文档库 最新最全的文档下载
当前位置:文档库 › SPICE基本模型参数

SPICE基本模型参数

SPICE基本模型参数
SPICE基本模型参数

Overview

The Electronics Workbench SPICE Simulation Fundamentals series is your free resource on the internet for learning about circuit simulation.The series is a set of tutorials and information on SPICE simulation,OrCAD pSPICE compatibility,SPICE modeling,and other concepts in circuit simulation.

For more information,see the SPICE Simulation Fundamentals main page.

The series is divided among a number of in-depth detailed articles that will give you HOWTO information on the important concepts and details of SPICE simulation.

Circuit simulation is an important part of any design process.By simulating your circuits,you can detect errors early in the process,and avoid costly and time consuming prototype reworking.You can also easily swap components to evaluate designs with varying bills of materials(BOMs).

Basic SPICE Devices

SPICE includes several different types of electrical components that can be simulated.These range from simple resistors,to sophisticated MESFETs.The table below lists these components and their SPICE syntax.

Simulation models for the following devices are natively available in SPICE:

Resistors

Semiconductor Resistors

Capacitors

Semiconductor Capacitors

Inductors

Coupled(Mutual)Inductors

Switches

Voltage Sources

Current Sources

Linear Voltage-Controlled Current Sources

Linear Voltage-Controlled Voltage Sources

Linear Current-Controlled Current Sources

Linear Current-Controlled Voltage Sources

Non-linear Dependent Sources

Lossless Transmission Lines

Uniform Distributed RC Lines(lossy)

Junction Diodes

Bipolar Junction Transistors(BJT)

Junction Field-Effect Transistors(JFET)

MOSFETs

MESFETs

SPICE Model Syntax

Parameters in angular parentheses<>are optional.If left unspecified,the default SPICE parameter values will be used.

Resistors

Syntax Rname n1n2value

Example Rin20100

Notes n1and n2are the two element nodes.Value is the

resistance(in ohms)and may be positive or negative but

not zero.

Semiconductor Resistors

Syntax Rname n1n2<value><Mname>

<L=Length><W=Width><Temp=T>

Example Rload37RMODEL L=10u W=1u

Notes This is the more general form of the resistor and allows the

modeling of temperature effects and for the calculation of

the actual resistance value from strictly geometric

information and the specifications of the process.

Capacitors

Syntax Cname n+n-value<IC=INCOND>

Example Cout1301UF IC=3V

Notes n+and n-are the positive and negative element nodes,

respectively.Value is the capacitance in Farads.The

(optional)initial condition is the initial(time-zero)value

of capacitor voltage(in Volts).

Semiconductor Capacitors

Syntax Cname n1n2<value><Mname>

<L=Length><W=Width><IC=VAL>

Example Cfilter37CMODEL L=10u W=1u

Notes This is the more general form of the Capacitor and allows

for the calculation of the actual capacitance value from

strictly geometric information and the specifications of the

process.

Inductors

Syntax Lname n+n-value<IC=INCOND>

Example LSHUNT235110U IC=15.7MA

Notes n+and n-are the positive and negative element nodes,

respectively.Value is the inductance in Henries.The

(optional)initial condition is the initial(time-zero)value

of inductor current(in Amps)that flows from n+,through

the inductor,to n-.

Coupled(Mutual)Inductors

Syntax Kname Lname1Lname2value

Example Kin L1L20.87

Notes Lname1and Lname2are the names of the two coupled

inductors,and VALUE is the coefficient of coupling,K,

which must be greater than0and less than or equal to1.

Switches

Syntax Sname n+n-nc+nc-Mname<ON><OFF>

Wname n+n-VNAM MnameL<ON><OFF>

Examples Switch112100smodel1

W112vclock switchmod1

Notes Nodes n+and n-are the nodes between which the switch

terminals are connected.The model name is mandatory

while the initial conditions are optional.For the voltage

controlled switch,nodes nc+and nc-are the positive and

negative controlling nodes respectively.For the current

controlled switch,the controlling current is that through

the specified voltage source.The direction of positive

controlling current flow is from the positive node,through

the source,to the negative node.

Voltage Sources

Syntax Vname n+n-<DC<>DC/TRAN VALUE>

<AC<ACMAG<ACPHASE>>>

<DISTOF1<F1MAG<F1PHASE>>>

<DISTOF2<F2MAG<F2PHASE>>>

Examples VCC100DC6

Vin1320.001AC1SIN(011MEG)

Notes n+and n-are the positive and negative nodes,respectively.

Note that voltage sources need not be grounded.Positive

current is assumed to flow from the positive node,through

the source,to the negative node.A current source of

positive value forces current to flow out of the n+node,

through the source,and into the n-node.Voltage sources,

in addition to being used for circuit excitation,are the

'ammeters'for SPICE,that is,zero valued voltage sources

may be inserted into the circuit for the purpose of

measuring current.They of course have no effect on

circuit operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the

source.If the source value is zero both for dc and transient

analyses,this value may be omitted.If the source value is

time-invariant(e.g.,a power supply),then the value may

optionally be preceded by the letters DC.

Current Sources

Syntax Iname n+n-<<DC>DC/TRAN VALUE>

<AC<ACMAG<ACPHASE>>>

<DISTOF1<F1MAG<F1PHASE>>>

<DISTOF2<F2MAG<F2PHASE>>>

Examples Igain1215DC1

Irc23210.333AC5SFFM(011K)

Notes ACMAG is the ac magnitude and ACPHASE is the ac

phase.The source is set to this value in the ac analysis.If

ACMAG is omitted following the keyword AC,a value of

unity is assumed.If ACPHASE is omitted,a value of zero

is assumed.If the source is not an ac small-signal input,

the keyword AC and the ac values are omitted.

DISTOF1and DISTOF2are the keywords that specify that

the independent source has distortion inputs at the

frequencies F1and F2respectively(see the description of

the.DISTO control line).The keywords may be followed

by an optional magnitude and phase.The default values of

the magnitude and phase are1.0and0.0respectively. Linear Voltage-Controlled Current Sources

Syntax Gname n+n-nc+nc-value

Example G120500.1MMHO

Notes n+andn-are the positive and negative nodes,

respectively.Current flow is from the positive node,

through the source,to the negative node.nc+and nc-are

the positive and negative controlling nodes,respectively.

VALUE is the transconductance(in mhos).

Linear Voltage-Controlled Voltage Sources

Syntax Ename n+n-nc+nc-value

Example E1231412.0

Notes n+is the positive node,and n-is the negative node.nc+

and nc-are the positive and negative controlling nodes,

respectively.Value is the voltage gain.

Linear Current-Controlled Current Sources

Syntax Fname n+n-Vname value

Example F1135Vsen5

Notes n+andn-are the positive and negative nodes,respectively.

Current flow is from the positive node,through the source,

to the negative node.Vname is the name of a voltage

source through which the controlling current flows.The

direction of positive controlling current flow is from the

positive node,through the source,to the negative node of

Vname.Value is the current gain.

Linear Current-Controlled Voltage Sources

Syntax Hname n+n-Vname value

Example Hx1517Vz0.5K

Notes n+and n-are the positive and negative nodes,respectively.

Vnameis the name of a voltage source through which the

controlling current flows.The direction of positive

controlling current flow is from the positive node,through

the source,to the negative node of Vname.Value is the

transresistance(in ohms).

Non-linear Dependent Sources

Syntax Bname n+n-<I=EXPR><V=EXPR>

Example B101I=cos(v(1))+sin(v(2))

Notes n+is the positive node,and n-is the negative node.The

values of the V and I parameters determine the voltages

and currents across and through the device,respectively.If

I is given then the device is a current source,and if V is

given the device is a voltage source.One and only one of

these parameters must be given.The small-signal AC

behavior of the nonlinear source is a linear dependent

source(or sources)with a proportionality constant equal to

the derivative(or derivatives)of the source at the DC

operating point.

Lossless Transmission Lines

Syntax Oname n1n2n3n4Mname

Example O231020LOSSYMOD

Notes This is a two-port convolution model for single-conductor

lossy transmission lines.n1and n2are the nodes at port1;

n3and n4are the nodes at port2.Note that a lossy

transmission line with zero loss may be more accurate than

than the lossless transmission line due to implementation

details.

Uniform Distributed RC Lines(lossy)

Syntax Uname n1n2n3Mname L=LEN<N=LUMPS>

Example U1120URCMOD L=50U

Notes n1and n2are the two element nodes the RC line connects,

while n3is the node to which the capacitances are

connected.Mname is the model name,LEN is the length

of the RC line in meters.Lumps,if specified,is the

number of lumped segments to use in modeling the RC

line(see the model description for the action taken if this

parameter is omitted).

Junction Diodes

Syntax Dname n+n-Mname<Area><OFF>

<IC=VD><TEMP=T>

Example Dfwd37DMOD3.0IC=0.2

Notes n+and n-are the positive and negative nodes,respectively.

Mname is the model name,Area is the area factor,and

OFF indicates an(optional)starting condition on the

device for dc analysis.

Bipolar Junction Transistors(BJT)

Syntax Qname nC nB nE<nS>Mname<AREA>

<OFF><IC=VBE,VCE><TEMP=T>

Example Q23102413QMOD IC=0.6,5.0

Notes nC,nB,andnE are the collector,base,and emitter

nodes,respectively.nS is the(optional)substrate node.If

unspecified,ground is used.Mname is the model name,

Area is the area factor,and OFF indicates an(optional)

initial condition on the device for the dc analysis.

Junction Field-Effect Transistors(JFET)

Syntax Jname nD nG nS Mname<Area><OFF>

<IC=VDS,VGS><TEMP=T>

Example J1723JM1OFF

Notes nD,nG,and nS are the drain,gate,and source nodes,

respectively.Mname is the model name,Area is the

area factor,and OFF indicates an(optional)initial

condition on the device for dc analysis.

MOSFETs

Syntax Mname ND NG NS NB MNAME<L=VAL>

<W=VAL><AD=VAL><AS=VAL>

<PD=VAL><PS=VAL><NRD=VAL>

<NRS=VAL><OFF><IC=VDS,VGS,

VBS><TEMP=T>

Example M31217610Mname L=5U W=2U

Notes nD,nG,nS,and nB are the drain,gate,source,and bulk

(substrate)nodes,respectively.Mname is the model

name.L and W are the channel length and width,in

meters.AD and AS are the areas of the drain and

source diffusions,in2meters.Note that the suffix U

specifies microns(1e-6m)2and P sq-microns(1e-12m

).If any of L,W,AD,or AS are not specified,default

values are used.

MESFETs

Syntax Zname nD nG nS Mname<Area><OFF>

<IC=VDS,VGS>

Example Z1723ZM1OFF

Notes nD,nG,andnS are the drain,gate,and source nodes,

respectively.Mname is the model name,Area is the

area factor,and OFF indicates an(optional)initial

condition on the device for dc analysis.

常用晶体三极管参数

常用晶体三极管参数 2008-05-12 11:12 常用晶体三极管参数 名称封装极性耐压电流功率频率配对管 D633 28 NPN 音频功放 100V 7A 40W 达林顿 9013 21 NPN 低频放大 50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大 50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大 50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大 30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大 40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大 40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用 60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关 40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用 60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大 100V 15A 115W MJ2955 2N3440 6 NPN 视放开 450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放 160V 16A 50W 2N3904 21E NPN 通用 60V 0.2A 2N2906 21C PNP 通用 40V 0.2A 2N2222A 21铁 NPN 高频放大 75V 0.6A 0.625W 300MHZ 2N6718 21铁 NPN 音频功放 100V 2A 2W 2N5401 21 PNP 视频放大 160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大 160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放 60V 50A 300W 2N6277 12 NPN 功放开 180V 50A 250W 9012 21 PNP 低频放大 50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放 650V 15A 175W 15MHZ 9012 贴片 PNP 低频放大 50V 0.5A 0.625W 9013 3DA87A 6 NPN 视频放大 100V 0.1A 1W 3DG6B 6 NPN 通用 20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用 25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用 30V 0.02A 0.1W 150MHZ MPSA42 21E NPN 电话视频 300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频 300V 0.5A 0.625W MPSA42

SNP分析命令

E:\ > cd e: E:\ E:\ > cd plink-1 E:\plink-1>plink –file test 1.Map 更新 Plink --sheep --file data --update-map position.txt --recode --out data1 Chrnew.txt -- update-chr --recode --out data2 Position: SNP code and position Chrnew:SNP code and Chr. 2.SNP merge Plink --file data1 --merge data2.ped data2.map --recode --out merge 3.提取SNP位点 Plink --file data --extract 50kSNP.txt --recode --out data1 50kSNP.txt: 50k中的SNP名 4. Quality control Call rate >98%/99% Plink --file sheep --geno 0.02 --recode --out sheepgeno Plink --file sheepgeno --mind 0.01 --recode --out sheepmind MAF>0.05 Plink --file sheepmind --maf 0.05 --recode --out sheepmaf Hardy-Weinberg equilibrium <0.0001 Plink --file sheepmaf --hwe 0.0001 --recode --out sheephwe Exclude the SNP markers with either chromosome or both unknown Plink --sheep --file sheephwe --extract 4newsnp.txt --recode --out sheep4 Note: 制作4newsnp.txt(包含chromosome 和base-pair position 都为0的SNP) To identify sample duplication or half-sibs or closer Plink –sheep –file sheep4 –genome –max 0.85 Note:Check the genome file 5. LD quality control Plink –sheep --file sheep4 –indep-pairwise 100 25 0.2 –out sheepld0.2 Plink --sheep --file sheep4 --indep-pairwise 100 25 0.05 --out sheepld0.05 Plink--file sheep4--ld-window-r2 0.2 --out sheepldr0.2 输出结果为data prunein 和data prune out (质控时,要去除X染色体) 将data prune in 转化为ped和map Plink --sheep --file 114hwe --extract 114sheep0.05.prune.in --recode --out sheepforpca 6. PCA- PCA的三个文件: Plink --sheep --file data(生成LD的文件) --extract data (LD).prune.in --recode --out sheepforpca 1sheepforpca.ped 改为5.ped 2sheepforpca.map 改为5.pedsnp 3将sheepforpca 制作成二进制文件输出5b plink --file hapmap1 --make-bed --out hapmap1 结果为5b.farm即为ped文件的前6列,将5b.farm 改名为5.pedind

Multisim基础使用方法详解

M u l t i s i m基础使用方 法详解 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第2章 Multisim9的基本分析方法 主要内容 ?直流工作点分析(DC Operating Point Analysis ) ?交流分析(AC Analysis) ?瞬态分析(Transient Analysis) ?傅立叶分析(Fourier Analysis) ?失真分析(Distortion Analysis) ?噪声分析(Noise Analysis) ?直流扫描分析(DC Sweep Analysis) ?参数扫描分析(Parameter Sweep Analysis) 直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。 在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 2.1.1构造电路

为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。 注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all 调试出来。 执行菜单命令(仿真)Simulate/(分析)Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。直流工作点分析对话框B。 1. Output 选项 Output用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再单击Add按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。 Options 和Summary选项表示:分析的参数设置和Summary页中排列了该分析所设置的所有参数和选项。用户通过检查可以确认这些参数的设置。 2.1.3 检查测试结果 点击B图下部Simulate按钮,测试结果如图所示。测试结果给出电路各个节点的电压值。根据这些电压的大小,可以确定该电路的静态工作点是否合理。如果不合理,可以

Spice基本语法

?无源器件:电阻、电感、电容 1、电阻 RXXX n1 n2 resistance 电阻值可以是表达式。 例:R1 1 2 10K Rac 9 8 1 AC=1e10 Rterm input gnd R=’sqrt(HERTZ) ’ 2、电容 CXXX n1 n2 capacitance 例:C1 1 2 1pF 3、电感 LXXX n1 n2 inductance 例:L1 1 2 1nH ?有源器件:Diode、BJT、JEFET、MOSFET 1、Diode(二极管) DXXX N+ N- MNAME 可选项:AREA是面积因子,OFF是直流分析所加的初始条件,IC=VD 是瞬态初始条件 注:模型中的寄生电阻串联在正极端 2、BJT(双极性晶体管) QXXX NC NB NE MNAME NC、NB、NE、NS分别是集电极、基极、发射极和衬底节点,缺省时NS 接地。后面与二极管相同。 3、JFET(结型场效应晶体管) JXXX ND NG NS MNAME 4、MOSFET(MOS场效应晶体管) MXXX ND NG NS NB MNAME M为元件名称,ND、NG、NS、NB分别是漏、栅、源和衬底节点。MNAME 是模型名,L沟道长,W为沟道宽。

?子电路 1、子电路定义开始语句 .SUBCKT SUBNAM 其中,SUBNAM为子电路名,node1…为子电路外部节点号,不能为零。子电路中的节点号(除接地点),器件名,模型的说明均是局部量,可以和外部的相同。 例: .SUBCKT OPAMP 1 2 3 4 2、子电路终止语句 .ENDS 若后有子电路名,表示该子电路定义结束;若没有,表示所有子电路定义结束。 例: .ENDS OPAMP / .ENDS 3、子电路调用语句 X***** SUBNAM 在Spice中,调用子电路的方法是设定以字母X开头的伪元件名,其后是用来连接到子电路上的节点号,再后面是子电路名。 例:…… .SUBCKT INV IN OUT wn=1.2u wp=1.2u Mn out in 0 0 NMOS W=wn L=1.2u Mp out in vdd vdd PMOS W=wp L=1.2u .ENDS X1 IN 1 INV WN=1.2U WP=3U X2 1 2 INV WN=1.2U WP=3U X3 2 OUT INV WN=1.2U WP=3U 激励源:独力源和受控源 独立源:直流源(DC Sources)交流小信号源(AC Sources)瞬态源(Transient Sources)脉冲源指数源正弦源分段线性源1、直流源(DC Sources )

三极管的基础知识及参数对照表

[知识学堂] 三极管的基础知识及参数对照表双极结型三极管相当于两个背靠背的二极管PN结。正向偏置的EB结有空 穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的CB结势垒电场的效果下到达集电区,形成集电极电流IC。在共发射极晶体管电路中,发射结在基极电路中正向偏置,其电压降很小。绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。由于VBE很小,所以基极电流约为IB=5V/50kΩ=0.1mA。 如果晶体管的共发射极电流放大系数β=IC/IB=100,集电极电流IC=β*IB=10mA。在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大效果。 常用中小功率三极管参数表: 型号材料与极性Pcm( W) Icm(mA ) BVcbo(V) ft(MHz) 3DG6C SI-NPN 0.1 20 45 >100 3DG7C SI-NPN 0.5 100 >60 >100 3DG12C SI-NPN 0.7 300 40 >300 3DG111 SI-NPN 0.4 100 >20 >100 3DG112 SI-NPN 0.4 100 60 >100 3DG130C SI-NPN 0.8 300 60 150 3DG201C SI-NPN 0.15 25 45 150 C9011 SI-NPN 0.4 30 50 150 C9012 SI-PNP 0.625 -500 -40 C9013 SI-NPN 0.625 500 40 C9014 SI-NPN 0.45 100 50 150 C9015 SI-PNP 0.45 -100 -50 100 C9016 SI-NPN 0.4 25 30 620 C9018 SI-NPN 0.4 50 30 1.1G

SNP数据统计详细方法

S N P数据统计详细方法集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

S N P操作步骤与结果记录 按照陈丽学位论文第二部—— 步骤一、使用在线软件SHEsis检验各个危险的hw遗传平衡(因rs2607659未发生突变,故不纳入分析。) 结论:9个位点P值均大于0.05,均符合HW遗传平衡。(有附件) 步骤二、分析前将协变量进行分类,并用KS法检验连续变量正态性,结果如下: 正态性连续变量非正态连续变量分类变量 ALT CReGFR-A ASTBMIHBeAg 年龄eGFR年龄-A 药物浓度ADV合用 性别 步骤三、用KM生存曲线画出某一位点的CK升高时间与累积危险函数之间的曲线,(KM曲线中状态选项选择服药四年CK数据组)并联合Log-rank检验,比较该位点突变与否对CK结局的差异。结果:9个位点P值均大于0.05 即:这些位点的变异对CK升高作用无差异。为验证统计操作的正确性,将TK2基因rs3826160位点进行统计,得到的KM曲线与Log-rankP值与陈丽师姐论文相同。故统计操作正确。 (SPSS输出结果见附件) 步骤四、对协变量进行单因素分析,排除rs位点突变与其他临床因素对CK产生相反作用,掩盖rs位点对CK结局影响的情况。 选择二元Logistic回归(除根据P值定性外,可提供OR值观察因素的影响程度)方法。影响CK 的临床因素(P<0.05)如下: 协变量P 性别0.000 药物浓度0.007 年龄0.032 BMI0.016 HBVDNA-A0.021 CR0.01 eGFR0.03 (SPSS输出结果见附件)

multisim元件模型参数解释

m u l t i s i m元件模型参 数解释 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

电阻模型参数 R 电阻倍率因子 TC1 线性温度系数 TC2 二次温度系数 电容模型参数 C 电容倍率因子 VC1 线性电压系数 VC2 二次电压系数 TC1 线性温度系数 TC2 二次温度系数 电感模型参数 L 电感倍率因子 IL1 线性电流系数 IL2 二次电流系数 TC1 线性温度系数 TC2 二次温度系数 二极管模型参数 IS 饱和电流 RS 寄生串联电阻 N 发射系数 TT 渡越时间 CJO 零偏压PN结电容 VJ PN结自建电势 M PN结剃度因子 EG 禁带宽度 XT1 IS的温度指数 FC 正偏耗尽层电容系数 BV 反向击穿电压(漆点电压) IBV 反向击穿电流(漆点电流) KF 闪烁躁声系数 AF 闪烁躁声指数 双极晶体管(三极管)IS 反向饱和电流 BF 正向电流放大系数 NF 正向电流发射系数 VAF(VA)正向欧拉电压 IKF (IK)正向漆点电流 ISE(C2) B-E漏饱和电流 NE B-E漏饱和电流

BR 反向电流放大系数 NR 反向电流发射系数 VAR(VB)正想欧拉电压 IKR 反向漆点电流 ISS NS ISC C4 B-C 漏饱和电流 NC B-C漏发射系数 RB基极体电阻 IRB 基极电阻降致RBM/2时的电流 RE 发射区串联电阻 RC 集电极电阻 CJE 零偏发射结PN结电容 VJE发射结电压 MJE ME 集电结剃度因子 TF 正向渡越时间 XTF TF随偏置变化的系数 VTF TF随VBC变化的电压参数 ITF 影响TF的大电流参数 PTF 在 F=1/(2派TF)Hz时超前相移 CJC 零偏衬底结PN结电容 VJC PC 集电结内建电势 MJC MC 集电结剃度因子 XCJC Cbe 接至内部Rb的内部 TR 反向渡越时间 CJS CCS 零偏衬底结PN结电容 VJS PS 衬底结构PN结电容 MJS MS 衬底结剃度因子 XCJS XTB BF和BR的温度系数 EG 禁带宽度 XTI(PT) IS的温度效应指数 KF I/F躁声系数 AF I/F躁声指数 FC 正偏势垒电容系数 RCO VO QCO 由于参数太多,占时先编写到双极晶体管,改天在继续编写

S参数精讲

S参数测量是射频设计过程中的基本手段之一。S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。在有源和无源电路设计和分析中经常会用到S参数。 S参数是RF工程师/SI工程师必须掌握的内容,业界已有多位大师写过关于S 参数的文章,即便如此,在相关领域打滚多年的人,可能还是会被一些问题困扰着。你懂S参数吗? 请继续往下看...台湾同行图文独特讲解! 1、简介:从时域与频域评估传输线特性 良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。 S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示。

S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为V NA port也是50奥姆终端。所以,reference impedance of port的定义不同时,S参数值也不同,即S参数是基于一指定的port Zo条件下所得到的。 2. 看一条线的特性:S11、S21 看一条线的特性:S11、S21 如下图所示,假设port1是讯号输入端,port2是讯号输出端 S11表示在port 1量反射损失(return loss),主要是观测发送端看到多大的的讯号反射成份;值越接近0越好(越低越好,一般-25~-40dB),表示传递过程反射(reflection)越小,也称为输入反射系数(Input Reflection Coefficient)。

S21表示讯号从port 1传递到port 2过程的馈入损失(insertion loss),主要是观测接收端的讯号剩多少;值越接近1越好(0dB),表示传递过程损失(loss)越小,也称为顺向穿透系数(Forward Transmission Coefficient)。 3、看两条线的相互关系:S31、S41 虽然没有硬性规定1、2、3、4分别要标示在线哪一端,但[Eric Bogatin大师]建议奇数端放左边,且一般表示两条线以上cross-talk交互影响时,才会用到S31。以上图为例,S31意指Near End Cross-talk (NEXT),S41意指Far End Cross-talk (FEXT). 4、看不同模式的讯号成份:SDD、SCC、SCD、SDC 以上谈的都是single ended transmission line (one or two line),接着要谈differential pair结构。

导入spice模型方法

我从器件厂商那儿得到的spice模型文件是:T506.TXT *************************************************************** * SIEMENS Discrete & RF Semiconductors * GUMMEL-POON MODEL CHIP PARAMETERS IN SPICE 2G6 SYNTAX * V ALID UP TO 6 GHZ * >>> T506 <<< (CHIP) * Extracted by SIEMENS Semiconductor Group HL HF SI CDB * (C) 1998 SIEMENS AG * Version 1.0 December 1998 *************************************************************** .MODEL T506 NPN( + IS =1.5E-17 NF =1 NR =1 + ISE=2.5E-14 NE =2 ISC=2E-14 + NC =2 BF =235 BR =1.5 + V AF=25 V AR=2 IKF=0.4 + IKR=0.01 RB =11 RBM=7.5 + RE =0.6 RC =7.6 CJE=2.35E-13 + VJE=0.958 MJE=0.335 CJC=9.3E-14 + VJC=0.661 MJC=0.236 CJS=0 + VJS=0.75 MJS=0.333 FC=0.5 + XCJC=1 TF=1.7E-12 TR=5E-08 + XTF=10 ITF=0.7 VTF=5 + PTF=50 XTB=-0.25 XTI=0.035 + EG=1.11) *************************************************************** 在ads中新建一个schematic,选择file,选择import,就是上面贴得图了!

S参数详解

电子元器件S参数的含义和用途 在进行射频、微波等高频电路设计时,节点电路理论已不再适用,需要采用分布参数电路的分析方法,这时可以采用复杂的场分析法,但更多地时候则采用微波网络法来分析电路,对于微波网络而言,最重要的参数就是S参数。在个人计算机平台迈入GHz阶段之后,从计算机的中央处理器、显示界面、存储器总线到I/O接口,全部走入高频传送的国度,所以现在不但射频通信电路设计时需要了解、掌握S参数,计算机系统甚至消费电子系统的设计师也需要对相关知识有所掌握。 S参数的作用S参数的由来和含义 在低频电路中,元器件的尺寸相对于信号的波长而言可以忽略(通常小于波长的十分之一),这种情况下的电路被称为节点(Lump)电路,这时可以采用常规的电压、电流定律来进行电路计算。其回路器件的基本特征为: ●具体来说S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。 ●针对射频和微波应用的综合和分析工具几乎都许诺具有用S参数进行仿真的能力,这其中包括安捷伦公司的ADS(Advanced Design System),ADS被许多射频设计平台所集成。 ●在进行需要较高频率的设计时,设计师必须利用参数曲线以及预先计算的散射参数(即S-参数)模型,才能用传输线和器件模型来设计所有物理元件。 ○电阻:能量损失(发热) ○电容:静电能量 ○电感:电磁能量 但在高频微波电路中,由于波长较短,组件的尺寸就无法再视为一个节点,某一瞬间组件上所分布的电压、电流也就不一致了。因此基本的电路理论不再适用,而必须采用电磁场理论中的反射及传输模式来分析电路。元器件内部电磁波的进行波与反射波的干涉失去了一致性,电压电流比的稳定状态固有特性再也不适用,取而代之的是“分布参数”的特性阻抗观念,此时的电路被称为分布(Distributed)电路。分布参数回路元器件所考虑的要素是与电磁波的传送与反射为基础的要素,即: ○反射系数 ○衰减系数 ○传送的延迟时间 分布参数电路必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。微

[VIP专享]基于Multisim的三极管放大电路仿真分析

基于Multisim的三极管放大电路仿真分析 来源:大比特半导体器件网 引言 放大电路是构成各种功能模拟电路的基本电路,能实现对模拟信号最基本的处 理--放大,因此掌握基本的放大电路的分析对电子电路的学习起着至关重要的作 用。三极管放大电路是含有半导体器件三极管的放大电路,是构成各种实用放大 电路的基础电路,是《模拟电子技术》课程中的重点内容。 在课程学习中,一再向学生强调,放大电路放大的对象是动态信号,但放大电 路能进行放大的前提是必须设置合适的静态工作点,如果静态工作点不合适,输 出的波形将会出现失真,这样的“放大”就毫无意义。什么样的静态工作点是 合适的静态工作点;电路中的参数对静态工作点及动态输出会产生怎样的影响;正常放大的输出波形与失真的输出波形有什么区别;这些问题单靠课堂上的推理 及语言描述往往很难让学生有一个直观的认识。 在课堂教学中引入Multisim仿真技术,即时地以图形、数字或曲线的形式 来显示那些难以通过语言、文字表达令人理解的现象及复杂的变化过程,有助于 学生对电子电路中的各种现象形成直观的认识,加深学生对于电子电路本质的理 解,提高课堂教学的效果。实现在有限的课堂教学中,化简单抽象为具体形象, 化枯燥乏味为生动有趣,充分调动学生的学习兴趣和自主性。 1 Multisim 10 简介 Multisim 10 是美国国家仪器公司(NI公司)推出的功能强大的电子电路仿 真设计软件,其集电路设计和功能测试于一体,为设计者提供了一个功能强大、 仪器齐全的虚拟电子工作平台,设计者可以利用大量的虚拟电子元器件和仪器仪 表,进行模拟电路、数字电路、单片机和射频电子线路的仿真和调试。 Multisim 10 的主窗口如同一个实际的电子实验台。屏幕中央区域最大的窗 口就是电路工作区,电路工作窗口两边是设计工具栏和仪器仪表栏。设计工具栏 存放着各种电子元器件,仪器仪表栏存放着各种测试仪器仪表,可从中方便地选 择所需的各种电子元器件和测试仪器仪表在电路工作区连接成实验电路,并通过 “仿真”菜单选择相应的仿真项目得到需要的仿真数据。 2 三极管放大电路的仿真分析

SNP基因型分析

Powerful, Proven Chemistry Whether your genotyping studies require targeted detection of essential SNPs, or the flexibility for choosing SNPs for mapping, TaqMan SNP Genotyping Assays are the technology of choice. Proven TaqMan probes, which incorporate minor groove binder (MGB) technology at the 3’ end, deliver superior allelic discrimination. The MGB molecule binds to the minor groove of the DNA helix, improving hybridization-based assays by stabilizing the MGB-probe/template complex. The increased binding stabilization permits the use of probes as short as 13 bases TaqMan ? SNP Genotyping Assays TaqMan ? SNP Genotyping Assays from Applied Biosystems provide a highly flexible technology for detection of poly-morphisms within any genome. With the simplest workflow available, TaqMan ? Assays are the quickest way to generate genotyping data. Based on powerful TaqMan ? probe and primer chemistry and designs, and coupled to dependable Applied Biosystems instruments and software, these Made-to-Order assays produce high-confidence results. These TaqMan Assays are ideal for genotyping applications including screening, associa-tion, candidate region, candidate gene, or fine-mapping studies. Content-rich marker-selection tools simplify study design and help you select from a library of human and mouse assays. This library includes over 4.5 million genome-wide human assays (of which 3.5 million are HapMap SNP-based assays, 160,000 are validated assays, and over 70,000 are coding region assays) and 10,000 mouse assays. We also offer over 2,600 Inventoried Drug Metabolism Genotyping Assays. Additionally, Custom TaqMan ? SNP Genotyping Assays let you create your own confidential assays by submitting target SNP sequences for any genome. Let TaqMan SNP Genotyping Assays accelerate the pace of your discovery by eliminating time-consuming experimental design and optimization. Figure 1. Allelic discrimination is achieved by the selective annealing of TaqMan ? MGB probes.

multisim中有关元器件参数的中英文对照

电阻模型参数 R 电阻倍率因子 TC1 线性温度系数 TC2 二次温度系数 电容模型参数 C 电容倍率因子 VC1 线性电压系数 VC2 二次电压系数 TC1 线性温度系数 TC2 二次温度系数 电感模型参数 L 电感倍率因子 IL1 线性电流系数 IL2 二次电流系数 TC1 线性温度系数 TC2 二次温度系数 二极管模型参数 IS 饱和电流 RS 寄生串联电阻 N 发射系数 TT 渡越时间 CJO 零偏压PN结电容 VJ PN结自建电势 M PN结剃度因子 EG 禁带宽度 XT1 IS的温度指数 FC 正偏耗尽层电容系数 BV 反向击穿电压(漆点电压)IBV 反向击穿电流(漆点电流)KF 闪烁躁声系数 AF 闪烁躁声指数 双极晶体管(三极管) IS 传输饱和电流 EG 禁带宽度 XTI(PT)IS的温度效应指数BF 正向电流放大系数 NF 正向电流发射系数 VAF(VA)正向欧拉电压 IKF (IK)正向漆点电流 ISE(C2)B-E漏饱和电流 NE B-E漏饱和电流 BR 反向电流放大系数 NR 反向电流发射系数 VAR(VB)正想欧拉电压

IKR 反向漆点电流 ISC C4 B-C 漏饱和电流 NC B-C漏发射系数 RB 零偏压基极电阻 IRB 基极电阻降致RBM/2时的电流RE 发射区串联电阻 RC 集电极电阻 CJE 零偏发射结PN结电容 VJE PE 发射结内建电势 MJE ME 集电结剃度因子 CJC 零偏衬底结PN结电容 VJC PC 集电结内建电势 MJC MC 集电结剃度因子 XCJC Cbe 接至内部Rb的内部 CJS CCS 零偏衬底结PN结电容 VJS PS 衬底结构PN结电容 MJS MS 衬底结剃度因子 FC 正偏势垒电容系数 TF 正向渡越时间 XTF TF随偏置变化的系数 VTF TF随VBC变化的电压参数 ITF 影响TF的大电流参数 PTF 在F=1/(2派TF)Hz时超前相移TR 反向渡越时间 XTB BF和BR的温度系数 KF I/F躁声系数 AF I/F躁声指数

部分常见三极管参数大全

部分常见三极管参数大全[1] 晶体管型号反压Vbe0电流IC m功率PCM放大系数特征频率管子类型2SA1012Y 60V 5A 25W * * PNP 2SC752G 40V 0.2A 0.2W * * NPN 2SA1013R 160V 1A 0.9W * * PNP 2SA933S 50V 0.1A 0.9W * * PNP BF324 30V 0.26A 0.25W * * PNP BD941F 120V 3A 19W * * NPN BC636 45V 1A 0.8W * * PNP 2SD1480 80V 4A 25W * * NPN 2SC3271 300V 0.1A 5W * * NPN 2SC2688 300V 0.2A 10W * * NPN 2SC1875 50V 0.15A 0.4W * * NPN 2SA1175H 50V 0.1A 0.3W * * PNP 2SD1138C 150V 2A 30W * * NPN 2SB882 60V - 1.7W * * PNP 2SC2377 20V 0.015A 0.2W * * NPN 晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型 IRFU020 50V 15A 42W * * NMOS场效应IR FP G42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型

S 文件格式详解

S19文件格式详解 1.概述 为了在不同的计算机平台之间传输程序代码和数据,摩托罗拉将程序和数据文件以一种可打印的格式(ASCII格式)编码成s格式文件。 S-record格式文件是Freescale CodeWarrior编译器生成的后缀名为.S19的程序文件,S格式文件是Freescale推荐使用的标准文件传送格式。编译完成之后,Freescale CodeWarrior编译器将在bin文件夹下自动生成“*.abs.s19”文件,这个文件包含最终下载带单片机中的所有内容。 是一段直接烧写进MCU的ASCII码,英文全称问Motorola format for EEPROM programming。 2.格式定义及含义 S-record每行最大是78个字节,156个字符。 S格式文件中的每一行称为一个S记录,每个S记录由记录类型、记录长度、存储地址、代码/数据、校验和5个部分组成。 每字节数据被编码成2个16进制字符,第一个字符代表数据的高四位,第二个字符代表数据的低4位。 5个部分具体内容如下: 记录类型/ 记录长度/ 存储地址/ (代码/数据) / 校验和 记录类型: 2个字符(即1个字节),用来描述记录的类型。记录供定义了8种类型: S0:S格式文件的第一个记录,表示文件名(含路径),存储地址部分没有使用,以0000置位。此记录表示记录的开始,无需下载到MCU。 S1: 地址长度为2字节(4个字符)的记录。记录类型是“S1”(0x5331)。地址场由2个字节地址来说明。数据场由可载入的数据组成。 S2: 地址长度为3字节的记录。记录类型是“S2”(0x5332)。地址场由3个字节地址来说

三极管参数表

|常用三极管参数表 下表是常用三极管的一些参数以及替换型号器件型号电压电流代换型号 3DG9011 50V 2N4124 CS9011 JE9011 9011 50V LM9011 SS9011 9012 40V LM9012 9012(HH) 40V SS9012 9012LT1 40V A1298 3DG9013 40V CS9013 JE9013 & 9013 40V LM9013 9013(HH) 40V SS9013 9013LT1 40V C3265 3DG9014 50V CS9014 JE9014 9014 50V LM9014 SS9014 9014LT1 50V C1623 9015 50V LM9015 SS9015 TEC9015 50V BC557 2N3906 TEC9015A 50V BC557 2N3906 TEC9015B 50V BC557 2N3906 [

TEC9015C 50V BC557 2N3906 3DG9016 30V JE9016 9016 30V SS9016 TEC9016 40V BF240 BF254 BF594 8050 40V SS8050 8050LT1 40V KA3265 ED8050 50V BC337 SDT85501 60V 10A 3DK104C SDT85502 80V 10A 3DK104C SDT85503 100V 10A 3DK104D ~ SDT85504 140V 10A 3DK104E SDT85505 170V 10A 3DK104F SDT85506 60V 10A 3DK104C SDT85507 80V 10A 3DK104C SDT85508 100V 10A 3DK104D SDT85509 140V 10A 3DK104E ED8550 50V BC337 8550 40V LM8550 SS8550 8550LT1 40V KA3265 2SA1015 50V BC177 BC204 BC212 BC213 BC251 BC257 BC307 BC512 BC557 CG1015 CG673 ¥

Multisim仿真应用手册_92309562

电子电路仿真应用手册 2009年6月 前言 本手册基于Multisim V7仿真环境,从最基本的仿真电路图的建立开始,结合实际的例子,对模拟和数字电路中常用的测试方法进行介绍。这些应用示例包括:常用半导体器件特性曲线的测试、放大电路静态工作点和动态参数的测试、电压传输特性的测试、波形上升时间的测试、逻辑函数的转换与化简、逻辑分析仪的使用方法等。 更高版本的Multisim仿真环境与之类似。此外,本手册侧重于测试方法的介绍,仅对主要步骤进行说明,如碰到更细节的问题,可参阅《Multisim V7教学版使用说明书》或其它帮助文档。 目录 1 Multisim主界面简介 (2) 2仿真电路图的建立 (2) 3常用半导体器件特性曲线的测试方法 (3) 3.1 晶体三极管特性曲线的测试 (3) 3.1.1 IV分析仪测试方法 (3) 3.1.2 直流扫描分析方法 (3) 3.2 结型场效应管特性曲线的测试 (4) 3.2.1 IV分析仪测试方法 (4) 3.2.2 直流扫描分析方法 (4) 3.3 二极管、稳压管伏安特性曲线的测试 (5) 4放大电路静态工作点的测试方法 (5) 4.1 虚拟仪器测试方法 (5) 4.2 静态工作点分析方法 (5) 5放大电路动态参数的测试方法 (6) 5.1 电压放大倍数的测试 (6) 5.1.1瞬态分析测试方法 (6) 5.1.2虚拟仪器测试方法 (6) 5.2 输入电阻的测试 (6) 5.3 输出电阻的测试 (7) 5.4频率响应的测试 (7) 5.4.1交流分析方法 (7) 5.4.2 波特图仪测试方法 (7) 6电压传输特性的测试方法 (8) 7上升时间的测试方法 (9) 8逻辑函数的转换与化简 (10) 8.1 逻辑函数转换为真值表 (10) 8.2 真值表转换为逻辑函数 (10) 9逻辑分析仪的使用方法 (11)

相关文档