文档库 最新最全的文档下载
当前位置:文档库 › ad620用法介绍以及典型电路连接要点

ad620用法介绍以及典型电路连接要点

ad620用法介绍以及典型电路连接要点
ad620用法介绍以及典型电路连接要点

单片仪表放大器

为了满足对更容易应用的仪表放大器的需求,ADI公司研发出单片IC仪表放大器。这些IC包含对如前所述的三运放和双运放仪表放大器电路的改进,同时提供激光微调的电阻器和其它有益於单片IC的技术。由於有源器件和无源器件现在都在同一颗管芯内,所以它们能够精密匹配——这保证了器件提供高CMR。另外,这些器件在整个温度范围内保持匹配,从而保证了在宽温度范围内优良的性能。

IC技术(例如,激光晶圆微调)能够使单片集成电路调整到极高精度并且提供低成本、高量产。单片仪表放大器的另一个优点是它们可以采用尺寸极小、成本极低的SOIC或MSOP封装,适合用於高量产。表1提供一个ADI公司仪表放大器性能快速一览表。

图1. AD8221原理图

一、采用仪表放大器还是差分放大器

尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。

差分放大器本质上是一个运放减法器,通常使用大阻值输入电阻器。电阻器通过限制放大器的输入电流提供保护。它们还将输入共模电压和差分电压减小到可被内部减法放大器处理的范围。总之,差分放大器应当用於共模电压或瞬态电压可能会超过电源电压的应用中。

与差分放大器相比,仪表放大器通常是带有两个输入缓冲放大器的运放减法器。当总输入共模电压加上输入差分电压(包括瞬态电压)小於电源电压时,应当使用仪表放大器。在最高精度、最高信噪比(SNR)和最低输入偏置电流(IB)是至关重要的应用中,也需要使用仪表放大器。

二、单片仪表放大器内部描述

1、高性能仪表放大器

ADI公司於1971年推出了第一款高性能单片仪表放大器AD520,2003年推出AD8221。这款仪表放大器采用超小型MSOP封装并且在高於其它同类仪表放大器的带宽内提供增加的CMR。它还比工业标准AD620系列仪表放大器有很多关键的性能提高。

图2. AD8221的引脚排列

AD8221是一种基於传统的三运放结构的单片仪表放大器(见图1)。输入三极管Q1和Q2在恒定的电流条件下被偏置以便任何差分输入信号都使A1和A2的输出电压相等。施加到输入端的信号产生一个通过RG、R1和R2的电流以便A1和A2的输出提供正确的电压。从电路结构上,Q1、A1、R1和Q2、A2、R2可视为精密电流反馈放大器。放大的差分信号和共模信号施加到差分放大器A3,它抑制共模电压,但会处理差分电压。差分放大器具有低输出失调电压和低输出失调电压漂移。经过激光微调的电阻器允许高精密仪表放大器具有增益误差典型值小於20ppm并且CMR超过90dB(G=1)。

图3. AD8221的CMR与频率的关系

图4. AD8221的闭环增益与频率的关系

图5. AD620原理图

图6. AD620的闭环增益与频率的关系

AD8221使用超β输入三极管和一个IB补偿电路,它可提供极高的输入阻抗,低IB,低失调电流(IOS),低IB漂移,低输入IB噪声,以及8nV/(Hz)1/2极低电压噪声。

AD8221的增益公式为∶

AD8221采用精心设计以保证用户能够使用一苹外部的标准阻值的电阻器很容易和精确地设置

增益。

由於AD8221的输入放大器采用电流反馈结构,所以它的增益带宽乘积可以随增益提高,从而构成一个在提高增益时没有电压反馈结构的带宽降低的系统。

为了甚至在低输入信号幅度条件下也能保持精密度,对AD8221的设计和布线采用了特别细心的考虑,因而能使仪表放大器的性能满足甚至要求最严格的应用(见图3和图4)。

AD8221采用独特的引脚排列使其达到无与伦比的CMR技术指标,在10kHz(G = 1)条件下为80dB,在1kHz(G = 1000)条件下为110dB。平衡的引脚排列,如图2所示,减少了过去对CMR性能有不利影响的寄生效应。另外,新的引脚排列简化了PCB布线,因为相关的印制线都分组靠近在一起。例如,增益设置电阻器引脚与输入引脚相邻,并且参考脚靠近输出引脚。

多年来,AD620已经成为工业标准的高性能、低成本的仪表放大器。AD620是一种完整的单片仪表放大器,提供8引脚DIP和SOIC两种封装。用户使用一苹外部电阻器可以设置从1到1,000任何要求的增益。按照设计要求,增益10和100需要的电阻值是标准的1%金属膜电阻值。

AD620(见图5)是传统AD524仪表放大器的第二代产品并且包含一个改进的传统三运放电路。经过激光微调的片内薄膜电阻器R1和R2,允许用户仅使用一苹外部电阻器便可将增益精确设置到100,最大误差在±0.3%之内。单片结构和激光晶圆微调允许电路元器件的精密匹配和跟踪。

图7. AD620的CMR与频率的关系

图8. AD620的增益非线性(G=100, RL=10kΩ,垂直刻度: 100μV=10ppm, 水平刻度2V/div)

图9. AD620的小信号脉冲响应(G=10,RL=2kΩ,CL=100pF)

图10. AD621原理图

由Q1和Q2构成的前置放大器级提供附加的增益前端。通过Q1-A1-R1环路和Q2-A2-R2环路反馈使通过输入器件Q1和Q2的集电极电流保持恒定,由此使输入电压加在外部增益设置电阻器RG的两端。这就产生一个从输入到A1/A2输出的差分增益G,G=(R1+R2)/RG+1。单元增益减法器A3消除了任何共模信号,并产生一个相对於REF引脚电位的单端输出。

RG的值还决定前置放大器级的跨导。为了提供增益而减小RG时,前置放大器级的跨导逐渐增加到相应输入三极管的跨导。这有三个主要优点。第一,随著设置增益增加,开环增益也随著增

加,从而降低了增益相对误差。第二,(由C1、C2和前置放大器跨导决定的)增益带宽乘积随著设置的增益一起增加,因而优化了放大器的频率响应。图6示出AD620的闭环增益与频率的关系。

AD620还在宽频率范围内具有优良的CMR,如图7所示。图8和图9分别示出AD620的增益非线性和小信号脉冲响应。

第三,输入电压噪声减少到9nV(Hz)1/2,主要由输入器件的集电极电流和基极电阻决定的。

内部增益电阻器R1和R2的阻值已经调整到24.7kΩ,从而允许只利用一苹外部电阻器便可精确

地设置增益。增益公式为∶

这,电阻器RG以kΩ为单位。

选择24.7kΩ阻值是以便於可使用标准1%电阻器设置最常用的增益。

AD621与AD620类似,只是设置10和100倍增益的增益电阻器已经集成在芯片内——无需使用外部电阻器。选择100倍增益只需要一个外部跨接线(在引脚1和8之间)。对於10倍增益,断开引脚1和引脚8。它在规定温度范围内提供优良的增益稳定性,因为片内增益电阻跟踪反馈电阻的温度系数(TC)。图10是AD621的原理图。AD621具有0.15%最大总增益误差和±5ppm/℃增益漂移,它比AD620的片内精度高出许多。

图11. AD621的CMR与频率的关系

图12. AD621的闭环增益与频率的关系

AD621也可使用一苹外部增益电阻设置在10和100之间的增益,但增益误差和增益温度漂移会变坏。使用外部电阻器设置增益公式为∶G=(R1+R2)/RG+1

图11和图12分别示出AD621的CMR与频率的关系以及闭环增益与频率的关系。图13和图14分别示出AD621的增益非线性和小信号脉冲响应。

图13. AD621的增益非线性(G=10, RL=10kΩ,垂直刻度∶100μV/div=100ppm/div,水平刻度

2V/div)

图14. AD621的小信号脉冲响应(G=10,RL=2kΩ,CL=100pF)

图15. AD8225原理图

2、固定增益仪表放大器

AD8225是一种增益为5的精密单片仪表放大器。图15示出它是一个三运放仪表放大器。单位增益输入缓冲器由超βNPN三极管Q1和Q2以及运放A1和A2组成。这些三极管被补偿以使它们的输入偏置电流极低,典型值为100pA或更低。因此,电流噪声也很低,仅50fA/(Hz)1/2。输入缓冲器驱动一苹增益为5的差分放大器。因为3kΩ和15kΩ电阻是比率匹配的,所以增益稳定性在额定温度范围内优於5ppm/℃。

与通常的可变增益仪表放大器的单位增益补偿相比,AD8225具有宽增益带宽乘积,由於它被补偿到5 倍固定增益。AD8225创新的引脚排列也提高了高频性能。由於引脚1和8未用,所以引脚1可连接到引脚4。由於引脚4也是AC接地,所以平衡了引脚2和3上的寄生电容。

3、低成本仪表放大器

AD622是AD620的低成本版本(见图5)。AD622采用改进的生产方法以便以较低成本提供AD620的大多数性能。图18、图19和图20分别示出AD622的CMR与频率的关系,增益非线性以及闭环增益与频率的关系。

图16. AD8225的CMR与频率的关系

图17. AD8225的增益非线性

图18. AD622的CMR与频率的关系(RTI,0~1kΩ源阻抗不平衡)

图19. AD622的增益非线性(G=1,RL=10kΩ;垂直刻度∶2μV=2ppm)

图20. AD622的闭环增益与频率的关系

图21. AD623原理图

4、单电源仪表放大器

单电源仪表放大器有一些特殊的设计问题需要解决。输入级必须能够放大处於接地电位(或非常接近接地电位)的信号,并且输出级摆幅要能够接近地电位或电源电压,即高於地电位或低於电源电压几个毫伏(mV)。低电源电流也很重要。并且,当仪表放大器工作在低电源电压时,它需要有足够的增益带宽乘积、低失调电压漂移和优良的CMR与增益以及CMR与频率的关系。

AD623是一种在三运放仪表放大器电路基础上经过改进的仪表放大器以保证单电源或双电源工作,甚至能工作在共模电压或者低於负电源电压(或单电源工作时,低於接地电位)。其它特点包括R-R输出电压摆幅,低电源电流,超小型封装,低输入和输出失调电压,μV级DC失调电压漂移,高CMR,以及仅用一苹外部电阻器设置增益。

如图21所示,输入信号施加到PNP三极管作为电压缓冲器和DC电平移位器。在每个放大器(A1和A2)反馈路径中采用一苹精度调整到0.1%以内的50kΩ电阻器保证精确的增益设置。

差分输出为∶

这以kΩ为单位。

使用输出差分放大器,将差分电压转换为单端电压,也抑制了输入放大器输出端上的任何共模信号。

由於上述所有放大器的摆幅都能达到电源电压的任一端,并且它们的共模范围扩展到负电源电压以下,因而进一步提高了AD623的摆幅范围。

应当注意,不像双电源输入电流补偿的仪表放大器(例如,AD620),Q1和Q2的基极电流直接流出输入端。由於这两个输入端(即Q1和Q2的基极)可工作在接地电位(即,0V或更准

确的说,低於接地电位200mV),所以为AD623提供输入电流补偿是不可能的。但是,AD623的输入偏置电流仍非常小∶最大值仅25nA。

图22. AD623的闭环增益与频率的关系

图23. AD623的CMR与频率的关系(VS=±5V)

图24. AD623的增益非线性(G=-10,50ppm/div)

图25. AD623的小信号脉冲响应(G=10,RL=10kΩ,CL=100pF)

图26. AD627原理图

图27. AD627的CMR与频率的关系

图28. AD627的闭环增益与频率的关系

图29 . AD627的增益非线性(VS=±2.5V,G=5,4ppm/垂直分格)

图30. AD627图的小信号脉冲响应(VS=±5V,G=+10,RL=20KΩ,CL=50pF,20μs/水平分

格,20mV/垂直分格)

引脚6上的输出电压是相对引脚5上的参考端电位测量的。参考端引脚的阻抗是100kΩ。内部ESD箝位二极管允许AD623的输入端、参考端、输出端和增益端安全地耐受高於或低於电源电压0.3V 的过压。对於所有增益,并且在开机或关机时都是这样。对於後一种情况尤其重要,因为信号源和仪表放大器可能是分开供电的。如果预期过压超过这个值,使用外部限流电阻器,应该限制流过这些二极管的电流到10mA。这些电阻器的阻值由仪表放大器的噪声幅度、电源电压以及所需要的过压保护确定。

当AD623的增益增加时,会减小它的带宽,因为A1和A2是电压反馈运算放大器。但是,AD623甚至在较高增益下,它仍有足够的带宽适合许多应用。

AD623的增益是通过引脚1和8之间的RG电阻器或由更精确的其它方法构成的阻抗进行设置的。图22示出AD623的增益与频率的关系。AD623使用0.1%~1%允许误差的电阻器经过激光微调以达到精确增益。

表2示出对应各种增益所需要的RG值。注意,对於G=1,RG两端不连接。对於任何任意的增益,RG可使用以下公式计算∶

RG=100 kΩ/(G-1)

图23示出AD623的CMR与频率的关系。注意在增益增加到100时还具有很高的CMR,并且当频率高达200Hz时,在很宽的频率范围内CMR仍然很高。这保证了电源共模信号(以及它们的谐波)的衰减。图24示出AD623的增益非线性。图25示出AD623的小信号脉冲响应。

5、低功耗、单电源仪表放大器

AD627是一种单电源、微功耗仪表放大器,它仅使用一苹外部电阻器可将增益配置在5和1,000之间。它采用3V~30V单电源提供R-R输出电压摆幅。它在3V电源工作条件下具有仅60μA(典型值)静态电源电流,其总功耗小於180μW。

图26是AD627的原理图。AD627是使用两个反馈环路构成的真正仪表放大器。它的通用特性类似於那些传统的双运放仪表放大器,并且可认为是双运放仪表放大器,但是其内部细节有些不同。

AD627采用改进的电流反馈电路,与内级前馈频率补偿电路耦合,因而在DC以上(特别是

50Hz~60Hz电源频率)的频率条件下具有比其它低功耗仪表放大器更好的共模抑制比(CMRR)。

如图26所示,A1与V1和R5连接构成一个完整的反馈环路,迫使流过Q1集电极电流恒定。假设此时不连接增益设置电阻器(RG)。电阻器R2和R1完成环路并且迫使A1的输出电压等於具有1.25(几乎精确)增益的反向端电压。由A2构成的几乎相同的反馈环路迫使一个电流流过Q2,它本质上与流过Q1的电流相同,并且A2也提供输出电压。当两个环路都平衡时,从同向端到VOUT的增益等於5,而从A1的输出到VOUT的增益等於-4。A1的反向端增益(1.25)乘以A2的增益(-4)使反向端和同向端的增益相等。

差模增益等於1+R4/R3,标称值为5,并且具有工厂调整过的0.01%最终精度(AD627B典型值)。增加一苹外部增益设置电阻器(RG)将增益提高(R4+R1)/RG。AD627的增益由以下公式给出∶从R1到R4的电阻器经过激光微调以保证它们的阻值尽可能接近增益公式中的绝对值。这保证了在所有实际增益条件下器件具有低增益误差和高CMR。

图27示出AD627的CMR与频率的关系。图28和图29分别示出AD627的增益与频率的关系以及增益非线性。AD627还具有优良的动态响应,如图30所示。

四、仪表放大器

各种非电量的测量,通常由传感器把它转换为电压(或电流)信号,此电压信号一般都较弱,最小的到0.1μV,而且动态范围较宽,往往有很大的共模干扰电压。因此,在传感器后面大都需要接仪表放大器,主要作用是对传感器信号进行精密的电压放大,同时对共模干扰信号进行抑制,以提高信号的质量。

由于传感器输出阻抗一般很高,输出电压幅度很小,再加上工作环境恶劣,因此,仪器放大器与一般的通用放大器相比,有其特殊的要求,主要表现在高输入阻抗,高共模抑制比、低失调与漂移、低噪声、及高闭环增益稳定性等。本节介绍几种由运算放大器构成的高共模抑制比仪表放大器

(一)同相串联差动放大器

图3-17为一同相串联差动放大器。电路要求两只运算放大器性能参数基本匹配,且在外接电阻元件对称情况下(即R 1=R 4,R 2=R 3),电路可获得很高的共模抑制比,此外还可以抵消失调及漂移误差电压的作用。

U i1

U i2

图3-17 同相串联差动放大器

该电路的输出电压由叠加原理可得

234341120)1()()1(i i V R R

R R V R R V ++-+

= 234134)1()1(i i V R R

V R R +++-=

=))(1(123

4i i V V R R

-+

从而求得差模闭环增益

3

41201R R

V V A A i i d +=-=

(二)同相并联差动放大器

图3-18为同相并联差动放大器。该电路与图3-17电路一样,仍具有输入阻抗高、直流效益好、零点漂移小、共模抑制比高等特点,在传感器信号放大中得到广泛应用。

U i1

U i2

图3-18 同相并联差动放大器

由图3-18可知:

7

2

122021101R V V I IR V V IR V V i i i i -=-=+= 将I 代入V 01,V 02可得

2717111721101)1()(

i i i i i V R R

R R V R R V V V V -+=-+= 17

2

722721202)21()(i i i i i V R R R R V R R V V V V -+=--=

()1235

7210102350)1()(i i V V R R R R R V V R R V -?++=-=

由此可得电路差模闭环增益

3

5

721)1(R R R R R A d ++

= 该电路若用一可调电位器代替R 7,可以调整差模增益A d 的大小。

该电路要求A 3 的外接电阻严格匹配,因为A 3放大的是A 1,A 2输出之差。电路的失调电压是由A 3引起的,降低A 3的增益可以减小输出温度漂移。 (三)增益线性可调差动放大器

图3-19是电压增益可线性调节的差动放大器。可以通过调节电位器R W 的线性刻度来直接读取电压增益,给使用带来很大的方便。

U i1

U i2

W

图3-19增益线性可调差动放大器

图3-19中,由叠加原理可得

1212

012

12i A V R R R V R R R V +=+=

054332434

0443302434V R R R R R V R R R V R R R V R R R V W

i B +-+=+++=

因V A =V B ,整理上两式,且当R 1=R 2=R 3=R 4时,输出电压

)(125

0i i W

V V R R V -=

电路闭环增益

5

R R A W

d =

可见,电路增益与RP W 成线性关系,改变R W 大小不影响电路的共模抑制比 (四)高共模抑制比差动放大器

前面讨论的电路中,没有考虑寄生电容、输入电容和输入参数不对称对抑制比的影响。当要求提高交流放大电路的共模抑制比时,这些影响就必须考虑。在检测和控制系统中,常用屏蔽电缆来实现长距离信号传输,信号线与屏蔽层之间有不可忽略的电容存在。习惯上采用屏蔽层接地的方法,这样该电容就成为放大器输入端对地的寄生电容,加上放大器本身的输入电容。如果差动放大器两个输入端各自对地的电容不相等,就会使电路的共模抑制比变坏,测量精度下降。

为了消除信号线与屏蔽层之间寄生电容的影响,最简单的方法是采用等电位屏蔽的措施,即不把电缆的屏蔽层接地,而是接到与输入共模信号相等的某等电位点上,亦即使电缆芯线与屏蔽层之间处于等电位,从而消除了共模输入信号在差动放大器两端形成的误差电压。如图3-20所示。

图3-20 高共模抑制比差动放大器

图中两只电阻R 0的连接点电位正好等于输入共模电压,将连接点电位通过A 4电压跟随器连到输入信号电缆屏蔽层上,使屏蔽层电位也等于共模电压。

参照同相并联差动放大器的分析可知

模拟电路的基本放大电路知识

1.2.1 模拟信号的放大 放大是最基本的模拟信号处理功能,它是通过放大电路实现的,大多数模拟电子系统中都应用了不同类型的放大电路。放大电路也是构成其他模拟电路,如滤波、振荡、稳压等功能电路的基本单元电路。 电子技术里的“放大”有两方面的含义: 一是能将微弱的电信号增强到人们所需要的数值(即放大电信号),以便于人们测量和使用;检测外部物理信号的传感器所输出的电信号通常是很微弱的,例如前面介绍的高温计,其输出电压仅有毫伏量级,而细胞电生理实验中所检测到的细胞膜离子单通道电流甚至只有皮安(pA,10-12A)量级。对这些能量过于微弱的信号,既无法直接显示,一般也很难作进一步分析处理。通常必须把它们放大到数百毫伏量级,才能用数字式仪表或传统的指针式仪表显示出来。若对信号进行数字化处理,则须把信号放大到数伏量级才能被一般的模数转换器所接受。 二是要求放大后的信号波形与放大前的波形的形状相同或基本相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。 某些电子系统需要输出较大的功率,如家用音响系统往往需要把声频信号功率提高到数瓦或数十瓦。而输入信号的能量较微弱,不足以推动负载,因此需要给放大电路另外提供一个直流能源,通过输入信号的控制,使放大电路能将直流能源的能量转化为较大的输出能量,去推动负载。这种小能量对大能量的控制作用是放大的本质。 针对不同的应用,需要设计不同的放大电路。 1.2.2 放大电路的四种模型 放大电路的一般符号如图1所示,为信号源电压,Rs为信号源内 阻,和分别为输入电压和输入电流,RL为负载电阻,和分别为输出电压和输出电流。在实际应用中,根据放大电路输入信号的条件和对输出信号的要求,放大电路可分为四种类型。 电压放大电路 如果只需考虑电路的输出电压和输出电压的关系,则可表达为 式中为电路的电压增益。前述炉温控制系统中对高温计输出电压信号的放大,就是使用了这种放大电路。 电流放大电路 若只考虑图1中放大电路的输出电流和输入电流的关系,则可表达为 式中为电流增益,这种电路称为电流放大电路。 互阻放大电路 当需要把电流信号转换为电压信号,如前述细胞电生理技术中,需要检测细胞膜离子通道的微弱电流时,则可利用互阻放大电路,其表达式为

运放差分放大电路

差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点: (1)A1和A2提高了差模信号与共模信号之比,即提高了信噪比; (2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比K CMRR 没有影响; (3)电路对共模信号几乎没有放大作用,共模电压增益接近零。 因为电路中R1=R2、 R3=R4、 R5=R6 ,故可导出两级差模总增益为: 3 5P 1p i2i1o vd R R R 2R R u u u A ???? ??+-=-= 通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10K Ω,要求匹配性好,一般用金属膜精密电阻,阻值可在10K Ω~几百K Ω间选择。则 A vd =(R P +2R 1)/R P 先定R P ,通常在1K Ω~10K Ω内,这里取R P =1K Ω,则可由上式求得R 1=99R P /2=49.5K Ω 取标称值51K Ω。通常R S1和R S2不要超过R P /2,这里选R S1= R S2=510,用于保护运放输入级。 A1和A2应选用低温飘、高K CMRR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试

典型差分放大电路

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 ()e s BE EE R 12R U V β++-

(1)差模信号输入时的动态分析 如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压 be s c s1o1s2s1o2o1id o ud r R R 22u u A +-==--== βv v v v v v

《电路分析基础》学习总结

《电路分析基础》学习总结 通过电路基础的学习,我们的科学思维能力,分析计算能力,实验研究能力和科学归纳能力有了很大的提高,为下学期我们学习电子技术打下了基础。 对于我们具体的学习内容,第一到第四章,主要讲了电路分析的基本方法,以及电路等效原理等,而后面的知识主要是建立在这四章的内容上的,可以说,学好前面这四章的内容是我们学习电路基础的关键所在。在这些基础的内容中又有很多是很容易被忽略的。对于第五章的内容,老师让我们自主讲解的方式加深了我们的印象,同时也让我们学会如何去预习,更好的把握重点,很符合自主学习的目的。至于第六章到第十章的内容则完全是建立在前四章的内容上展开的,主要就是学会分析电路图结构的方法,对于一二阶电路的响应问题,就是能分析好换路前后未变量和改变量,以及达到稳态时所求量的值。 对于老师上课方法的感想:首先感谢窦老师和杨老师的辛苦讲课,窦老师声音洪亮,讲课思路清晰,让我们非常受益,杨老师的外语水平让我们大开眼界,在中文教学中,我们有过自主学习的机会,也让大家都自己去讲台上讲课,加深了我们的印象,而且对于我们学习能力有很大提高,再是

老师讲课的思路,让我受益不凡,在这之中感受到学习电路的方法。在双语班的教学中,虽然外语的课堂让我们感觉很有难度,有的时候甚至看不懂ppt上的单词,临时上课的时候去查,但是老师上课时经典的讲解确实很有趣味,不仅外语水平是一定的锻炼,同时也是学习电路知识,感觉比起其他班的同学,估计这应该是一个特色点吧。 对于学习电路感想:学习电路,光上课听老师讲课那是远远不够的,大学的学习都是自主学习,没有老师的强迫,所以必须自己主动去学习,首先每次上完课后的练习,我觉得很有必要,因为每次上完课时都感觉听的很懂,看看书呢,也貌似都能理解,可是一到做题目就愣住了,要么是公式没有记住,要么是知识点不知道如何筛选,所以练习很重要,第二点,应该要反复回顾已经学过的内容,只有反复记忆的东西才能更深入,不然曾经学过的东西等到要用就全都忘记了,不懂得应该多问老师,因为我们是小班,这方面,老师给了我们足够的机会。 另外,我们电路分析基础的课程网站,里面的内容已经比较详实,内容更新也比较快,经常展示一些新的内容,拓宽了我们的视野。

一个硬件电子工程师应掌握二十种基本模拟电路

一个硬件电子工程师应掌握的二十种基本模拟电路一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用:与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 3、静态工作点的计算、电压放大倍数的计算 六、分压偏置式共射极放大电路 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 七、共集电极放大电路(射极跟随器)

1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。电路的输入和输出阻抗特点。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算 八、电路反馈框图 1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。 2、带负反馈电路的放大增益 九、二极管稳压电路

差分运放

差分接法:差分放大电路(图3.8a.4)的输入信号是从集成运放的反相和同相输入端引入,如果反馈电阻RF等于输入端电阻R1 ,输出电压为同相输入电压减反相输入电压,这种电路也称作减法电路。 图3.8a.4 差分放大电路 差分放大器 如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数

运算放大器的单电源供电方法 梦兰 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。 图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。

电路分析基础课程教学大纲

《电路分析基础B》课程教学大纲(56+0学时) 一、课程基本情况 二.课程性质与任务 《电路分析基础》是电类专业的一门重要的学科基础课。本课程的主要任务是研究电路的基本定理、定律、基本分析方法及应用。本课程的目标是使学生通过对本课程的学习,理解电路分析的基本概念,掌握其分析方法、定理和定律并能灵活应用于电路分析中,使学生在分析问题和解决问题的能力上得到培养和提高,为后续课程的学习奠定坚实的理论基础。 课程思政部分要求:在教学过程中融入爱国教育、社会责任、人生领悟、民族自信、感恩等多种育人要素,倡导科学研究中的科学精神、创新精神和工匠精神,实现教师和学生的知识、情感及价值等方面的共鸣。 三. 课程主要教学内容及学时分配

四.课程教学基本内容和基本要求 第一章基础知识( 5学时) [知识点]:电路分析基本变量(电流、电压和功率)的概念;线性电阻元件和独立源的定义及伏安关系;基尔霍夫电流定律和基尔霍夫电压定律;受控源。 [重点] 电流、电压、功率及参考方向的概念,电路的两类约束关系(元件约束和拓扑约束) [难点] 电流、电压真实方向与参考方向关系、关联非关联参考下功率计算及功率正负含义,受控源电路分析 [基本要求] 1、理解电路分析基本变量(电流、电压和功率)的概念;2、掌握线性电阻元件和独立源的定义及伏安关系;3、熟练掌握基尔霍夫电流定律和基尔霍夫电压定律;4、理解受控源的概念。 [实践与练习] 课后作业布置建议: 习题:1-1、1-2、1-3 、1-5、1-6、1-12、1-9、1-13、1-17 、1-30、1-31。 课程思政映射点:由电压、电流单位以物理学家伏特和安培名字命名,以及基尔霍夫21岁提出基尔霍夫定律,引导学生敬畏科学家、崇尚科学精神。 第二章等效变换分析法( 5学时) [知识点]:单口网络等效条件;实际电源的两种电路模型及其等效变换;无源和含源单口网络的等效化简;T~π等效变换。 [重点]:单口网络的等效条件,单口网络的等效化简方法;

电路分析基础学习总结

电路分析基础学习总结 通过电路基础的学习,我们的科学思维能力,分析 计算能力,实验研究能力和科学归纳能力有了很大的提高,为下学期我们学习电子技术打下了基础。 对于我们具体的学习内容,第一到第四章,主要讲 了电路分析的基本方法,以及电路等效原理等,而后面 的知识主要是建立在这四章的内容上的,可以说,学好 前面这四章的内容是我们学习电路基础的关键所在。在 这些基础的内容中又有很多是很容易被忽略的。对于第 五章的内容,老师让我们自主讲解的方式加深了我们的 印象,同时也让我们学会如何去预习,更好的把握重点,很符合自主学习的目的。至于第六章到第十章的内容则 完全是建立在前四章的内容上展开的,主要就是学会分 析电路图结构的方法,对于一二阶电路的响应问题,就 是能分析好换路前后未变量和改变量,以及达到稳态时 所求量的值。 对于老师上课方法的感想:首先感谢窦老师和杨老 师的辛苦讲课,窦老师声音洪亮,讲课思路清晰,让我 们非常受益,杨老师的外语水平让我们大开眼界,在中 文教学中,我们有过自主学习的机会,也让大家都自己 去讲台上讲课,加深了我们的印象,而且对于我们学习

能力有很大提高,再是老师讲课的思路,让我受益不凡,在这之中感受到学习电路的方法。在双语班的教学中, 虽然外语的课堂让我们感觉很有难度,有的时候甚至看 不懂ppt上的单词,临时上课的时候去查,但是老师上 课时经典的讲解确实很有趣味,不仅外语水平是一定的 锻炼,同时也是学习电路知识,感觉比起其他班的同学,估计这应该是一个特色点吧。 对于学习电路感想:学习电路,光上课听老师讲课 那是远远不够的,大学的学习都是自主学习,没有老师 的强迫,所以必须自己主动去学习,首先每次上完课后 的练习,我觉得很有必要,因为每次上完课时都感觉听 的很懂,看看书呢,也貌似都能理解,可是一到做题目 就愣住了,要么是公式没有记住,要么是知识点不知道 如何筛选,所以练习很重要,第二点,应该要反复回顾 已经学过的内容,只有反复记忆的东西才能更深入,不 然曾经学过的东西等到要用就全都忘记了,不懂得应该 多问老师,因为我们是小班,这方面,老师给了我们足 够的机会。 另外,我们电路分析基础的课程网站,里面的内容 已经比较详实,内容更新也比较快,经常展示一些新的 内容,拓宽了我们的视野。

模拟电子技术基础教案

《模拟电子技术基础》教案 1、本课程教学目的: 本课程是电气信息类专业的主要技术基础课。其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。 2、本课程教学要求: 1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。 2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。 3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。 4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。

3、使用的教材: 杨栓科编,《模拟电子技术基础》,高教出版社 主要参考书目: 康华光编,《电子技术基础》(模拟部分)第四版,高教出版社 童诗白编,《模拟电子技术基础》,高等教育出版社, 张凤言编,《电子电路基础》第二版,高教出版社, 谢嘉奎编,《电子线路》(线性部分)第四版,高教出版社, 陈大钦编,《模拟电子技术基础问答、例题、试题》,华中理工大学出版社,唐竞新编,《模拟电子技术基础解题指南》,清华大学出版社, 孙肖子编,《电子线路辅导》,西安电子科技大学出版社, 谢自美编,《电子线路设计、实验、测试》(二),华中理工大学出版社, 绪论 本章的教学目标和要求: 要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。 本章总体教学内容和学时安排:(采用多媒体教学) §1-1 电子系统与信号0.5 §1-2 放大电路的基本知识0.5

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

A2020350电路分析基础B(56+0)课程简介

《电路分析基础B》(56+0)课程简介 课程编号:A2020350 学时[学分]:56[3.5] 课程类型:必修课 先修课程:高等数学,工程数学,大学物理 适用专业:电子工程类;微电子科学与工程专业实验班; 集成电路工程类; 一、课程概述 《电路分析基础》是电类专业的一门重要的必修学科基础课。本课程的主要任务是研究电路的基本定理、定律、基本分析方法及应用。 二、课程目标 本课程的目标是使学生通过对本课程的学习,理解电路分析的基本概念,掌握其分析方法、定理和定律并能灵活应用于电路分析中,使学生在分析问题和解决问题的能力上得到培养和提高,为后续课程的学习奠定坚实的理论基础。 三、课程内容 本课程主要讲授以下几个方面的内容:基本概念、基本理论、基本分析方法。 1、基本概念:主要涉及⑴电路元件、无源元件(电阻、电感、电容、耦合电感、理想变压器)、有源元件(电压源、电流源和受控源);⑵电路与电路模型、稳态电路(直流稳态电路、正弦交流稳态电路)、动态电路(直流动态电路、交流动态电路);⑶电路分析中的基本物理量,如电压、电流、功率、能量、电荷、磁链。 2、基本理论:⑴两类约束关系:元件约束,描述元件自身的电压电流特性VAR;拓扑约束,描述与节点相连的各支路间电流关系的KCL和描述组成回路的各支路间电压关系的KVL。⑵网络定理。主要包括:叠加定理、替代定理、戴维南定理与诺顿定理、互易定理等。 3、基本分析方法。电路分析法中的分析方法大致可分为三类:⑴等效变换分析方法。如两种实际电源的等效变换,无源和含源单口网络的等效化简,电源转移法,T-∏等效变换;⑵列解网络方程分析法,也称电路的一般分析法。如支路电流法,节点分析法,回路分析法;⑶应用网络定理的分析法。常常将上述三种类型的方法进行综合、灵活运用。另外,动态电路分析中,还要涉及动态电路的时域经典分析法。 另外,在实践性教学方面,有配套的实验教学,有适合学院特点的自编实验教材。实现一人一组做实验。按大纲要求的实验开出率达100%,在保持一些必

二十个基本模拟电路

对模拟电路的掌握分为三个层次 初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。

计算谐振频率。 四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。

电路分析基础课程标准(120学时)

青海建筑职业技术学院 《电路分析基础》课程标准 适用专业:通信技术、电子信息工程技术(普大) 编写单位:信息技术系通信、电子教研室 编写人:蒋雯雯 审批:李明燕 编写日期:2007 年07月 修订日期:2011年03月

《电路分析基础》课程标准 学时数:120学时 适应专业:通信技术、电子信息工程技术(普大) 一、课程的性质、目的和任务 《电路分析基础》课程是我院普大“通信技术”和“电子信息工程技术”专业重要的技术基础课,它既是通信电子类专业课程体系中高等数学、物理学等科学基础课的后续课程,又是后续课程(如模拟电子技术、数字电子技术、信号与系统和电子测量仪器等)的基础,在整个人才培养方案和课程体系中起着承前启后的重要作用。 本课程理论严密、逻辑性强,有广阔的工程背景,是通信、电子类学生知识结构的重要组成部分。本课程系统地阐述了电路的基本概念、基本定律和基本的分析方法,是进一步学习其他专业课程必不可少的前期基础课程。本课程的任务是使学生掌握通信、电子类技术人员必须具备的电路基础理论、基本分析方法,掌握各种常用电工仪器、仪表的使用和简单的电工测量方法,为后续专业课的学习和今后踏入社会后的工程实际应用奠定基础。 二、课程教学目标和基本教学要求 教学目标:通过本课程的学习,逐步培养学生严肃、认真的科学作风和理论联系实际的工程观点,培养学生的科学思维能力、分析计算能力、实验研究能力和科学归纳能力。 1.知识目标: 简单直流电路分析、一阶电路的暂态分析、交流电路的分析与应用。

2.职业技能目标: 电路元器件的识别、测量能力;基本工具的使用能力;基本仪器的使用能力;电路图识图能力,并能在电工操作台上正确连接电路;能够对实际直流电路进行正确的操作、测量;直流电路的分析、计算及初步设计;能够对实际交流电路进行正确的操作、测量;交流电路的分析、计算及初步设计;动态电路的分析、计算及初步设计;安全用电能力。 3.职业素质养成目标 耐心细致的职业习惯的养成;规范操作习惯的养成;信息获取能力;团结协作精神的养成。 教学要求:本课程应适应电路内容的知识更新和课程体系改革的需要,着重介绍经典的电路分析方法,力求做到以应用为目的,以必需、够用为度,讲清概念,结合实际、强化训练,突出适应性、实用性和针对性;重点讲清基本概念和经典的电路分析方法,在例题和习题的选取上,适当淡化手工计算的技巧,并根据该课程具有较强的实践性的特点,在每章中引入计算机辅助分析与仿真测量,同时加入16个(包括5个选做)电路的实践操作实验,以达到理论与实践的结合和“教、学、做”的统一。 三、课程的教学目的、内容、重点和难点 第一章电路的基本概念与定律 教学目的: 1.了解实际电路、理想电路元件和电路模型的概念。 2.理解电路中的基本物理量-电流、电压和电功率的基本概念。 3.掌握电路的基本定律-欧姆定律、基尔霍夫定律。

电路基础分析知识点整理

电路分析基础 1.(1)实际正方向:规定为从高电位指向低电位。 (2)参考正方向:任意假定的方向。 注意:必须指定电压参考方向,这样电压的正值或负值才有意义。 电压和电位的关系:U ab=V a-V b 2.电动势和电位一样属于一种势能,它能够将低电位的正电荷推向高电位,如同水路中的水泵能够把低处的水抽到高处的作用一样。电动势在电路分析中也是一个有方向的物理量,其方向规定由电源负极指向电源正极,即电位升高的方向。 电压、电位和电动势的区别:电压和电位是衡量电场力作功本领的物理量,电动势则是衡量电源力作功本领的物理量;电路中两点间电压的大小只取决于两点间电位的差值,是绝对的量;电位是相对的量,其高低正负取决于参考点;电动势只存在于电源内部。 3. 参考方向 (1)分析电路前应选定电压电流的参考方向,并标在图中; (2)参考方向一经选定,在计算过程中不得任意改变。参考方向是列写方程式的需要,是待求值的假定方向而不是真实方向,因此不必追求它们的物理实质是否合理。 (3)电阻(或阻抗)一般选取关联参考方向,独立源上一般选取非关联参考方向。 (4) 参考方向也称为假定正方向,以后讨论均在参考方向下进行,实际方向由计算结果确定。 (5)在分析、计算电路的过程中,出现“正、负”、“加、减”及“相同、相反”这几个名词概念时,切不可把它们混为一谈。 4. 电路分析中引入参考方向的目的是为分析和计算电路提供方便和依据。应用参考方向时,“正、负”是指在参考方向下,电压和电流的数值前面的正、负号,若参考方向下一个电流为“-2A”,说明它的实际方向与参考方向相反,参考方向下一个电压为“+20V”,说明其实际方向与参考方向一致;“加、减”指参考方向下列写电路方程式时,各项前面的正、负符号;“相同、相反”则是指电压、电流是否为关联参考方向,“相同”是指电压、电流参考方向关联,“相反”指的是电压、电流参考方向非关联。 5.基尔霍夫定律 基尔霍夫定律包括结点电流定律(KCL)和回路电压(KVL)两个定律,是集总电路必须遵循的普遍规律。 中学阶段我们学习过欧姆定律(VAR),它阐明了线性电阻元件上电压、电流之间的相互约束关系,明确了元件特性只取决于元件本身而与电路的连接方式无关这一基本规律。 基尔霍夫将物理学中的“液体流动的连续性”和“能量守恒定律”用于电路中,总结出了他的第一定律(KCL);根据“电位的单值性原理”又创建了他的第二定律(KVL),从而解决了电路结构上整体的规律,具有普遍性。基尔霍夫两定律和欧姆定律合称为电路的三大基本定律。 6.几个常用的电路名词 1.支路:电路中流过同一电流的几个元件串联的分支。(m) 2.结点:三条或三条以上支路的汇集点(连接点)。(n) 3.回路:由支路构成的、电路中的任意闭合路径。(l) 4.网孔:指不包含任何支路的单一回路。网孔是回路,回路不一定是网孔。平面电路的每个网眼都是一个网孔。

模拟电路(基本概念和知识总揽)

模拟电路(基本概念和知识总揽) 1、基本放大电路种类(电压放大器,电流放大器,互导放大器和互阻放大器),优缺点,特别是广泛采用差分结构的原因。 2、负反馈种类(电压并联反馈,电流串联反馈,电压串联反馈和电流并联反馈);负反馈的优点(降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用) 3、基尔霍夫定理的内容是什么? 基尔霍夫定律包括电流定律和电压定律。 电流定律:在集总电路中,任何时刻,对任一节点,所有流出节点的支路电流代数和恒等于零。电压定律:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于零。 4、描述反馈电路的概念,列举他们的应用? 反馈,就是在电子系统中,把输出回路中的电量输入到输入回路中去。 反馈的类型有:电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。负反馈的优点:降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用。 电压(流)负反馈的特点:电路的输出电压(流)趋向于维持恒定。 5、有源滤波器和无源滤波器的区别? 无源滤波器:这种电路主要有无源元件R、L和C组成 有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。 集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 6、基本放大电路的种类及优缺点,广泛采用差分结构的原因。 答:基本放大电路按其接法的不同可以分为共发射极放大电路、共基极放大电路和共集电极放大电路,简称共基、共射、共集放大电路。 共射放大电路既能放大电流又能放大电压,输入电阻在三种电路中居中,输出电阻较大,频带较窄。常做为低频电压放大电路的单元电路。 共基放大电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射放

差分运放运算放大器

图3.8a.4 差分放大电路 差分放大器 如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数 运算放大器的单电源供电方法 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。 图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。 思考题(1)图3是一种增益为10、输入阻抗为10kΩ、低频响应近似为30Hz、驱动负载为1kΩ的单电源反相放大器电路。该电路的不失真输入电压的峰—峰值是多少呢?(提示:一般运算放大器的典型输入、输

A2020350电路分析基础B(56+0)课程考试大纲

《电路分析基础B》考试大纲(56+0学时) 一.课程编号:A2020350 二.课程类型:必修课 课程学时:(56+0)学时/3.5学分 适用专业:电子工程类;微电子科学与工程专业实验班; 集成电路工程类 先修课程:高等数学,工程数学,大学物理 三.概述 1、考试目的:考察学生对电路的基本概念、定理、定律、基本分析方法及应用掌握的程度是否达到教学大纲的要求。 2、考试基本要求: 考试试题涵盖教学大纲的基本内容;对基本概念、基本理论的掌握及基于基础知识的基本应用能力的考察75~85%,对基于该课程知识的掌握而具有的综合能力的考察占15%~25%。 基本要求如下: ①掌握电路的基本概念与基本定律; ②掌握等效变换分析法; ③掌握线性网络的一般分析方法和网络定理,并达到灵活应用程度; ④理解正弦交流电路的基本理论,掌握正弦交流电路的稳态分析; ⑤掌握直流一阶线性动态电路的时域分析; ⑥掌握含耦合电感和理想变压器电路分析; ⑦理解线性电路的频率响应特性,掌握RLC串、并联谐振电路的分析; ⑧掌握非正弦周期信号激励下电路的稳态分析。 3、考试形式:闭卷 四.考试内容及范围 ㈠电路基本概念 1、电压、电流及其参考方向,功率和能量,功率正负号的意义; 2、基尔霍夫电流定律和电压定律; 3、电阻元件,电压源,电流源和受控源; ㈡直流电阻性电路的分析 1、单口网络等效的条件,实际电源的两种电路模型及其等效互换,

无源和含源单口网络的等效化简; 2、线性电路的一般分析方法:节点分析法,回路分析法; 3、叠加定理,替代定理,戴维南定理,诺顿定理,电路的对偶性; ㈢动态电路的时域分析 1、电容元件和电感元件的伏安关系及主要性能; 2、换路定律和初始值的计算; 3、一阶电路微分方程的建立; 4、零输入响应、零状态响应和全响应的概念,全响应的分解; 5、直流一阶电路的三要素法; 6、阶跃函数与阶跃响应; 7、周期性矩形脉冲串作用下RC电路的响应; ㈣正弦稳态电路分析 1、正弦信号及其三参量,初相和相位差,有效值; 2、正弦信号的相量表示法;基尔霍夫定律的相量形式; 3、电阻、电容和电感元件的相量形式及相量模型,阻抗和导纳计算; 4、正弦稳态电路的相量分析法; 5、正弦稳态电路的平均功率(有功功率)、视在功率、功率因数、无 功功率,最大功率传递定理。 ㈤含耦合电感和理想变压器电路分析 1、耦合电感及其伏安关系,耦合系数和互感系数; 2、同名端,耦合电感的去耦等效电路,含耦合电感电路的分析; 3、空芯变压器电路分析,初、次级等效电路,反映阻抗; 4、理想变压器初、次级电压、电流关系及其阻抗变换性质,含理想变压器电路的 分析; ㈥线性电路的频率响应特性 1、正弦稳态电路的网络函数,幅频特性和相频特性,RC电路的频率特性; 2、RLC串、并联谐振电路的谐振条件、谐振特点、品质因数和通频 带; 3、非正弦周期信号作用下电路的稳态响应,周期信号的平均功率和 有效值的计算; 五.考试对象 所有必修本课程的学生 六、考试形式 本课程考试采用堂上闭卷形式。考试时间为120 分钟,评分采用百分制,总评成绩60分为及格线 七、成绩评定方法

电路分析基础知识归纳

《电路分析基础》知识归纳 一、基本概念 1.电路:若干电气设备或器件按照一定方式组合起来,构成电流的通路。 2.电路功能:一是实现电能的传输、分配和转换;二是实现信号的传递与处理。 3.集总参数电路近似实际电路需满足的条件:实际电路的几何尺寸l(长度)远小于电路 。 正常工作频率所对应的电磁波的波长λ,即l 4.电流的方向:正电荷运动的方向。 5.关联参考方向:电流的参考方向与电压降的参考方向一致。 6.支路:由一个电路元件或多个电路元件串联构成电路的一个分支。 7.节点:电路中三条或三条以上支路连接点。 8.回路:电路中由若干支路构成的任一闭合路径。 9.网孔:对于平面电路而言,其内部不包含支路的回路。 10.拓扑约束:电路中所有连接在同一节点的各支路电流之间要受到基尔霍夫电流定律的约 束,任一回路的各支路(元件)电压之间要受到基尔霍夫电压定律约束,这种约束关系与电路元件的特性无关,只取决于元件的互联方式。 U(直流电压源)或是一定的时间11.理想电压源:是一个二端元件,其端电压为一恒定值 S u t,与流过它的电流(端电流)无关。 函数() S 12.理想电流源是一个二端元件,其输出电流为一恒定值 I(直流电流源)或是一定的时间 S i t,与端电压无关。 函数() S 13.激励:以电压或电流形式向电路输入的能量或信号称为激励信号,简称为激励。 14.响应:经过电路传输处理后的输出信号叫做响应信号,简称响应。 15.受控源:在电子电路中,电源的电压或电流不由其自身决定,而是受到同一电路中其它 支路的电压或电流的控制。 16.受控源的四种类型:电压控制电压源、电压控制电流源、电流控制电压源、电流控制电 流源。 17.电位:单位正电荷处在一定位置上所具有的电场能量之值。在电力工程中,通常选大地 为参考点,认为大地的电位为零。电路中某点的电位就是该点对参考点的电压。 18.单口电路:对外只有两个端钮的电路,进出这两个端钮的电流为同一电流。 19.单口电路等效:如果一个单口电路N1和另一个单口电路N2端口的伏安关系完全相同, 则这两个单口电路对端口以外的电路而言是等效的,可进行互换。 20.无源单口电路:如果一个单口电路只含有电阻,或只含受控源或电阻,则为不含独立源 单口电路。就其单口特性而言,无源单口电路可等效为一个电阻。 21.支路电流法:以电路中各支路电流为未知量,根据元件的VAR和KCL、KVL约束关系, 列写独立的KCL方程和独立的KVL方程,解出各支路电流,如果有必要,则进一步计算其他待求量。 22.节点分析法:以节点电压(各独立节点对参考节点的电压降)为变量,对每个独立节点 列写KCL方程,然后根据欧姆定律,将各支路电流用节点电压表示,联立求解方程,求得各节点电压。解出节点电压后,就可以进一步求得其他待求电压、电流、功率。23.回路分析法:以回路电流(各网孔电流)为变量,对每个网孔列写KVL方程,然后根据

电路基础知识点总结

电路、电压、电流 1.在图4所示的电路中, 闭合开关S ,能用电压表测量L 1两端电压的正确电路是 2.如图9,L 是灯泡,且两 灯均正常发光,“○”处可以连接电流表、电压表测量电路中的电流、电压,以下说法中正确的是 A.a 为电流表,b 为电压表,c 为电流表 B.a 为电压表,b 为电压表,c 为电流表 C.a 为电流表,b 为电流表,c 为电压表 D.a 为电流表,b 为电流表,c 为电流表 3.观察图所示四个电路图,并请填空完成回答: 在图A 所示的电路中,电流表测 的是 的电流; 在图B 中电流表测的是 的电流;在图C 中的电路出现的错误是 ;在图D 中出现的错误是 。 4.在图14-16所示的几种电路中,电流表只测L 2电流的是( ) 5.在用电流表测通过电灯的电流时,如图14-25所示,电流表接线柱的选择方 法中正确的是( )。 A .b 接“3”,a 接“-” B .b 接“-”,a 接“3” C .b 接“-”,a 先试触“0.6” D .b 接“-”,a 先试触“3” 6.在图14-27中,能测出灯L 1两端电压的正确电路图是( ) 7.如图14-28所示的电路中,当开关S 合上时, 图4 图9 图14-16 图14-25 图14-27

电压表测的是( ) A .灯L 2两端电压 B .电源的电压 C .灯L l 两端的电压 D .灯L 2和电源两端的电压 8. 有一个同学在测量电压时用的是0~3V 的量程,但记录的读数却是6.5V ,则该同学实际测的电压值是 ( ) A .5V B .2.5V C. 1.3V D .11.5V 9.将电流表先后串联在图14-30中的a 、b 、c 三处,则表在何处读数最大?( ) A .a 处 B .b 处 C .c 处 D .无法确定 10.如图14-31所示的电路,电源电压为6V ,电压表V l 的示数为U l =1.5V ,则电压表V 2的示数U 2= 。 11.如图14-32所示的电路,电压表V l 的示数为 4.5V ,则电压表V 2的示数是 ,电源电压是 。 12.图14-34所示的电路中,闭合开关后电压表示数跟开关断开时的示数相比,将( )。 A .不变 B .增大 C .减小 D .无法确定 13.如图14-35所示的电路中,电压表测量的是( )。[1.0] A. 电灯两端的电压 B .电池组两端的电压 C .电池组和电灯两端的电压之和 D .电铃两端的电压 14.如图14-36所示的电路,当开关S 闭合时,电流表A 1测 的电流,电流表A 2测 的电流,电流表A 1的示数 电流表A 2的示数(填“大于”、“等于”或“小于”)。 15.如图14-60所示的电路,滑动变阻器的滑片向左移动时,若灯始终发光,则( ) A .灯变亮,电流表示数减小 B .灯变亮,电流表示数增大 C .灯变暗,电流表示数增大 D .灯变暗,电流表示数减小 16.一个滑动变阻器铭牌上标有“50Ω 1.5A ”的字样它的意义是( ) A .电阻的最小值是50Ω,允许通过的最大电流是1.5A B .电阻的最小值是50Ω,允许通过的最小电流是1.5A C .电阻的最大值是50Ω,允许通过的最小电流是1.5A 图14-30 图14-31 图14-32 图14-36 图14-34 图14-35 图14-37 图14-60

相关文档
相关文档 最新文档