroscopies.As shown in Figure 2,both of the polymers had similar 1H NMR spectra.Their backbone methylene and methine protons,resulting from the conversion of vinylic groups,resonated at 1.5-3.1ppm as broad resonances.Relative to homopolymer 1with only backbone protons from 3,copolymer 2exhibited stronger 1H NMR resonances in this region because it possessed backbone protons from both 3and PFS units.Before initiation,the methyl protons of the residual R -bromoisobutyrate groups from 3resonated at 1.9ppm as a sharp singlet;after initiation,the methyl protons resonated at 0.7-1.5ppm as broad signals.The methylene protons (C H 2O)of the TEG segment from 3resonated at 3.2-4.5ppm.Benzylic protons of the terminal benzylic chloride and benzylic bromide functionalities,which were formed by initia-tion from 3with or without halogen exchange,resonated at 4.6-5.4ppm as several broad peaks.Finally,the vinylic protons of the head groups,which resulted from units of 3whose vinylic group was not polymerized,resonated at 5.6,6.0,and 6.6ppm.The 13C NMR spectra for hyperbranched fluorohomopolymer 1and fluorocopolymer 2are shown in Figure 3.For both of the polymers,their carbons resonated in four primary regions.For the region from 20to 63ppm,the 13C NMR resonances are from all backbone carbons,methyl carbons,and all halogenated aliphatic carbons.The methylene carbons (C H 2O)of the TEG segments were observed from 63to 75ppm,and the aromatic and vinylic carbons resonated over 120-149ppm.The 13C NMR resonances from 171to 181ppm were assigned to the ester carbons of the isobutyrate groups.Homopolymer 1exhibited strong 13C NMR resonances at 31.0,55.7,and 171.5ppm for the methyl carbons,bromide carbons,and ester carbons of the residual R -bromoisobutyrate groups from inimer 3,which indicated that 1contained a significant portion of repeat units that had undergone vinylic group reaction for incorporation

into

Figure 1.SEC traces for (a)homopolymerization of 3at t )10h and (b)copolymerization of 3and PFS at t )8h,with SEC traces of the final purified polymers 1and 2(t )24h)included as

insets.

Figure 2.1H NMR (300MHz,CDCl 3)spectra for (a)hyperbranched fluorohomopolymer 1and (b)hyperbranched fluorocopolymer 2

.

Figure 3.13C NMR (150.8MHz,CDCl 3)spectra for (a)hyperbranched fluorohomopolymer 1and (b)hyperbranched fluorocopolymer 2

.

Figure 4.19F NMR (282MHz,CDCl 3)spectra for (a)hyperbranched fluorohomopolymer 1and (b)hyperbranched fluorocopolymer 2.

Macromolecules,Vol.40,No.13,2007Amphiphilic Hyperbranched Fluoropolymers 4511

the polymer but retained their noninitiated R-bromoisobutyrate groups.In the13C NMR spectrum of copolymer2,resonances at171.5ppm for the ester carbons of the residual R-bro-moisobutyrate groups from inimer3without initiation were much weaker than the resonances at176.6ppm for the ester carbons of extended chains,indicating that copolymer2had only an insignificant amount of remaining R-bromoisobutyrate groups.

The19F NMR spectra for hyperbranched fluorohomopolymer 1and fluorocopolymer2are shown in Figure4.The meta-fluorines and the ortho-fluorines of1exhibited resonances concentrated at-157.1and-144.6ppm,respectively(Figure 4a).The ratio of19F NMR resonance intensities from these two peaks were in excellent agreement with the expected fluorine number ratio of2:2.In the19F NMR spectrum of2(Figure 4b),the meta-fluorines of the PFS units of2showed resonances concentrated at-161.1ppm.Resonances of the para-fluorines of its PFS units and the meta-fluorines of its inimer3units overlap around156.6ppm.Resonances of the ortho-fluorines of its PFS and3units were observed at-143.0ppm. Integrations of the19F NMR resonance intensities from these three regions gave a ratio of6:5:8,indicating a3:1molar ratio of PFS units to units derived from inimer3,which was equal to the initial molar feed ratio of PFS to3in this copolymeri-zation.The results also suggested that PFS and3had similar reactivities under the copolymerization conditions. Elemental Analysis.Hyperbranched fluorohomopolymer1 and fluorocopolymer2were also characterized by elemental analysis.For both polymers,experimental elemental percentages of C,H,and F were close to the theoretical values,and such agreement for2also confirmed its composition of3:1molar ratio of PFS units to inimer3units.However,for both polymers, experimental elemental percentages of Br(9.85%for1;4.22% for2)were significantly lower than the theoretical values (16.90%for1;7.57%for2).Biradical coupling was considered as the major reason for the lower-than-expected bromine percentages in the polymers.Furthermore,because CuCl and CuCl2were used as catalyst/deactivator for their synthetic systems,the occurrences of halogen exchange during polymer-

izations were also confirmed by the presences of0.58%of Cl in1and0.78%of Cl in2,as detected by element analysis. Thermal Analysis.Thermogravimetric analyses were con-ducted to evaluate the thermal stabilities of hyperbranched fluorohomopolymer1and fluorocopolymer2(Figure5).Ho-mopolymer1showed an early mass loss at ca.100°C,which was most likely due to water evaporation,an indication of the homopolymer’s affinity for water swelling.For copolymer2, no thermal transition for water was observed,which suggests a diminished capacity for water swelling,with the presence of a high molar fraction of hydrophobic PFS units.Homopolymer 1exhibited an initial decomposition onset temperature(T d)at 175°C,followed by three distinct thermal decomposition ranges with midpoints at260,302,and385°C(Figure5a).Interest-ingly,copolymer sample2(Figure5b,solid)showed a less heterogeneous thermolytic profile with an initial T d onset at210°C,indicative of greater thermal stability,and only two major thermal transitions with midpoints at310and413°C(Figure 5b,dashed).The transition from175to275°C in homopolymer 1accounted for10mass%loss and was attributed to thermal degradation of terminal halide functionalities.The reduction of the intensity of this transition in copolymer2was expected due to the relative decrease in terminal halides with the incorporation of PFS units.Each of these results was in good agreement with the data from elemental analyses.The percentages of mass loss for the second and third transitions of1,from275to340°C and from340to425°C,were25%and48%,respectively.The two major thermal transitions of copolymer2ranged from210 to345°C with a mass loss of22%and from345to425°C with a mass loss of56%.

Differential scanning calorimetry(DSC)experiments were performed to evaluate the possible glass transition temperatures (T g)and melting transition temperatures(T m)of1and2(Figure 6).Homopolymer1displayed a low T g at-19°C,presumably due to its high OEG content(Figure6a).With a high fraction of PFS units,sample2exhibited a T g at20°C,significantly higher than that of sample1.However,this value is much lower than that observed at110°C for the HBFP(II)copolymer based upon PFS and CMS.Additionally,no melting endotherm was observed for1or2on heating up to150°C(not shown),a sign of the absence of PEG domains within the polymer materials,in contrast to the amphiphilic networks of HBFP(II) and DA-PEG that allowed for phase segregation and crystal-lization of the PEG component,giving a T m onset at30°C.45 Solubility.Similar to that observed for HBFP(II),solubility studies of hyperbranched fluorohomopolymer1and fluoroco-polymer2were performed at room temperature,and it was found that1and2were soluble in a broad range of organic solvents,including tetrahydrofuran,chloroform,

methylene Figure5.Thermolytic profiles for(a)hyperbranched fluorohomopoly-mer1and(b)hyperbranched fluorocopolymer2.Mass%is illustrated with solid lines and the first-derivative plots are shown as dashed

lines.

Figure6.DSC thermograms for(a)hyperbranched fluorohomopolymer 1and(b)hyperbranched fluorocopolymer2.

4512Powell et al.Macromolecules,Vol.40,No.13,2007

chloride,benzene,toluene,and acetone.Nonsolvents based upon direct precipitation for these polymers were hexanes,methanol, and water.Thus,the incorporation of TEG did not result in a significant improvement in the water solubility of either1or2, although both polymers showed evidence of water swelling.We attribute these results to the significant hydrophobic composi-tions in1and2.However,the presence of TEG did modify the characteristics of the polymers.For instance,upon the slow addition of nanopure water to a dilute solution of1or2in THF (10mg/mL),followed by dialysis of the THF against distilled water,water-dispersible micelles were formed.As detected by dynamic light scattering(DLS)measurements,the micelles of 1had a number-average hydrodynamic diameter(D h,n)of170 (20nm and a volume-average hydrodynamic diameter(D

h,v

) of190(10nm,and the micelles of2had a D h,n of210(20 nm and a D h,v of240(20nm.These encouraging results suggest that hyperbranched fluorocopolymers produced with inimers containing longer EG chains may display appreciably greater water solubility.Further evaluation of the aqueous solution-based assembly of these polymers,1and2and others having greater OEG content,are underway and will be reported elsewhere.

Conclusions

Amphiphilic hyperbranched fluorohomopolymer and fluoro-copolymer have been prepared by ATR-SCVP of an amphiphilic fluorinated inimer and SCVCP of the inimer with a comonomer. The presence of covalently attached TEG units was found to have a significant effect on the observed spectroscopic,thermal, and solution-state properties of the polymers.NMR spectro-scopic characterization confirmed the structure and composition of both polymers,while thermal analyses revealed a decrease in thermal stability for1but a similar thermal degradation profile for2relative to HBFP(II).Both1and2displayed a single glass transition temperature,each having a T g value that was lower than that expected for a styrenyl-based backbone,which was an indication of well-incorporated TEG units.Moreover,the T g for1was lower than that of2due in part to a lower molecular weight value as well as an increased TEG content.Polymers1 and2were both soluble in a broad range of organic solvents. Neither polymer possessed appreciable water solubility;how-ever,they underwent aggregation to afford nanoscale,intermo-lecular,complex micelles.The formation of1and2with increasingly larger ethylene glycol chains is currently under investigation,and these materials are being developed as potential19F MRI agents.Both1and2possess secondary and tertiary bromides and chlorides as well as a tetrafluorophenyl moiety,and2also has pentafluorophenyl groups that contain para-fluorine reactive sites.The secondary and tertiary bromides and para-fluorines are expected to be of great importance in future studies,as they may be utilized for polymer postmodi-fication through atom transfer radical,substitution,or nucleo-philic aromatic substitution reactions.Relative to HBFP(I)and HBFP(II),HBFP(III)is expected to have greater miscibility with DA-PEG to lead to decreased domain sizes for their resulting cross-linked networks.These materials are also expected to exhibit increased surface wettability and improved mechanical robustness,without the loss of fluorocarbon content,architectural advantages,3-fold complexity,or ease of production.Thus,we are also investigating the reaction of1and2with diamine-terminated poly(ethylene glycol)in the preparation of complex, amphiphilic networks for anti-biofouling applications,among others.Experimental Section

Materials.2,3,4,5,6-Pentafluorostyrene(PFS)was distilled over

CaH2and stored under argon at4.0°C.All other chemicals and

reagents were purchased from Aldrich Chemical Co.and used as

received.

Characterization Methods.1H NMR spectra were recorded at

300MHz on solutions in CDCl3on a Varian Mercury300

spectrometer,with the solvent proton signal as standard.13C NMR

spectra were recorded at150.8MHz on solutions in CDCl3on a

Varian Unity600spectrometer with the solvent carbon signal as

standard.19F NMR spectra were recorded at282.2MHz on solutions

in CDCl3on a Varian Mercury300spectrometer with external

CFCl3as standard.IR spectra were recorded on a Perkin-Elmer

Spectrum BX FT-IR system as thin films on KBr disks and were

analyzed using FT-IR Spectrum v2.00software(Perkin-Elmer

Corp.,Beaconsfield,Bucks,England).

Size exclusion chromatography(SEC)was conducted on a

Waters1515HPLC(Waters Chromatography,Inc.)equipped with

a Waters2414differential refractometer,a PD2026dual-angle(15°

and90°)light scattering detector(Precision Detectors,Inc.),and a

three-column series PL gel5μm Mixed C,500?,and104?,300×7.5mm columns(Polymer Laboratories,Inc.).The system was equilibrated at35°C in anhydrous THF,which served as the

polymer solvent and eluent with a flow rate of1.0mL/min.Polymer

solutions were prepared at a known concentration(ca.3mg/mL),

and an injection volume of200μL was used.Data collection and

analysis were performed respectively with Precision Acquire

software and Discovery32software(Precision Detectors,Inc.).

Interdetector delay volume and the light scattering detector calibra-

tion constant were determined by calibration using a nearly

monodispersed polystyrene standard(Pressure Chemical Co.,M p )90kDa,M

w

/M n<1.04).The differential refractometer was

calibrated with standard polystyrene reference material(SRM706

NIST),of known specific refractive index increment d n/d c(0.184

mL/g).The d n/d c values of the analyzed polymers were then

determined from the differential refractometer response. Thermogravimetric analysis(TGA)was performed on a TGA/ SDTA851e instrument(Mettler-Toledo,Inc.)measuring the total mass loss on~5mg samples from25to550°C at a heating rate of10°C/min in a nitrogen flow of50mL/min.Glass transition temperature(T g)and/or melting transition temperature(T m)deter-minations were measured by differential scanning calorimetry (DSC)on a DSC822e instrument(Mettler-Toledo,Inc.)in a temperature range of-75to150°C with a heating rate of10°C/ min under nitrogen.For both TGA and DSC,data were acquired and analyzed with STAR e software(Mettler-Toledo,Inc.).The T g values were taken at the midpoint of the inflection tangent and T m values were taken as the onset,upon the third heating scans. Hydrodynamic diameters(D z,D n)and size distributions for the micellar aggregates in aqueous solutions were determined by dynamic light scattering(DLS).The DLS instrumentation consisted of a Brookhaven Instruments Limited(Holtsville,NY)system, 90Plus.Measurements were made at room temperature.Scattered light was collected at a fixed angle of90°.Only measurements in which the measured and calculated baselines of the intensity autocorrelation function agreed to within0.1%were used to calculate particle size.The calculations of the particle size distribu-tions and distribution averages were performed with the ISDA software package(Brookhaven Instruments Co.),which employed CONTIN analysis,and non-negatively constrained least-squares particle size distribution analysis routines.

Elemental analysis was performed by Galbraith Laboratories,

Inc.,Knoxville,TN.

Synthesis of4-[Oxy(tri(ethylene glycol))]-2,3,5,6-tetrafluo-

rostyrene(4).2,3,4,5,6-Pentafluorostyrene(1.96g,10.0mmol),

tri(ethylene glycol)(11.3g,75mmol),and NaH(0.380g,15.0

mmol)were allowed to react in the presence of THF(80.0mL)at

reflux for1.5h.The residue was partitioned between CH2Cl2and

saturated ammonium chloride solution.The combined organic layers

were concentrated,and the product was isolated by silica gel column

Macromolecules,Vol.40,No.13,2007Amphiphilic Hyperbranched Fluoropolymers4513

chromatography with hexane:CH2Cl2(1:1)as eluent and increasing

polarity to3%MeOH in CH2Cl2.Yield)88%.IR:3600-3200,

3050-2820,1660-1620,1530-1400,1350,1290,1250,1180-

1060,980-960,940,890,860,670cm-1.1H NMR(CDCl3):δ

2.32(t,J)6.0Hz,1H,O H),

3.59(t,J)

4.5Hz,2H,HOC H2),

3.63-3.75(m,6H,OC H2),3.83(t,J)

4.5Hz,2H,OC H2),4.38

(t,J)4.5Hz,2H,OC H2),5.62(d,J)12.0Hz,1H,cis C H H d

CHAr),6.02(d,J)18.0Hz,1H,trans CH H d CHAr),6.62ppm

(dd,J)12.0and18.0Hz,1H,CH2d C H Ar).13C NMR(CDCl3):δ61.9,70.3,70.5,71.1,72.6,74.3,111.1,122.2,122.3,122.4,

122.5,136.2,139.6,143.0,143.5,146.9ppm.19F NMR(CDCl3):

δ-158.5(m,2F,meta-F),-145.5ppm(m,2F,ortho-F).Anal.

Calcd C14H16O4F4(324.27Da):C,51.86;H,4.97;F,23.44%.

Found:C,51.28;H,4.97;F,22.10%.

Synthesis of4-[Oxy(tri(ethylene glycol))bromoisobutyryl]-

2,3,5,6-tetrafluorostyrene(3).To a reaction flask containing4

(11.8g,36.3mmol),pyridine(11.5g,145mmol),and THF(80.0

mL)was added2-bromoisobutyryl bromide(25.1g,109mmol)

dropwise.The mixture was allowed to react at room temperature

for20h.The residue was partitioned between CH2Cl2and H2O,

and the aqueous layer was extracted with CH2Cl2(×3).The organic

layers were combined,dried over MgSO4,and filtered,and the

solvent was evaporated in vacuo.The product was isolated by silica

gel column chromatography with hexane:CH2Cl2(1:1)as eluent

and increasing polarity to3%MeOH in CH2Cl2.Yield)88%.

IR:3050-2820,1750-1720,1660-1620,1530-1400,1390,

1370,1355,1280,1180-1060,1030,980-960,940,860,760,645

cm-1.1H NMR(CDCl3):δ1.93(s,6H,CC H3),3.63-3.76(m,

6H,OC H2),3.83(t,J)4.5Hz,2H,OC H2);4.32(br t,J)4.5

Hz,2H,OC H2);4.37(br t,J)4.5Hz,2H,OC H2);5.62(d,J)

12.0Hz,1H,cis C H H d CHAr),6.02(d,J)18.0Hz,1H,trans

CH H d CHAr),6.62ppm(dd,J)12.0and18.0Hz,1H,CH2d

C H Ar).13C NMR(CDCl3):δ30.5,55.6,64.9,70.1,70.6,74.1,

77.0,77.3,77.5,110.6,121.8,122.0,136.4,140.2,141.8,144.0,

145.7,171.3ppm.19F NMR(CDCl3):δ-158.7(m,2F,meta-F),

-145.9ppm(m,2F,ortho-F).Anal.Calcd for C

18H21O5F4Br

(473.26Da):C,45.69;H,4.47;F,16.06;Br,16.90%.Found:C,

44.63;H,4.35;F,15.56;Br,19.07%.

Synthesis of Hyperbranched Fluorohomopolymer(1).To a

reaction flask with a magnetic stirring bar,3(1.42g,1.0equiv),

BiPy(0.103g,0.22equiv),CuCl(0.0296g,0.1equiv),CuCl2

(0.004g,0.01equiv),and PhF(4.0mL,80vol%)were added.

The reaction mixture was degassed by at least three cycles of

freeze-pump-thaw and then heated with an oil bath at60°C.

During polymerization,small aliquots of polymerization were

withdrawn with syringe and were analyzed by1H NMR spectros-

copy for the determination of conversion of vinylic bonds based

on the remaining vinylic proton resonances at5.62,6.02,and6.62

ppm.Finally,the polymerization was quenched,by being allowed

to cool to room temperature,and then opening of the flask to air

and dilution of the reaction mixture by addition of THF,at a

polymerization time of24h,with an estimated conversion of vinylic

bonds of80%.The polymerization solution was passed through an

alumina column,eluted with THF,precipitated three times into

hexanes,and dried in vacuo to give0.91g of viscous,pale yellow

oil.Yield)64%.M n,SEC)9.06kDa,M w/M n)1.99;T g)-19

°C.TGA in N2:175-275°C,10%mass loss,275-340°C,25% mass loss,340-425°C,48%mass loss.IR:3010-2850,1745-

1725,1650,1510-1410,1390,1370,1353,1280,1180-1065,

1040,980-950,885,765,645cm-1.1H NMR(CDCl3):δ0.70-

1.50(br m,CC H3),1.50-3.10(br m,aliphatic backbone protons),

1.92(s,CC H3),3.20-4.40(br m,C H2O protons of OEG units),

4.60-

5.40(br m,ArC H Br and ArC H Cl),5.65(cis C H H d CHAr),

6.02(trans CH H d CHAr),6.60ppm(CH2d C H Ar).13C NMR (CDCl3):δ22.9-28.3,31.0,35.7-4

7.9,55.7,63.1-63.8,65.1, 6

8.7,70.1-71.1,74.2,110.7-116.5,122.0,137.2,141.0,144.6, 171.5,176.0-177.6,181.1ppm.19F NMR(CDCl3):δ-157(m, meta-F),-144ppm(m,ortho-F).Anal.Calcd for C18H21O5F4Br-(473.26Da):C,45.69;H,4.47;F,16.06;Br,16.90%.Found:C, 46.80;H,4.73;F,15.52;Br,

9.85;Cl,0.58%.

Synthesis of Hyperbranched Fluorocopolymer(2).To a reaction flask with a magnetic stirring bar,2,3,4,5,6-pentafluo-rostyrene(1.23g,3.0equiv),3(1.00g,1.0equiv),BiPy(0.217g, 0.66equiv),CuCl(0.0627g,0.3equiv),CuCl2(0.009g,0.03 equiv),and PhF(5.0mL,70v%)were added.The reaction mixture was degassed by at least three cycles of freeze-pump-thaw and then heated with an oil bath at60°C.During polymerization,small aliquots of polymerization were withdrawn with syringe and were analyzed by1H NMR spectroscopy for the determination of conversion of vinylic bonds based on the remaining vinylic proton resonances at5.62,6.02,and6.62ppm.Finally,the polymerization was quenched,by being allowed to cool to room temperature,and then opening of the flask to air and dilution of the reaction mixture by addition of THF,at a polymerization time of24h,with an estimated conversion of vinylic bonds of75%.The polymerization solution was passed through an alumina column,eluted with THF, precipitated three times into hexanes,and dried in vacuo to give 1.24g of crystalline,white solid.Yield)56%.M n,SEC)17.2kDa, M w/M n)2.48;T g)20.4°C.TGA in N2:210-345°C,22%mass loss,345-425°C,56%mass loss.IR:3010-2850,1740-1720, 1650,1540-1410,1390,1370,1300,1215,1175-1065,1085, 1000-930,880,760cm-1.1H NMR(CDCl3):δ0.70-1.50(br m,CC H3),1.50-3.10(br m,aliphatic backbone protons),1.92(s, CC H3),3.20-4.40(br m,C H2O protons of OEG units),4.60-5.40(br m,ArC H Br and ArC H Cl),5.65(cis C H H d CHAr),6.02 (trans CH H d CHAr), 6.60ppm(CH2d C H Ar).13C NMR (CDCl3):δ24.7,29.7-30.7,32.1-41.7,63.6,68.8,70.0-70.8, 74.3,114.7,122.2,137.6,140.7,144.7,176.6ppm.19F NMR (CDCl3):δ-162(m,meta-F(PFS)),-157(m,para-F(PFS)and meta-F(TFS)),-143ppm(m,ortho-F(PFS and TFS).Anal.Calcd for C42H30O5F19Br(3:1PFS:3):C,47.79;H,2.86;F,34.20;Br, 7.57%.Found:C,48.97;H,3.04;F,33.06;Br,4.22%;Cl,0.78%. Acknowledgment.Financial support from the Office of

Naval Research(N00014-05-1-0057)is gratefully acknowl-

edged.This material is also based upon work supported by the

National Heart Lung and Blood Institute of the National

Institutes of Health as a Program of Excellence in Nanotech-

nology(HL080729)and the McDonnell Pediatric Cancer Center

of the Children’s Discovery Institute at Washington University.

We also thank the Washington University Dean’s Fellowship

Program(KTP)and Unilever Corporation(CC)for Ph.D.student

and postdoctoral fellowship support,respectively. References and Notes

(1)Tomalia,D.A.;Fre′chet,J.M.J.J.Polym.Sci.,Part A:Polym.Chem.

2002,40,2719-2728.

(2)Dvornic,P.R.J.Polym.Sci.,Part A:Polym.Chem.2006,44,2755-

2773.

(3)Hecht,S.J.Polym.Sci.,Part A:Polym.Chem.2003,41,1047-

1058.

(4)Steffensen,M.B.;Hollink,E.;Kuschel,F.;Bauer,M.;Simanek,E.

E.J.Polym.Sci.,Part A:Polym.Chem.2006,44,3411-3433.

(5)Li,W.-S.;Kim,K.S.;Jiang,D.L.;Tanaka,H.;Kawai,T.;Kwon,J.

H.;Kim,D.;Aida,T.J.Am.Chem.Soc.2006,128,10527-10532.

(6)Vo¨gtle,F.;Fakhrnabavi,H.;Lukin,https://www.wendangku.net/doc/b515213623.html,.Lett.2004,6,1075-

1078.

(7)Banerjee,D.;Broeren,M.A.C.;van Genderen,M.H.P.;Meijer,E.

W.;Rinaldi,P.L.Macromolecules2004,37,8313-8318.

(8)Garcia-Martinez,J.C.;Lezutekong,R.;Crooks,R.M.J.Am.Chem.

Soc.2005,127,5097-5103.

(9)McCarthy,T.D.K.P.;Henderson,S.A.;Giannis,M.;O’Keefe,D.

F.;Heery,

G.;Paull,J.R.A.;Matthews,B.R.;Holan,G.Mol.

Pharmaceutics2005,2,312-318.

(10)McGrath,D.V.Mol.Pharmaceutics2005,2,253-263.

(11)Venditto,V.J.;Regino,C.A.S.;Brechbiel,M.W.Mol.Pharmaceutics

2005,2,302-311.

(12)Zhai,X.;Peleshanko,S.;Klimenko,N.S.;Genson,K.L.;Vaknin,

D.;Vortman,M.Y.;Shevchenko,V.V.;Tsukruk,V.V.Macromol-

ecules2003,36,3101-3110.

(13)Froehling,P.J.Polym.Sci.,Part A:Polym.Chem.2004,42,3110-

3115.

4514Powell et al.Macromolecules,Vol.40,No.13,2007

(14)Kim,Y.H.J.Polym.Sci.,Part A:Polym.Chem.1998,36,1685-

1698.

(15)Kubisa,P.J.Polym.Sci.,Part A:Polym.Chem.2003,41,457-468.

(16)Cheng,K.-C.;Chuang,T.-H.;Chang,J.-S.;Guo,W.;Su,W.-F.

Macromolecules2005,38,8252-8257.

(17)Gittins,P.J.;Twyman,L.J.J.Am.Chem.Soc.2005,127,1646-

1647.

(18)Marcos,A.G.;Pusel,T.M.;Thomann,R.;Pakula,T.;Okrasa,L.;

Geppert,S.;Gronski,W.;Frey,H.Macromolecules2006,39,971-977.

(19)Unal,S.;Long,T.E.Macromolecules2006,39,2788-2793.

(20)Voit,B.J.Polym.Sci.,Part A:Polym.Chem.2000,38,2505-2525.

(21)Wu,D.C.;Liu,Y.;Jiang,X.;He,C.B.;Goh,S.H.;Leong,K.W.

Biomacromolecules2006,7,1879-1883.

(22)Yan,X.Z.;Goodson,T.,III.J.Phys.Chem.B2006,110,14667-

14672.

(23)Zhang,J.;Wang,H.;Li,X.Polymer2006,47,1511-1518.

(24)Fre′chet,J.M.J.J.Polym.Sci.,Part A:Polym.Chem.2003,41,3713-

3725.

(25)Hawker,C.J.;Chu,F.Macromolecules1996,29,4370-4380.

(26)Hawker,C.J.;Farrington,P.J.;Mackay,M.E.;Wooley,K.L.;

Fre′chet,J.M.J.J.Am.Chem.Soc.1995,117,4409-4410. (27)Wooley,K.L.;Fre′chet,J.M.J.;Hawker,C.J.Polymer1994,35,

4489-4495.

(28)Wooley,K.L.;Klug,C.A.;Tasaki,K.;Schaefer,J.J.Am.Chem.

Soc.1997,119,53-58.

(29)Voit,B.J.Polym.Sci.,Part A:Polym.Chem.2005,43,2679-2699.

(30)Hawker,C.J.;Fre′chet,J.M.J.;Grubbs,R.B.;Dao,J.J.Am.Chem.

Soc.1995,117,10763-10764.

(31)Fre′chet,J.M.J.;Henmi,M.;Gitsov,I.;Aoshima,S.;Leduc,M.R.;

Grubbs,R.B.Science1995,269,1080-1083.(32)Weimer,M.W.;Fre′chet,J.M.J.;Gitsov,I.J.Polym.Sci.,Part A:

Polym.Chem.1998,36,955-970.

(33)Wang,W.;Yan,D.;Bratton,D.;Howdle,S.M.;Wang,Q.;Lecomte,

P.Ad V.Mater.2003,15,1348-1352.

(34)Cheng,C.;Wooley,K.L.;Khoshdel,E.J.Polym.Sci.,Part A:Polym.

Chem.2005,43,4754-4770.

(35)Gong,F.;Tang,H.;Liu,C.;Jiang,B.;Ren,Q.;Yang,Y.J.Appl.

Polym.Sci.2006,101,850-856.

(36)Hong,C.-Y.;Zou,Y.-F.;Pan,C.-Y.Polym.Int.2003,52,257-264.

(37)Mueller,A.;Kowalewski,T.;Wooley,K.L.Macromolecules1998,

31,776-786.

(38)Powell,K.T.;Cheng,C.;Gudipati,C.S.;Wooley,K.L.J.Mater.

Chem.2005,15,5128-5135.

(39)Gooden,J.K.;Gross,M.L.;Mueller,A.;Stefanescu,A.D.;Wooley,

K.L.J.Am.Chem.Soc.1998,120,10180-10186.

(40)Gan,D.;Mueller,A.;Wooley,K.L.J.Polym.Sci.,Part A:Polym.

Chem.2003,41,3531-3540.

(41)Gudipati,C.S.;Greenlief,C.M.;Johnson,J.A.;Prayongpan,P.;

Wooley,K.L.J.Polym.Sci.,Part A:Polym.Chem.2004,42,6193-6208.

(42)Gudipati,C.S.;Finlay,J.A.;Callow,J.A.;Callow,M.E.;Wooley,

https://www.wendangku.net/doc/b515213623.html,ngmuir2005,21,3044-3053.

(43)Brown,G.O.;Bergquist,C.;Ferm,P.;Wooley,K.L.J.Am.Chem.

Soc.2005,127,11238-11239.

(44)Xu,J.;Bohnsack,D.A.;Mackay,M.E.;Wooley,K.L.J.Am.Chem.

Soc.2007,129,506-507.

(45)Powell,K.T.;Cheng,C.;Wooley,K.L.;Singh,A.;Urban,M.W.J.

Polym.Sci.,Part A:Polym.Chem.2006,44,4782-4794.

MA0628937

Macromolecules,Vol.40,No.13,2007Amphiphilic Hyperbranched Fluoropolymers4515

那些冷门却让你心力交瘁的短篇文 超级好看啊

巽离络 ---喻斑斓 这篇文我真的好喜欢是我目前读过不狗血而且让人很心力交瘁啊! 文案主角:韩子巽,韩子离,白络之 【碎碎念】世家小姐白络之迫于皇命嫁到韩家,但白韩两家其实是有世仇的,所以可想而知,白小姐嫁过去的日子一点也不好过,受到了夫婿韩子巽及整个韩家的冷眼相待,不过白小姐早已做好心理准备,所以也算活的安然。不料日常相处中蕙质兰心的白小姐俘获了小叔子韩子离的郎心,热血少年韩子离也是招姑娘喜欢的,小叔子觉得反正老大不喜欢这个媳妇,那我替他收了,于是两情相悦了。这个时候你懂得,老大不对了……心机深沉的老大竟然也喜欢上了这个不速之妻(原谅我滥改成语),其中有一个老大外出归来偶然看见自己媳妇跟自己弟弟相处的一个画面,郎情妾意好不动人,老大当场愣了,艾玛这个片段描写的太有画面感了楼主到现在都记得。。。哎呀原谅我剧透我好喜欢这篇文~接下来白小姐跟寻思着要去追求终身幸福了,于是老大怒了,尼玛此时不出手更待何时?你白络之本来就是我韩子巽的女人……于是就那啥了,然后开始情深热脸贴冷的婚姻生活……这篇文蛮冷的但真心是好文,不过是个悲剧,老大死了后白小姐幡然悔悟……原来我早就爱上老大了……于是也死了,留下他们的闺女给抚养。不过我要说,虽然我爱这篇文爱老大爱,但我委实不太主……这女主不太讨人喜欢,虐的我家老大太惨了…… 情殇尸妖一度君华 你说爱情,就是你的名和姓,就除了感情,你都不愿再记起......

内容标签:幻想空间虐恋情深春风一度情有独钟 前两年读的记不太清了粘贴下来给大家看看 当初杀了唯一对女主好的人,为了一己私欲带女主离开了那片世外桃源,把女主当成一个利用的工具。后来一遍遍说爱女主,但行为上又一次次伤害她,太恶心了。女主就这么一个“人”,就是一个尸妖,从来就没伤害过别人,是她太美好了,所以世人都来毁灭她。但却是男主把她从一个美丽的仙子变成了一个魔鬼,然后又打着正义的旗号毁灭她,其实与其说女主是妖,不如说世人的贪念、欲念、邪念是妖。把最美好的东西毁灭给人看! 靡音 内容标签虐恋情深强取豪夺 文案:他一把将她推抵在桌上。 丝绸桌布上绣着牡丹,雍容华贵,到了极致。 她躺在上面,一张白净的脸泛上红潮,因为挣扎,因为恨意。 她的脸是纯洁的,干净的,不谙世事的,小女孩的脸。 可是她的眼睛,却像一只猫,圆圆的,眼角却又上翘,带着女人的妩媚,天生的,不自知的,与日俱增的。 她周游在女孩与女人之间,任何一个男人都能在她身上找到属于自己的幻想。 现在,她躺在丝绸桌布上,仿佛入了画。 的牡丹,衬托着她如玉一般的脸颊,没有喧宾夺主,只有锦上添花。 花与人交相辉映,融合成殷红的绮靡。 画中的她,不是仙。 是一只妖,是一种孽。 四叔月上无风 不知道这本书有木有人读过,我个人并不排斥不伦之恋而且我是一个大叔控还喜欢看《这个杀手不太冷》,或者是《大叔》等电影电视剧嘿嘿! 所以就觉得这篇文不错就推荐给大家 文案: 她叫他四叔 在这个冷漠无情的皇宫 四叔从始至终都是她的保护伞 却也是一把最能伤她的利刃 笑看她无望挣扎(名字好狠)绿卡子

推荐穿越文【第1-100本含剧透】

001、2012年11月〔纵横VIP〕完结文〔穿越时空、权谋、种田文〕作者:闲听落花《秾李夭桃〔正文+番外〕》推荐指数:5星+1(强力推荐) 文案:桃之夭夭,灼灼其华…… 虽重生于微贱,却于这乱世中逍遥绽放。 书评:很高质量小说,也是我最喜欢的小说之一,最喜欢的原因有两个:一是男女主角相识相恋的过程处理的很好,两人属于未见其人却识其人,还未见面就开始不停的斗法。男主苏子诚围山攻寨时,女主李小幺采用的损招,让人想起不禁捧腹大笑。人们常说:最熟悉你的人,不是你的朋友而是你的敌人,也许就是因为最初相识的方式,导致了两人后面的相知相许。作者文笔娴熟,将两人的情感发展处理的非常到位。第二,配角虽多,但性格分明,人物塑造饱满。最最让我满意的就是没有其它文中“哥哥妹妹间的暧昧”。总之,此文还是非常值得一看的,强烈推荐。 002、2012年〔起点V IP〕完结文〔穿越时空、温馨权谋文〕作者:闲听落花《花开春暖〔正文+番外〕》推荐指数:5星+1【强力推荐文】类型:低调女VS执着男简介:重生成古代美貌小萝莉,和年迈的女乃娘相依为命。虽是自幼失怙寄人篱下,可闲看小桥流水的生活依旧幸福。青梅竹马可守得住?砸在头上的富贵麻烦要怎么办?哼!见招拆招谁怕谁! 评论:女主李小暖是穿越女,在古代的身份是父母双亡的孤女,穿过来时大概五六岁,因为父母双亡寄宿在寺中。男女主第一次相遇是女主在寺里中偷点心时遇到了小正太汝南王世子程恪,大概十二三岁左右,世子以为女主是自己府中的小丫头,正想好好的教训一番,没想到女主使出了经典绝招(类似猴子偷桃之类)让小正太吃了大亏,然后溜之大吉了。 后来小暖被古家收养,古家夫人是小正太的姨妈,小暖在古家受到老太太的宠爱,过的不错,古家独子古萧和她从小一起长大,应该算是青梅竹马,小暖过了几年平静的日子。直到世子来访,世子和景王是表兄弟,两人在古家无意见看到了小暖,世子认出就是那个让他吃了大亏的小丫头,如今已生得花容月貌,小暖骗说自己是古家的烧火丫头,并扮演白痴,世子临走时向老夫人讨要了烧火丫头,回去的路上才知道给小暖骗了,二回交锋,世子惨败。 过不多久,世子又来走亲戚了,他也打听出了小暖的身份,夜探小暖闺房,无意中听到小暖一番皇帝的工作是天下最苦最累的奇谈妙论,这下连景王都为小暖动了心,不过在世子的断交威胁下,承诺不打小暖的主意,世子终于见到了小暖,向女主提出要带她回京,小暖提出:聘为妻,奔为妾,除非三媒六聘,决不为妾。世子的婚姻大事自己是做不了主的,起初还以为小暖年纪小,说什么只要他对她好,名份什么的都是浮云,被小暖一脚踢下了河。第三回合,世子完败。 古家全家上京,世子一颗心已彻底遗失在小暖身上,设计二人再次见面,向小暖表白,想说服小暖嫁于他为妾,小暖明确表示,如为妾,情愿死。小暖的决绝吓住了世子,他开始谋算如何能娶小暖,因为小暖出身实在配不上汝南王世子的身份,他拒绝了那些贵女,并表现出龙阳之好,汝南夫妻二人只有这个独子,看他迟迟不成亲还喜欢上了男人,真是急死了,拖了几年,小暖也长大了,世子迟迟不成亲,这时汝南王对儿媳妇的标准也低了,只要世子肯正经成亲就行,世子提出要娶小暖,汝南王这下知道世子这几年情愿名声受损,就是要娶小暖姑娘,终于妥协,为儿子向古老太太提亲,老太太看世子对小暖一片真心,真心希望小暖能幸福,也同意了。 二人成亲后,世子对小暖那个好啊,汝南王妃本来嫌小暖出身太低,对她有点小意见,不过小暖嘴甜又能干,她也看出儿子对小暖是一片痴心,逐渐放下成见,真心对待小暖,所以没有恶毐婆婆的戏份。世子对小暖真是很宠啊,虽然汝南王一家都很急,希望小暖能早点怀孕生子,不过世子认为小暖太小,最好十八岁以后再生,这样危险小一些,就一直没让小暖怀孕,而景王心中应该是欣赏小暖的,后来又让他的母亲贵妃收了小暖做干女儿,这样也能堵住那些嘲笑小暖出身低的人的嘴,小暖的婚后生活应该是非常幸福的。 下面就是争皇位了,景王和诚王争,世子是景王的堂弟,这样又扯到二个派系,还有一群群众演员。本文对比那些个被男主伤害了还深爱不悔的虐文来说,真是太解气了。非常值得一看。 003、2011年〔起点V IP〕完结文〔穿越时空、权谋〕作者:闲听落花《九全十美〔正文+番外〕》推荐指数:5分 文案:跌落在陌生的朝代,冷血的父亲,跋扈的继母和妹妹,上一代的恩怨轮回,逼得她只好逃之夭夭,反正她有高超的医术,有聪明的头脑,到哪里都有好生活!可是,她这到底是算逃出来了?还是没逃出去 书评:女主李青是两岁时魂穿到这个架空的年代的,在这里学会了天下最好的医术,因为医治好了男主,最终在种种因缘下嫁给了男主。男主是个有自己领地的王爷。女主她和所有现代女人一样无法接受一夫多妻,所以对于男主百般推脱就是不愿爱上男主,最后在男主的爱心用下,才慢慢的软化了女主,使女主并爱上他。总之来讲这文总体写得很不错,把男女主角的心理矛盾和冲突都写得很好,情节也安排得合理,但是我就是无法接受男主有别的女人,还是在女主嫁给他后,我使无法接受,也不法释怀。唉!所以说他不是我最爱的小说之一。 004、〔穿越时空、江湖儿女〕作者:沈沧眉《与艳少同眠。出版名:大明江湖宅女记》推荐指数:5分+1(语言幽默,男主很强大) 文案:现代女子方怡穿越到明朝仁宗年间,成了江湖第一帮派,御驰山庄的庄主容疏狂,很不幸的又赶上汉王朱高煦暗中招纳江湖人士,意图谋反。迫于强大的压力,御驰山……武侠仙侠传统武侠。 书评:这是篇很经典江湖恩怨小说。文笔构思精妙,文笔十分流畅,是为极品。虽然仍走的是江湖恩怨、连环阴谋、儿女情长的武侠套路,但绝对是一篇让人耳目一新,不忍释卷的好文! 男主是个天才,武功智谋无人能敌,是江湖中人人口称的神密人物,文中并没有描写他有多么多么英俊,多么多么邪媚,而是通过江湖人物口中的述说的从前“艳少”,让人觉得他就象一个神话一样神密而吸引人,使我想起从前古龙笔下的大侠们。女主是穿的,成为一个山庄的庄主,性格率真非常令讨人喜欢,让我们拭目以待这对“古今个性”组合如何在江湖中翻手为云覆手为雨吧! 我是真的很喜欢这本书穿越小说,男主“艳少”那种现代言情小说中的理想男主,有钱有房有车、有相貌有学识有风度有涵养、有可爱有调皮有深情、更有嘿嘿……那个啥,“激情”。文中也没有复杂的三角恋情,没有1女N男的俗套,就是一对一,从一而终,无论是从前疏狂的记忆爱属于林少辞,还是现在的疏狂,她也只爱艳少这个“老”男人。嘿嘿,题外话,俺是个严重的大叔控大叔控! 005、2012年03月完结文〔穿越新唐、重权谋、轻宅斗、微种田〕作者:作三月果《新唐遗玉〔正文+番外〕》推荐指数:5星(大爱男主,女主有点作,有肉肥而腻)文案:穿越附赠严厉老娘一位——亲自教学,捣蛋就要被扫帚打P P;书虫大哥一个——腹黑天性,以逗弄自己为乐;调皮二哥一枚——挨揍不断,专门负责“活跃”气氛。但是,请问,一家之主的爹,您闪去哪里了?算了,俺要知足常乐——农家也是家,没有爹的日子,还有娘~看咱种树养田,靠着异能来发家!

个人素养高的女人在恋爱中更有魅力

https://www.wendangku.net/doc/b515213623.html, 个人素养高的女人在恋爱中更有魅力 “我是一个年过25岁的女孩,但心理年龄只有22岁。我的打扮还是可爱系居多,彰显青春靓丽,说话还是娇声娇气的,偶尔也会和男生打打闹闹。但我发现,曾经我的活泼可爱男生是很受用的,但这一年来我的追求者正大福减少。我的脸上开始出现小斑点似的东西,脸型也开始微微改变……我感到非常焦虑,寻求改变的方向。” 相信每一位年过25岁而心理年龄还停留在20岁的女孩都有过以上的经历。心理年龄=20岁?是的,你没看错。有很多年满25岁的女孩,已经在社会工作至少两年了,有的甚至已经结婚生子,但心理年龄还是停留在20岁。 我们总是说,在中学以前,女孩的心理年龄是远远超于同龄男生的,这估计是“大叔控”盛行的原因之一吧。女孩子相对男孩而言,本来就比较安静,除了逛街、吃零食、八卦就是胡思乱想了。想得多,自然就比那些只懂得玩游戏、运动、打架的小男孩早熟。 但是只要一到高三、到大学,他们知道除了玩之外开始明白有一样东西叫做目标:考大学,找工作。男孩是带着责任出生的,在孩童时期受到大人的保护所以没有过早的知悉到压力,逮到成长起来了,这种责任感就越来越明显。也许孩童时的他们还是有一丝预感的,所以才在尽量的玩尽量的疯,因为他们知道长大后就再也不能这样了。 渐渐感受到肩膀上的责任后,男孩在压力的催赶下必需快速的成长起来。否则他们的人生将失去很多可能。 而这个时期的女孩,则出落得越发美丽动人,堪称人生中青春靓丽的最高值。美丽的花儿必然招引蜜蜂。很多女孩子开始因为被追求而分心。而且她们并没有在学业、事业上被寄予很大的期望,她们的家人可能觉得嫁个好人家才是最重要的。所以她们开始妆扮自己的外表,而非专注于学业、事业。然后,当这样的女孩年过25岁,男人真的愿意娶回家吗?一个女人的青春是会逐渐消磨掉的,当青春消逝,那你还有什么资本留住他的目光?

为什么女生喜欢大叔 “大叔控”心理形成的原因

为什么女生喜欢大叔“大叔控”心理形 成的原因 女生喜欢大叔是什么心理?据一项调查显示,有7成的女 生更愿意找大叔男友,这让不少同龄男人很是不解,大叔有什么好的,还不是看上人家钱。其实不尽然,女生给出了喜欢大叔的理由,一起来瞧瞧吧! 为什么女生喜欢大叔 1、大叔成熟 大叔相对于小女人肯定是成熟的,这种唯有光阴才能历练出来的成熟是吸引女人的关键。他们经历的多,懂得多,他能细致地发现、细腻地引导你的情绪变化,并且能够教给你一些如何应对职场战争的窍门,给你关于人生的中肯建议。 2、大叔沉稳 沉稳是在说一个人的心智成熟,虽然这与人的年龄没有绝对的关系,但是毕竟大叔阅历丰富,对很多事情都已经看得很开,遇事不慌、处事不惊,帮小女人一下子就摆平了很多事情,相信没几个女人希望看到自己身边的男人遇见危险的时候早已经没有了影子。 3、大叔有金钱 为了钱而和大叔在一起是很多人很不屑的事情,但这不失为大叔吸引女人的一大魅力。有钱就能使鬼推磨的事情,爱情又算什么呢?爱情到最后还不是要与钱为基础。这一财富不仅 是指白花花的钱,更是指大叔在社会上积累的客观财富。 4、大叔了解女人

大叔经历过无数的女人,可以说对女人是了如指掌。他们很懂得女人要什么,怎么样能让女人开心。而且他们很有多丰富的性爱技巧,现代社会女人对性的要求也越来越高,所以她们认为大叔能给她们性福,不会弄疼她们。 5、大叔有安全感 跟一起奋斗、烦躁、冲动的小男人在一起,感觉不到安全,很多女人都能感受的到。而大叔都比较稳重,做事成功的几率也高。在小女人看来,他们更能给自己一个安稳、幸福的家。 女生“大叔控”心理形成的原因 1、社会发展不均,贫富差距大 少女“爱”大叔,不是没有先决条件的,那大叔一定是经济条件不错的,你试一下这大叔是下岗工人或农民工看看,她们捂住鼻子就走了。目前很多对这类情侣,都是社会地位比较悬殊的,或者是跨阶层、跨阶级的。一些女孩看得很清楚,没有有钱有权的爸爸,自己唯一的资源就是青春与美貌,如果靠奋斗,或者找一个身边的男孩一起拼搏,在当今的中国,想要出头,恐怕不那么容易。看看自己的父母,过了五十就进入老年状态,或怨气冲天或者打打麻将、哪里像党和国家领导人那个阶层?六十岁才上岗,还被称为年轻一代领导人。 2、男女的生理差别也扮演了重要角色 女性49岁左右进入更年期,男人要到60岁以后。虽然一夫一妻是文明社会公认的道德与法律底线,怎奈生理上的差别不以人的意志为转移。男人最健壮的时候,迎来女性伴侣的更年期,别说生理上的不合拍,仅仅是一些女性在更年期间令人难以忍受的表现,就足以让她们的男人远远躲开。 3、男女的成熟期不同 对于情窦初开的少女,久经情场的大叔确实比愣头青要更

时下流行的灯谜

时下流行的灯谜 导读:掷果盈车,口口相传(六字媒体用语)公投实况转播掼浪头,老兄更胜一筹(外地名)波哥大 还猜谜平台一片净土(成语一)在商言商 指头儿告了消乏(现代藏品)手办玩偶 管住老二(三字网络词)大叔控 若露生殖器,须打马赛克(四字动物行为)孔雀开屏 来势汹汹(四字饮品品牌)麦斯威尔 治御寇之言(五字时政新词)学系列讲话 请求战斗(法国球星)博格巴 前妻易妆来拜访(四字房产用语)旧房改造 海棠花开疏影隐(字)淌 幸有书卷添情思(四字市场用语)亏本生意 缉拿偷渡客,经验一席谈(四字古文篇目)捕蛇者说 开双眼皮,赠文胸内衣(数学符号三)≈+∞ 衷甲出场两三人(经济名词)硬着陆 不要沉迷黄段子(廉政用语)反贪污 肥私行为,领导默许(五字菜场营业常用语)一捞一个准 再次当二奶(四字国际时政语)重返亚太 打折食品伤身体(六字口语)吃亏就是便宜 为丛驱雀,为渊驱鱼(网站名)赶集网

舍本逐末(超市名)农工商 出洋日记(本市学校简称)上海存志 农田承包者易主(科幻电影中称谓)变种人 秦邦宪的.派头(家具名)博古架 歌坊(纽约市路名)五号大街 受到百姓欢迎(植物名)白丁香 天井里开达人赛,料定今朝晴无雨(成语一)秀才不出门,能知天下事 婚前育儿现象已被社会接受(电视剧一)好先生 太子太保的职责(音乐家)顾圣婴 正宗爆鱼片(人体受伤状况)乌青块 左辅右弼吵纷纷(四字常用语)相对而言 猜谜先看清猜什么(成语)令人瞩目 木匠心里已明了(医疗名词)透析 门(四字常用语)略有耳闻 发小已成麻将友(食品冠量)一块大排骨 一起从师技艺成(集会形式)同学会 出售店铺(二字常言)放肆 保持戒备状态(二字国家机构简称)防总 买凶(三字芬兰电影)恶之花 火凤凰(二字中超外援昵称)热鸟

再来一个大叔控的真实故事

首先声明,我是70的,中年老妇女了,讨厌老女人装嫩的绕道而行,不必费力拍下来,伤神费力的,得不偿失。 再声明,我的大叔不比我大很多,3岁而已,但他的确是叔叔,我婶婶的娘家弟弟,我从小就被大人指使着喊他叔叔,不过,我从没有叫过他而已。 开始——扒,别说,心里挺不是滋味的。 (1) 我们一个村的,我们村子很大,本来住的挺远的,谁也不认识谁,只是后来他们家盖新房,就盖在我们家西面,成了邻居了。刚开始来的那一年,他十岁,我7岁,那时候,他姐姐也还小,还没跟我叔叔结婚。 第一次见叔叔,7岁的楼主就有点不淡定了,叔叔皮肤好白哦,叔叔长的那个帅啊,五官英俊的没有半点挑剔好不好,叔叔穿的那个干净啊,板正啊,一身迪卡兰上衣,没有半点褶皱,哪像个农村娃啊,七十年代的农村还很贫穷好不好,那时候我还趿拉着露着脚趾头的鞋子跟同伴疯玩踢毽子呢,裤子扭到屁股一边,小辫子一个朝天撅一个歪脑后,鼻涕.......,还没有。 天公助人为乐。叔叔有个和我同龄的妹妹,我哥哥和叔叔同龄,出了他家的门就是我们家的院子,那时候,我们家还没垒起院墙,话说他家的房子就是占用我们家祖传的地,不过那时候那地已经归功了,但有一棵歪脖子老枣树正好在他家院子里,于是,只好卖给他家了。 我找他妹妹玩啊,他找我哥哥啊,我们没有理由不在一块啊,混熟了 (2) 楼主至今奇怪,在那个落后的年代,落后的村子,貌不惊人才不休的楼主,咋那么色色呢?不知哪年就和叔叔对上眼了,十岁左右差不多,叔叔也不地道,色迷迷的追着楼主玩啊,闹啊 叔叔学习哪个好啊,每次都考班里第一名,叔叔说话那个仁义啊,大人们都超级喜欢他,没有一个人不夸他懂事,聪明,仁义,他着实好啊 楼主也不示弱,楼主也考班上第一名,也很勤快啊,也伶牙俐齿啊,大人们也说我聪明啊。 至今也奇怪,叔叔咋就盯上我了呢,他那个帅,根本就没法说,那时候,我就是个灰姑娘,丑哇 叔叔很放肆,不管人多还是人少,他都色迷迷盯住我不放,他眼睛那种迷人,那种含情脉脉,那种会说话,那种......,楼主沦陷了,十岁就沦陷了,两人常常十几秒几十秒几分

中国男女婚姻观念调研报告

中国男女婚姻观念调研报告 中国男女婚姻观念调研报告近日,国家人口计生委培训交流 中心与世纪佳缘交友网联合发布的2019-2019年中国男女婚恋观 调研报告显示,18岁-25岁女性有70是;大叔控;,其中;气质大叔;、;事业型大叔;、;细腻体贴大叔;是;大叔控;们的最爱。所谓;大叔;,通常指30岁-50岁的中年男士,倾向于选择中年男士作为配偶的青年女性被称作;大叔控;。 近日,中国青年报社会调查中心通过民意中国网和搜狐网, 对2371人进行的一项调查显示,40.1的受访者直言自己身边;大叔控;多。 44.3的受访者感觉很多女性抱有;要现货;的心理,不愿与伴侣共同奋斗。 受访者中,70后占41.4,80后占24.4,90后占4.8。 67.2的人认为中年男士受青睐是因为大多已具备一定物质基础1990年出生的张兰化名来北京打工一年多了。前不久,她在换房时结识了房东的朋友;;一个70后的;大叔;。 初次见面,;大叔;就开车帮她搬来了所有行李。之后两人经 常一起吃饭聊天儿。 ;我经常向他倾诉生活和工作中的各种不快,他不但不会不耐烦,还会给出很多实用建议。作为一个独自在北京打拼的女孩子,;大叔;的成熟体贴让我感到很舒心。

;;女朋友常指责我自私、不考虑她的感受,夸赞;大叔;有魅力。 ;山东小伙李守伟说,他女朋友是日漫迷、韩剧迷,最喜欢收集动漫和韩剧里的美型;大叔;图片,还把;大叔;定为他以后的发展方向。 ;我感觉这种心态太幼稚了。 ;为什么一些年轻女性更青睐中年男士调查中,67.2的人认为是中年男士大多已具备一定物质基础;55.5的人认为是中年男士更稳重,有魅力;40.5的人表示是中年男士更能体贴女性;39.3的人觉得是作为独生子女的年轻人更愿意被照顾,而不懂得照顾别人。 世纪佳缘婚恋专家张佳芮告诉记者,;大叔控;大多集中于年轻女性。初入社会的年轻女性缺少社会经验,而这正是成熟中年男性所具有的,他们能给予女性安全感。此外,现在不少家庭是;421;模式,四个老人、两个大人围绕一个孩子转,很可能导致独生子女长大后缺乏耐性和包容力,在恋爱和婚姻中表现得以自我为中心。 ;时代不同,适婚年龄人群择偶需求也不同。 ;张佳芮说,70年代生人崇尚与知识分子结合,80年代生人更注重对方物质基础,90年代生人择偶不但务实,而且更注重自我感受。所以不管从物质还是感情出发,不少女性都愿意选择已具备一定条件的男士。

那些冷门却让你心力交瘁的短篇文,超级好看啊

巽离络---喻斑斓 这篇文我真的好喜欢是我目前读过不狗血而且让人很心力交瘁啊! 文案主角:韩子巽,韩子离,白络之 【碎碎念】世家小姐白络之迫于皇命嫁到韩家,但白韩两家其实是有世仇的,所以可想而知,白小姐嫁过去的日子一点也不好过,受到了夫婿韩子巽及整个韩家的冷眼相待,不过白小姐早已做好心理准备,所以也算活的安然。不料日常相处中蕙质兰心的白小姐俘获了小叔子韩子离的郎心,热血少年韩子离也是招姑娘喜欢的,小叔子觉得反正老大不喜欢这个媳妇,那我替他收了,于是两情相悦了。这个时候你懂得,老大不对了……心机深沉的老大竟然也喜欢上了这个不速之妻(原谅我滥改成语),其中有一个老大外出归来偶然看见自己媳妇跟自己弟弟相处的一个画面,郎情妾意好不动人,老大当场愣了,艾玛这个片段描写的太有画面感了楼主到现在都记得。。。哎呀原谅我剧透我好喜欢这篇文~接下来白小姐跟寻思着要去追求终身幸福了,于是老大怒了,尼玛此时不出手更待何时?你白络之本来就是我韩子巽的女人……于是就那啥了,然后开始情深热脸贴冷的婚姻生活……这篇文蛮冷的但真心是好文,不过是个悲剧,老大死了后白小姐幡然悔悟……原来我早就爱上老大了……于是也死了,留下他们的闺女给抚养。不过我要说,虽然我爱这篇文爱老大爱,但我委实不太主……这女主不太讨人喜欢,虐的我家老大太惨了…… 情殇尸妖一度君华 你说爱情,就是你的名和姓,就除了感情,你都不愿再记起...... 内容标签:幻想空间虐恋情深春风一度情有独钟 前两年读的记不太清了粘贴下来给大家看看 当初杀了唯一对女主好的人,为了一己私欲带女主离开了那片世外桃源,把女主当成一个利用的工具。后来一遍遍说爱女主,但行为上又一次次伤害她,太恶心了。女主就这么一个“人”,就是一个尸妖,从来就没伤害过别人,是她太美好了,所以世人都来毁灭她。但却是男主把她从一个美丽的仙子变成了一个魔鬼,然后又打着正义的旗号毁灭她,其实与其说女主是妖,不如说世人的贪念、欲念、邪念是妖。把最美好的东西毁灭给人看! 靡音 内容标签虐恋情深强取豪夺 文案:他一把将她推抵在桌上。 丝绸桌布上绣着牡丹,雍容华贵,到了极致。 她躺在上面,一张白净的脸泛上红潮,因为挣扎,因为恨意。 她的脸是纯洁的,干净的,不谙世事的,小女孩的脸。 可是她的眼睛,却像一只猫,圆圆的,眼角却又上翘,带着女人的妩媚,天生的,不自知的,与日俱增的。 她周游在女孩与女人之间,任何一个男人都能在她身上找到属于自己的幻

《情如物证》经典影评十篇

《情如物证》经典影评十篇 《情如物证》是一部由乔瑟琳·穆尔豪斯执导,雨果·维文 / Geneviève Picot / 罗素·克劳主演的一部剧情类型的电影,特精心从网络上整理的一些观众的影评,希望对大家能有帮助。 《情如物证》影评(一):爱的恐惧 圣母大学曾有一堂公开课就这部影片来讲述关于爱情的问题。马丁真正和社会的格格不入不是因为他失明这样的生理缺陷,而是由于他对周遭一切事物怀疑的心里缺陷。他害怕被欺骗,但其实更害怕被爱。当人们将自己封闭于自己的世界,而对于他人的一切情感都去怀疑的时候,最终导致的就是失去他人的关爱。人们在爱情中总会不停向对方求证“你爱我吗?”但或许我们最应该做的是问自己的内心“我爱他吗?” :二十多年前的果叔发际线还不那么令人着急,将一个忧郁、心里缺陷的盲人诠释的淋漓尽致,即使没有流转的眼神,我们仍然看到了那个倔强不安的马丁 《情如物证》影评(二):情如物证,物证造假 --你永远不许骗我! --我为什么这样做? 我这样做一定是原因的,要么是带着欺骗的爱、要么是带着爱的欺骗。 保姆兼追求者是带着戏谑、欺骗的爱,像天蝎座能做的。以前我没有看懂,以为就是欺骗,以为就是不爱。等看懂了,爱都

过去了。 朋友兼朗读者做了带着爱的欺骗,好在每个人都会说谎,但每个人不一直说谎,何况是为了保护你而撒的谎呢? 单亲妈妈,只有爱和保护,却遇到敏感的孩子,辩白再多孩子不信你也没有办法。 每一句I‘ll tell you the turth都需要你相信后面的话,如果一开始就不信,那就干脆不要听下去了。但是不信任的是你的妈妈呢?是你的爱人呢?是你自己呢? 没有真相、没有物证,只有点滴一刻情。 《情如物证》影评(三):哥拍的不是照片,是深深的寂寞 电影“PROOF”的导演是Jocelyn Moorhouse,也不出名,网上搜的,她连带导演/剧作/监制只有几部片子,但文艺导演重质不重量,所以片子还是不错,最重要是俺对Hugo Weaving ,真是惊为天人。以前看过他的《沙漠妖姬》,也很不错。只是那片子本来就有点噱头,人物也跳脱一些,桥段也还能被记住,但雨果哥也就是落个眼熟。 如果对这个名字没印象,建议您重新看《魔戒》《骇客帝国》,他就是精灵国王,Agent Smith,天生只能做演技派的长相,还得戴面具,罩墨镜那种,否则真身显露,太凶悍了,看《魔戒》时我一直觉得精灵国王像坏人,无论啥表情都像坏人,尤其鼻翼两地道深深法令纹,尽管金发披肩,白袍飘逸。 此片里雨果哥扮演盲人马丁,有一个女特别看护,给他做饭,买菜,付账单,做了很久,两人的关系居然就是纯雇佣关系。 还有一个是餐馆偶遇的小弟安迪,这个更是惊为天人,在您

为什么说成熟的男人对女人会更有吸引力

个人收集整理-ZQ 越来越多地女生都是“大叔控”,而夫妻之间相差地年龄也是越来越大,为什么呢?因为在女生看来,同龄地男生大多都还不懂事,容易冲动,心胸不够宽广,而且也没有担当,遇事喜欢逃避问题,这样地男生,是无法给予女生安全感地,更何况在生理地发展来说,女生比同龄地男生早熟地这个事了.所以“大叔控”似乎是个趋势,毕竟成熟地男人对于女生地吸引力和安全感,是无法抗拒地. 情感专家说过:“对感情认真负责地男人,能为女人带来幸福地生活,能让女人感到踏实和有安全感.”那么说,让女人有安全感地男人,一个成熟地男人,该是怎么样地呢?资料个人收集整理,勿做商业用途 一、外表干净整洁 有人说,外表干净整洁地,一丝不苟地并不一定是成熟地男人啊,但是外表邋里邋遢地,走颓废风格地男人,一定是不成熟地,这种男人是想要通过这种方式来获得更多人地关注,经常是以自我为中心地.而成熟地男人一定是注重外表,看起来给人地感觉是干净地,清清爽爽地,即便衣服不够华贵,但是懂得在什么场合穿什么衣服,让自己看起来精气神十足,容光焕发.从这些外表能看出来,成熟地男人是热爱生活,积极自信地,给人十足地正能量,给人依赖感,安全感.资料个人收集整理,勿做商业用途 二、心胸宽广,不爱计较 为小事斤斤计较地,凡事喋喋不休地,都是小男人所为,这种男人都是不会懂得如何体谅和包容别人,不懂得如何在别人地角度看问题地,这正是男人地不成熟地表现.而成熟地男人,他豁达大度,不为小事斤斤计较,心胸开阔,懂得如何包容和体谅别人;懂得为别人考虑,在别人地角度看问题,会尊重异性.这样地男人,女人跟他在一起,会感到放松,感到幸福,会让家庭地气氛和谐稳定.资料个人收集整理,勿做商业用途 三、有担当,为人认真负责 一个有担当,为人认真负责地男人,一定是事业有成地人.正所谓经济基础决定上层建筑,有事业有经济能力地男人,才能让自己地女人有更好地生活,不会因为经济问题让家庭不安稳.而且有事业地男人,也是一个懂得如何体谅妻子,懂得维系家庭关系地男人,他会为你分享生活上和工作上地事,他待人接物认真负责,这样地男人是最让女人有安全感地,能让女人可以全身心地放松去依赖他,放心由他带领.资料个人收集整理,勿做商业用途 做一个成熟地男人看起来很简单,但做起来一点都不简单,要有事业,能撑起养家地责任,懂得包容和体谅女人,注重外表形象这些,需要你地努力和开阔心胸.在恋爱和婚姻中,能够带领女人地,都是成熟地男人,你地成熟能让她把全身心都安然地交付于你,能把你们之间地矛盾减少,幸福感增加.资料个人收集整理,勿做商业用途 1 / 1

中国男女婚恋报告

龙源期刊网 https://www.wendangku.net/doc/b515213623.html, 中国男女婚恋报告 作者:耿旭静 来源:《37°女人》2013年第03期 2012年12月24日,国家人口和计划生育委员会与某大型婚恋交友运营平台联合发布《2012年~2013年中国男女婚恋观调研报告》,让我们来看看目前中国的婚恋情况吧。 非婚人口多 《2012年~2013年中国男女婚恋观调研报告》有9.8724万人次参与,有效样本7.7045万份。调研结果表明,中国非婚人口数量巨大,18岁以上非婚人口达到2.49亿,占全部人口的18.6%;城镇18岁以上非婚人口1.32亿,占城镇总人口的19.8%。 性别比失衡 男女性别比失衡严重,高达26.7:24.9。其中70后、80后、90后非婚人口性别比失衡严重。全国处于适婚年龄段的70后、80后、90后人口中存在男女比例不平衡的问题,并且年龄越大比例失衡越严重。 30+男性:择偶缺口高达613.9万 30岁~39岁的男性中,有1195.9万人处于非婚状态,而同年龄段女性中只有582万人处于非婚状态,男性在同年龄段择偶面临613.9万的缺口。这种情况必然造成30+男性更倾向寻找低年龄的女性为伴侣,同时会使80后、90后男性的择偶压力继续增大。 婚龄推迟 晚婚成了社会潮流,20岁~29岁人群结婚年龄的变迁显示,中国人目前的平均结婚年龄比10年前推迟了1.4岁(男)和1.5岁(女)。 第五次人口普查数据显示:中国男性的平均结婚年龄为25.3岁,女性平均结婚年龄为23.4岁;第六次人口普查数据显示:中国男性的平均结婚年龄为26.7岁,女性平均结婚年龄 为24.9岁。 韩剧让“大叔”大热 有“大叔控”情结的女性越来越多。调研显示:18岁~25岁之间的女性,70%有“大叔控”情结。这些女性喜欢比自己大10岁左右的男性,其中有64%的“大叔控”希望与大叔恋爱,17%

他是龙观后感

一切都听你的,只是,请别离开我 在微博上被安利了多次电影《他是龙》。简介里“绝世唯美”、“逆天颜值”、“大叔控萝莉”、“人兽恋”等信息也当真激发起了好奇。当看完这部集众多个人喜好元素的电影后,本想听听歌平复一下心情,播放器里却正在单曲循环《不存在的恋人》,突然觉得甚是应景。 她是萝莉,他是龙 电影讲述的故事很简单:一个战斗民族的小萝莉在新婚当天被恶龙俘虏,在斗智斗勇中逐渐唤醒恶龙内心的人性,并爱上了恶龙幻化成的阿尔曼,最后放弃自己公主身份和即将成婚的未婚夫,与阿尔曼在孤岛上厮守。唯美至极的画面,配上男女主角逆天的颜值,造就了这部电影的成功。 一切都听你的,只是,请别离开我 简单的故事,略显苍白的剧情的确也是电影存在的问题,然而作为一名大龄单身女青年,面对这种胸肌腹肌马甲线,高能撩妹大暖男全程不穿衣服的表演,一切问题便都不再成为问题。其实,之所如此推崇这部电影除了男主角的颜值与身材外,更主要的原因是其所宣扬的听起来俗套但在现如今却分外难得的“爱能创造奇迹”的主题。 前几天收到黄老板微信发来的小晗姐根据与付彪彪和我聊天有感而发的《写给嗷嗷待嫁的姑娘们》,并语重心长、苦口婆心地帮我分析我性格中存在的种种问题。听完后一边感动一边感概于黄老板的观察分析总结能力,虽然只有一面之缘,却字字珠玑、针针见血地点出我自己花费二十多年单身时光才认识到的缺憾。黄老板说我单身主要是因为性格。的确,慢热又矫情的死宅性格总是提醒自己不要随意接近别人,更是随时提防他人的接近。 小晗姐在文章当中说,我们这些口口声声说着恨嫁的姑娘心里真正追求的是一场爱情而不是一场婚姻。多年来受大量文学作品和电影的荼毒,“爱情”已经成为自己为自己营造的最佳借口,总是以“没对眼”、“不合适”掩饰着自己的矫情,难怪有人说姑娘家读太多书、看太多电影未必是什么好事。然而,我并不觉得这一切除了要承受比别人多的单身时间外,还有其他什么不好的。等待爱情并没有错,正像电影中被女主角嘲笑嫁不出去的姐姐,却最终让她明白:与其接受没有爱情的婚姻,还不如孤独终老。每个人都是一个半圈,两个人才会组合成一个圆。如果两个半圆无法严丝合缝的拼接,任何的工作、房子、车子都无法使其弥合。 说到爱脑海里立即想到的是电影《编舟计》中的场景。字典编辑马缔光也始终不知道如何解释“恋”,苦苦求之而不得,直到遇见了房东的孙女林香具矢,突然一改往常超然物外的状态,变得惶惶不可终日,最终为“恋”做出以下定义:喜欢一个人,寤寐求之,辗转反侧,除此之外,万事皆空之态;两情相悦,何须羡仙。有时候,爱就是这样不知不觉或是心甘情愿的改变。如果真的邂逅爱情,我想即使再高冷再矫情也会欣然说出一句:一切都听你的,只是,请别离开我。

这不是巧合:50个你无法逃避的人生定律!

这不是巧合:50个你无法逃避的人生定律! 1、25岁定律 硕士毕业是25岁,自己还没有一点社会经验的时候,很容易就蹉跎两年,然后可能想到应该结婚,然后会发现为什么就显得有点晚了呢? 2、三年定律 如果男朋友处了三年,觉得应该结婚了,但是又觉得他总有不合适不满意的地方。重新认识、重新熟悉、重新了解一个人多难啊。有的最终就结了婚,有的就淡了散了。再就很难说了。 3、最重的谷穗在前面定律 总相信还有更好的,总觉得自己不会这么惨落在一个普通男人手里,就这么一路走下去了。那些扔掉的谷穗也被人捡走了。 4、子非鱼定律 子非鱼,安知鱼之类。子非我,安知我不知鱼之乐。单身女人的生活究竟如何,如果你问她,她可能一会儿说好,一会儿说不好。至于快不快乐,可能只有她自己知道了。 5、男人恐惧定律 不是恐惧男人,谁怕男人啊。而是对男人进入自己生活的恐惧。 6、后援团越多越耽误事定律 如果你连自己都不知道自己想要什么,别人又怎么可能知道。要倾诉或者赚同情可以,不过别把他们的话当做恋爱指南。

7、矛盾定律 随便找个人结婚算了,一想到应该结婚的时候就会这么想;我怎么可能和这么一个人过一辈子啊,一想到某个具体的男人就会索然无味。 8、半边天定律 女人在经济上独立早已经不成问题,但不足以让女人完全去撑半边天;只有在女人可以独立地享受生活中的种种乐趣时,女人才会觉得结婚不重要。 9、博士定律 如果不知不觉走上了读博之路,那么在博士毕业之前完成恋爱结婚也许比较明智。 10、茫然第一定律 她们好像有坚持的主张和生活态度,有足够独特的个性,还常会被人贴上各种标签,但内心 里她们还是不确定自己究竟在忙什么,在为什么生活,似乎可以很具体,但又经不起推敲。她们究竟要什么? 11、茫然第二定律 年纪越大,单身女人越不知道自己想要什么样的生活。 12、窝边草定律 吃窝边草的风险是其中一方的职业面临危机,但除了窝边草,还能到哪里去找吃的呢? 13、残酷第一定律 女人年纪往上涨被称作“老”;男人年纪往上涨被称作“成熟”。

女孩喜欢大叔的原因

大叔沉稳 虽然一个人的心智成熟与否可年龄没有着绝对的关系,可是毕竟成年人有着年轻人们所没有过的阅历,经历了太多风雨的他们早已经不是曾经那初出茅庐的青涩少年,纵然是身处世界灭亡的前一刻也依然看不出丝毫的慌乱,北京豆豆博士祛痘专家提醒很多时候男人对女人来说更是一份依靠,相信没几个女人希望看到自己身边的男人遇见危险的时候早已经没有了影子。 情伤难愈,寻找安全感 人在脆弱的时候会失去判断力。陷入与同龄异性之间发生的失恋或者情伤事件的女孩子,会恐惧再去爱上同龄人,她们会认为“大叔”对待感情更沉稳,更懂得怜香惜玉,也更有安全感。 大叔拥有财富 这可能是让人最为不屑的理由,也是最让人反感的理由,不过生活就是这样,现实就是如此。和那些还在上学或是刚刚离开校园的年轻人相比,大叔们在阅历,感情之外

最大的有事便是已经积累了客观的社会财富,这一点对于现代的女孩来说可是相当之诱人,要知道人生苦短,及时行乐已经成为了时下许多青年人的共识。 追求完美,崇尚“英雄”? “大叔”可能在经济能力、性能力、生存能力等各方面都会是女生眼中的“英雄式人物”他几乎无所不能,无所不知,更有责任感,能给女性更加完整的保护。从这方面来看,除非是含着金汤匙长大,否则在财力、能力和社会影响力上,年轻人确实无法和“大叔”PK。 父女情深,过度崇拜? 精神分析学派的创始人弗洛伊德,曾定义了一种“厄特克拉特情结”,又叫“恋父情结”。这可能是“大叔控”的根源之一。 大叔成熟 许多人提到大叔都会充满不屑,老头子能有什么,除了多几个银子哪方面比的我们这些青年一辈。是人都会有着老

去的一天,除掉极个别的备受神明宠爱或者有着离奇宿命的人可以青春永驻,长生不死外,任谁也逃离不了岁月的玩弄。 如果说少年郎们有的是可以尽情挥霍的的青春,那么大叔们有的则是无数光阴下的历练出的魅力,成熟男人的气息可不是青涩的男孩们可以相提并论,这种只是唯有光阴才能酝酿出气质只能意会不能言传。 5 受影视剧爱情模式(尤其韩剧)影响? 偶像剧中的“大叔”向来颇为吸引,比如韩剧《对不起,我爱你》、《巴黎恋人》等的男主角,其特点都是稳重、体贴、多金、痴情……作为偶像剧最大受众的女性观众尤其青年女性观众,容易被夸张的剧情激发“完美爱情之梦”,成为“大叔控”。 爱大叔的心理准备

情感专家教你:学习如何做一个体贴男人

情感专家教你: 情感专家教你: 2015/04/15 每个人都会被优秀的人所吸引,因为一个优秀的人身上必定会有出众的优点。而搞清楚女人心中优秀的男人是什么,并向着这个方向努力,才能有机会虏获女人的心。那么该如何成为一个女人喜爱的男人呢?一起来看本册内容。

目录 情感专家教你:学习如何做一个体贴男人 ·如何成为女人喜爱的男人 ·体贴的男人要做到哪几点 ·幽默是男人征服女人的魔力 ·成熟的男人,对女人最有吸引力 ·如何塑造出成熟男人的魅力 ·如何才能成功吸引心仪的女生

·如何成为女人喜爱的男人 每个人都会被优秀的人所吸引,因为一个优秀的人身上必定会有出众的优点。而搞清楚女人心中优秀的男人是什么,并向着这个方向努力,才能有机会虏获女人的心。那么该如何成为一个女人喜爱的男人呢?以下提几点方向作为建议: 1.塑造负责任的形象 男人天生就具备更刚强有力的形象,这是生理所决定的。女人天生就比男人弱势,因此绝大部分女人都需要男人的保护。这种保护不仅是身体上的保护,在心理上男人也要给予女人充分的安全感。假如一个男人在女人遇到重大决定的时候能给出有效的建议,晚上约会总会坚持亲自送女人回家,遇到问题总是第一时间反省并承认自己的错误,那这个男人必定会得到女人的信任和依赖。一个男人负责任的态度会为女人带来安全感,且这种男人往往会显得更大度,更有能力,更受女人青睐。 2.提高自身的经济能力 女人在选择男人(尤其是长期选择的对象)的时候也会看中对方的经济能力。无论你身上还有什么其他的才能,但女人一旦选择与你确立关系,都是要落到每天的生活上。没有经济实力就无法保证生活的质量,生活质量差往往会降低幸福感。因此,很实际的一个方法就是提升你的经济实力吧。在工作上更出色地表现,争取更高的职位和薪酬;学会理财和投资,增加额外收入;学习提升自身的技能,增加自身附加价值。假如现阶段的你还无法将你的经济实力立马提升起来,起码你也要表现出你赚钱的潜力。那么当女人感受到你是潜力股的时候也会在心里为你加分。 3.适当引导对方增加投入量 女人对一个男人爱的程度很大部分取决于她对这段感情的投入量。情感大师康纳曾提到:

动漫

TV版:就是在电视上放的动画版本 OVA:Original Video Anime(原创影象动画),一般能够作为OVA的作品一定是在首次推出时是未曾在电视或戏院上映过的,如果在电视或戏院上映过的作品再推出的录影带(或LD/VCD)等等就不能称作OVA了。 剧场版:动画的电影版本。 动漫体裁: SF=SCIENCE FICTION科幻类的作品,如EVA,高达,凉宫春日的忧郁 动漫作品的缩写: 动漫发烧友之间常常用缩写代表自己熟悉的作品,缩写通常是能理解的,但也有些对于新人来说不是很熟悉,在此略举一二,以后逐渐补充。 FF:大家最熟悉的大概就是FF(FINAL FANTASY)系列了,FF系列本来是SQUARE公司的一个著名游戏,因为非常受欢迎所以有很多周边,比如游戏动画,OVA,电影等。但是 最近使用FF的缩写则需要辨别一下了,因为《黑客帝国》系列也出品了一部动画短片名叫FINAL FLIGHT OF THE OSIRIS(欧西里司最后的飞翔),缩写同样是FF。该片导演和《FINAL FANTASY》的电影版是同一个人(安迪*琼斯),怪不得连名字都一样了。 M0=MACROSS ZERO(ZERO是零的意思,所以用“0”表示) ROD系列:目前出品的有两个作品,一个是READ OR DIE(OVA),中文名为“死亡的思考”;另一个是正在制作放映中的READ OR DREAM(TV),目前国内还没有D版。它们的缩写均为ROD [编辑本段]☆制作动画片人员解释: 监督:导演 原作:原漫画或小说的作者 脚本:依据原作进行创作剧本人员 CAST:声优,配音演员 STAFF:参与制作动画的人员 制作:指负责制作该动画的公司或部门 (在日本,要制作一部动画通常是要数个部门或公司共同合作完成的,分工明确,流水线操作。一部动画的制作水准往往会受到制作单位的影响。所以在一些情况下,知道制作某部动画的公司或部门就知道该动画的水准。) [编辑本段]部分日本动漫术语: BL: 原英文为Boy's Love,特指男同性恋,又称耽美. GL:原英文为Girl's Love,特指女同性恋,又称百合,蕾丝边。(如《神无月的巫女》) BG:原英文为Boy and Girl,特指男女之间的配对。 CP: 指的是配对。 SM:sadomasochism的简写,统指与施虐、受虐相关的性意识与行为,多见于H动画或游戏中(日本称为鬼畜)。 残念:日语音译,遗憾的意思,引申词语有“碎碎念” 。 幼齿:年龄在8岁以下的小女孩。

2018-2018年中国男女婚恋观调研报告

2018-2018年中国男女婚恋观调研报告 近日,国家人口计生委培训交流中心与世纪佳缘交友网联合发布的《2018-2018年中国男女婚恋观调研报告》显示,18岁-25岁女性有70%是“大叔控”,其中“气质大叔”、“事业型大叔”、“细腻体贴大叔”是“大叔控”们的最爱。所谓“大叔”,通常指30岁-50岁的中年男士,倾向于选择中年男士作为配偶的青年女性被称作“大叔控”。 近日,中国青年报社会调查中心通过民意中国网和搜狐网,对2371人进行的一项调查显示,40.1%的受访者直言自己身边“大叔控”多。44.3%的受访者感觉很多女性抱有“要现货”的心理,不愿与伴侣共同奋斗。 受访者中,70后占41.4%,80后占24.4%,90后占4.8%。 67.2%的人认为中年男士受青睐是因为大多已具备一定物质基础 1990年出生的张兰(化名)来北京打工一年多了。前不久,她在换房时结识了房东的朋友——一个70后的“大叔”。初次见面,“大叔”就开车帮她搬来了所有行李。之后两人经常一起吃饭聊天儿。“我经常向他倾诉生活和工作中的各种不快,他不但不会不耐烦,还会给出很多实用建议。作为一个独自在北京打拼的女孩子,‘大叔’的成熟体贴让我感到很舒心。” “女朋友常指责我自私、不考虑她的感受,夸赞‘大叔’有魅力。”山东小伙李守伟说,他女朋友是日漫迷、韩剧迷,最喜欢收集动漫和韩剧里的美型“大叔”图片,还把“大叔”定为他以后的发展方向。“我感觉这种心态太幼稚了。” 为什么一些年轻女性更青睐中年男士?调查中,67.2%的

人认为是中年男士大多已具备一定物质基础;55.5%的人认为是中年男士更稳重,有魅力;40.5%的人表示是中年男士更能体贴女性;39.3%的人觉得是作为独生子女的年轻人更愿意被照顾,而不懂得照顾别人。 世纪佳缘婚恋专家张佳芮告诉记者,“大叔控”大多集中于年轻女性。初入社会的年轻女性缺少社会经验,而这正是成熟中年男性所具有的,他们能给予女性安全感。此外,现在不少家庭是“421”模式,四个老人、两个大人围绕一个孩子转,很可能导致独生子女长大后缺乏耐性和包容力,在恋爱和婚姻中表现得以自我为中心。 “时代不同,适婚年龄人群择偶需求也不同。”张佳芮说,70年代生人崇尚与知识分子结合,80年代生人更注重对方物质基础,90年代生人择偶不但务实,而且更注重自我感受。所以不管从物质还是感情出发,不少女性都愿意选择已具备一定条件的男士。 稳定的感情需要男女双方耐心磨合,一同成长 调查显示,52.6%的受访者对年轻女性当“大叔控”持认同态度,17.0%的人持反对态度,30.4%的人表示不好说。 张兰认为,年轻女性与“大叔”结合是恋爱自由,没什么不可以。“单方面要求女性理解自己伴侣,等待其成长,也是不公平的。” “不少年轻女性有攀比心理,看到同龄人因为嫁得好,享受了更好的物质条件,就可能在感情中动摇。”李守伟认为,认同年轻女性当“大叔控”,是认同了男女双方只考虑自己的做法,抹杀了爱情相伴相守的美好,可能导致更多女性把恋爱和婚

相关文档
相关文档 最新文档