文档库 最新最全的文档下载
当前位置:文档库 › 基于移动通信网络无线定位技术的原理及应用

基于移动通信网络无线定位技术的原理及应用

基于移动通信网络无线定位技术的原理及应用
基于移动通信网络无线定位技术的原理及应用

定位技术

无线传感器网络定位技术综述 文章出处:发布时间:2011/07/22 | 3934 次阅读| 9次推荐| 0条留言 业界领先的TEMPO评估服务高分段能力,高性能贴片保险丝专为OEM设计师和工程师而设计的产品Samtec连接器完整 的信号来源每天新产品时刻新 体验完整的15A开关模式电源 摘要:首先介绍无线传感器网络定位技术的相关术语、评价标准等基本概念及定位算法的分类方法;重点从基于测距和非测距两个方面介绍无线传感器网络的主要定位方法,并研究和分析若干新型无线传感器网络定位方法,主要包括基于移动锚节点的定位算法、三维定位算法和智能定位算法。从实用性、应用环境、硬件条件、供能及安全隐私等方面出发总结当前无线传感器网络定位技术存在问题并给出可行的解决方案后,展望未来的研究前景与应用发展趋势。 1 引言 无线传感器网络作为一种全新的信息获取和处理技术在目标跟踪、入侵监测及一些定位相关领域有广泛的应用前景。然而,无论是在军事侦察或地理环境监测,还是交通路况监测或医疗卫生中对病人的跟踪等应用场合,很多获取的监测信息需要附带相应的位置信息,否则,这些数据就是不确切的,甚至有时候会失去采集的意义,因此网络中传感器节点自身位置信息的获取是大多数应用的基础。首先,传感器节点必须明确自身位置才能详细说明“在什么位置发什么了什么事件”,从而实现对外部目标的定位和跟踪;其次,了解传感器节点的位置分布状况可以对提高网络的路由效率提供帮助,从而实现网络的负载均衡以及网络拓扑的自动配置,改善整个网络的覆盖质量。因此,必须采取一定的机制或算法来实现无线传感器网络中各节点的定位。 无线传感器网络定位最简单的方法是为每个节点装载全球卫星定位系统(GPS)接收器,用以确定节点位置。但是,由于经济因素、节点能量制约和GPS 对于部署环境有一定要求等条件的限制,导致方案的可行性较差。因此,一般只有少量节点通过装载GPS 或通过预先部署在特定位置的方式获取自身坐标。另外,无线传感器网络的节点定位涉及很多方面的内容,包括定位精度、网络规模、锚节点密度、网络的容错性和鲁棒性以及功耗等,如何平衡各种关系对于无线传感器网络的定位问题非常具有挑战性。可以说无线传感器网络节点自身定位问题在很大程度上决定着其应用前景。因此,研究节点定位问题不仅必要,而且具有很重要的现实意义。 2 WSN 定位技术基本概念 2.1 定位方法的相关术语 1)锚节点(anchors):也称为信标节点、灯塔节点等,可通过某种手段自主获取自身位置的节点; 2)普通节点(normal nodes):也称为未知节点或待定位节点,预先不知道自身位置,需使用锚节点的位置信息并运用一定的算法得到估计位置的节点; 3)邻居节点(neighbor nodes):传感器节点通信半径以内的其他节点; 4)跳数(hop count):两节点间的跳段总数; 5)跳段距离(hop diSTance):两节点之间的每一跳距离之和; 6)连通度(cONnectivity):一个节点拥有的邻居节点的数目; 7)基础设施(infrastructure):协助节点定位且已知自身位置的固定设备,如卫星基站、GPS 等。 2.2 定位方法的性能评价标准 无线传感器网络定位性能的评价标准主要分为7 种,下面分别进行介绍。

无线定位技术

无线定位技术: 现在的社会,是一个没有隐私的社会,只要有设备和条件,别人想跟踪你的位置实在是太简单了,不管是你在大街上走还是在商场里逛,只要上面想,你的行踪都很难不被暴露。好比我们看大片,罪犯在这边打电话,FBI在那边定位,唧唧几声,就把你的大概方位确定了。千万别以为这是什么高深技术,我们天朝网警照样玩的转。而且,随着网络越来越向智能化和移动化发展,一些很有意思的应用都可能和将来的定位技术联系起来,在一定程度上影响我们的生活,比如twitter,Aardvark,包括一些很有前途的mobile game,等等。 Google Latitude一出后, 很多朋友都惊诧于无gps条件下其定位的准确性,也有不少人因此对通过wifi定位比较感兴趣。其实各式各样的无线通信技术都可以用来定位,由于通信距离的不同,有的可以用来室内定位,有的可以用来室外定位。 这里,我尝试着对一些逐渐在普及的定位技术做一些讲解,考虑到GPS的普及性, GPS定位原理和优缺点就在这里忽略了。其实无线定位的流程很简单,大概都遵从交换信号===>数据融合===>建模求解的步骤。下面就针对不同技术的不同重点,把这个过程分割介绍。 手机基站网络 通过基站网络的检测来进行户外定位是一个相对成本低, 成熟, 但是精度不高 的方法. 它的工作原理是这样的, 我们都知道, 手机要通信, 就需要通过蜂窝 网络和一个个基站交换数据,从而实现和别的手机的通信. 而考虑到双方通信的距离和现实中基站的放置密度,每一个手机都可能被覆盖于多个基站,如果能通过某种方法得到每个基站对于手机的检测数据,通过特定的data fusion技术,就可以大致估算初当前手机的位置。在这里,data fusion是最关键的技术,事实上也是下面会介绍的大多数其他定位技术的基础,所以花多点篇幅介绍一下。为了简化,我们只考虑二维平面情况,也就是说每个点都只有(x,y)值, 不考虑z平面。 以前常用的data fusion技术包括TOA — time of arrival data fusion, AOA — angle of arrival data fusion, 以及混合型技术. 假设下面这张图是一个分布示意图, 图中出现的几个基站(Base Station)都能和当前手机, 也就是MS(Mobile Station)所在位置通信.

移动通信原理与系统-教学大纲

《移动通信》课程教学大纲 一、课程名称:(移动通信原理与系统) ( 32学时) 二、先修课程:通信原理、通信网基础 三、适用专业:通信工程专业 四、课程教学目的 本课程是通信工程本科专业课。移动通信是当今通信领域发展最快、应用最广和最前沿的通信技术。移动通信的最终目标是实现任何人可以在任何地点、任何时间与其他任何人进行任何方式的通信。移动通信技术包括了组网技术、多址技术、语音编码技术、抗干扰抗衰落技术、调制解调技术、交换技术以及各种接口协议和网管等等多方面的技术。因此从某种意义上可以说,移动通信系统汇集了当今通信领域内各种先进的技术。通过本课程的学习使学生了解和掌握移动通信的基本理论,了解和掌握移动通信的发展、蜂窝移动通信系统的基本概念、移动通信的信道、移动通信系统的调制和抗干扰技术、语音编码技术、移动通信中的多址接入、移动通信网以及GSM系统、CDMA系统和3G技术以及未来无线通信的发展等。 五、课程教学基本要求 1.理解和掌握无线信道和传播、传播损耗模型; 2.掌握移动通信中的信源编码的基本概念和调制解调技术; 3.理解和掌握移动通信中的各种抗衰落抗干扰技术; 4.掌握移动通信系统的组网技术; 5.掌握GSM移动通信系统、理解GPRS系统的基本原理以及EDGE的基本原理; 6.掌握基于CDMA20001X系统、WCDMA系统和TD-SCDMA系统的基本原理和应用; 7.了解未来移动通信的发展。 六、教学内容及学时分配(不含实验) 第一章概述 1学时 第二章移动通信电波传播环境与传播预测模型 4学时内容: ●无线传播的特点以及对无线通信的影响; ●无线信道的特性,研究方法 ●无线信道的分析基础(分布,特性参数等) ●简单介绍建模技术和仿真技术基础 ●介绍常见的几种传播预测模型 ●说明应用范围和应用方法

WiFi定位原理介绍

Wi-Fi实时定位系统 基于Wi-Fi的无线局域网实时定位系统(Wi-Fi RTLS)结合无线局域网络(WLAN)、射频识别(RFID)和实时定位等多种技术,广泛地应用在有无线局域网覆盖的区域,实现复杂的人员定位、监测和追踪任务,并准确搜寻到目标对象,实现对人员和物品的实时定位和监控管理。 无线局域网(WLAN)介绍 无线局域网(WLAN,又称Wi-Fi)是在不采用传统电缆线的同时,提供传统有线局域网的所有功能,网络所需的基础设施不再埋在地下或隐藏在墙里,网络却能够随着你的需要移动或变化。与有线网络相比,WLAN最主要的优势在于不需布线,不受布线条件的限制,因此非常适合移动办公用户的需要。目前它已经从传统的医疗保健、库存控制和管理服务等特殊行业向更多行业拓展,甚至开始进入家庭以及教育机构等领域。 无线局域网是基于国际IEEE 802.11标准。标准规定无线网络发射功率不可超过100毫瓦,实际发射功率约60~70毫瓦,手机的发射功率约200毫瓦至1瓦间,手持式对讲机高达5瓦。无线网络使用方式并非像手机直接接触人体,对人体是安全的。 一般WLAN能覆盖的范围应视环境的开放与否而定。若不加外接天线,在视野所及之处约250米;若属半开放性空间,有间隔的区域,则约35~50米左右。加上外接天线,则距离可达更远,这与天线增益值相关,需视用户需求而定。 AP为Access Point简称,一般翻译为“无线访问节点”,或“桥接器”。它主要在媒体存取控制层MAC中扮演无线工作站及有线局域网络的桥梁。有了AP,就像一般有线网络的Hub一般,无线工作站可以快速且轻易地与网络相连。 工作原理

无线定位技术

填空题 1.GSM的鉴权身份认证:IMSI 手机的IMSI 身份证,核心网络和手机上都有,进行比对。身份证必须有防伪机制才能保证它的安全使用。GSM系统的鉴权体制用户标识和密码 手机打电话或者上网之前,首先要向移动网络提供自己的用户标识和密码2.GSM基站广播内容 GSM广播频率校正信号、同步信号、基站的标识、空中接口的结构参数 3.位置更新的三种情况 手机开机,周期性更新上报,移动小区 4.GSM的采样频率是多少?为什么使用这个频率? GSM手机釆样频率是8khz。 语音信号的频率通常在300~3400Hz之间,抽样频率应大等于两倍的抽样信号频率,才能不失真。 5.GSM900、GSM1800分别有多少个频点以及载频间隔是多少? GSM900有124个频点,GSM1800有374个频点,载频间隔为200KHz 6.关于切换方式 硬切换,软切换”接力切换 7.MS,BTS,MSC,IMSI,HLR分别是什么意思 MS移动台 BTS基站收发信机 MSC移动交换中心 IMSI 国际移动用户识别 HLR 归属位置寄存器 8.无线通信和有线通信的区别 无线通信和有线通信的区别主要在于接口和信道,无线通信的接口是空中接口,信道是电磁波等,有线通信的接口是固定接口,信道是电线等有形信道。 9.无线通信信道编码的几种方式 10.语言编码和空中接口发送的速率 空中接口发送速率:22.8bit/s 11.列出几种纠错方法 0检错重发法,前项纠错发,反馈校正法。 12.信源编码和信道编码的目的 信源编码是以提高通信有效性为目的的编码。信道编码是以提高信息传输的可靠性为目的的编码。 13.列出几种调制方法 幅移键控,频移键控,相移键控 14.简述数据率和带宽的区别 数据率是数据能够进行通信的速率单位是bit/s,可以指调制速率;带宽指的是传输信号所占的带宽单位是Hz,值得是频谱宽度。 15.列出三种复用技术 时分复用,空分复用,频分复用 16.模数转换三过程 采样,量化,编码

ZigBee定位解决处理办法与技术基础学习知识原理

ZigBee定位解决方案 什么是Zigbee Zigbee是IEEE802.15.4协议的代名词。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。 简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。Zigbee的起源 Zigbee, 在中国被译为"紫蜂",它与蓝牙相类似.是一种新兴的短距离无线技术. 用于传感控制应用(sensor and control). 此想法在IEEE 802.15工作组中提出,于是成立了TG4工作组,并制定规范IEEE 802.15.4. 2002年,zigbee Alliance成立. 2004年,zigbee V1.0诞生.它是zigbee的第一个规范.但由于推出仓促,存在一些错误. 2006年,推出zigbee 2006,比较完善. 2007年底,zigbee PRO推出 zigbee的底层技术基于IEEE 802.15.4. 物理层和MAC层直接引用了IEEE 802.15.4 在蓝牙技术的使用过程中,人们发现蓝牙技术尽管有许多优点,但仍存在许多缺陷。对工业,家庭自动化控制和工业遥测遥控领域而言,蓝牙技术显得太复杂,功耗大,距离近,组网规模太小等,而工业自动化,对无线数据通信的需求越来越强烈,而且,对于工业现场,这种无线数据传输必须是高可靠的,并能抵抗工业现场的各种电磁干扰。因此,经过人们长期努力,Zigbee协议在2003年正式问世。另外,Zigb

移动通信原理与系统习题答案

移动通信原理与系统习题答案 1.1移动通信特点简介: 回答:①移动通信使用无线电波进行信息传输;(2)移动通信工作在强干扰环境下;(3)通信能力有限;(4)通信系统复杂; ⑤对移动台要求高 1.2移动台受到什么干扰?哪些干扰是蜂窝系统特有的? 回答:①互调干扰;(2)邻信道干扰;(3)同频干扰;(蜂窝系统特有)④多址干扰 1.3简要描述蜂窝移动通信的发展历史,并解释各代移动通信系统的特点 a:第一代(1G)主要以模拟蜂窝网络为特征,这些网络在20世纪80年代末和80年代初就已在市场上销售其中最具代表性的是北美的AMPS(高级移动电话系统)、欧洲的TACS(全接入通信系统)、北欧的NMT和日本的HCMTS系统等。 从技术特性的角度来看,1G专注于解决两个动态的最基本用户,即双动态,并充分考虑了双通道动态。主要措施是利用FDMA实现用户的动态寻址功能,通过蜂窝网络结构和频率规划实现载频复用,从而扩大服务覆盖范围,满足用户日益增长的需求。在信道动态特性的匹配中,适当采用性能优良的模拟调频方法,并采用基站双空间分集方法来抵抗空间选择性衰落。 第二代(2G)主要以数字化为特征,并构成数字蜂窝移动通信系统,

该系统在XXXX早期正式投入商业使用。其中,最具代表性的是欧洲的时分多址(TDMA)GSM(GSM最初指的是集团专用移动,1989年后改为全球移动通信系统),北美的码分多址(CDMA) IS-95两大系统,以及日本的PDC系统等 在技术特性上以数字化为基础,考虑了频道和用户的双重动态特性以及相应的匹配措施主要实施措施是:采用时分多址(GSM)和码分多址(IS-95)实现用户动态寻址功能,采用数字蜂窝网络结构和频率(相位)规划实现载频(相位)复用,从而扩大覆盖服务范围,满足日益增长的用户需求为匹配信道动态特性,采取了以下一系列措施: (1)采用抗干扰性能优良的数字调制:GMSK(GSM)、QPSK(IS-95)、抗干扰性能优良的纠错码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术来抵抗慢衰落和远近效应,这对于码分多址模式下的IS-95尤为重要;(3)自适应均衡和瑞克接收机用于抵抗频率选择性衰落和多径干扰; (4)采用信道交织编码,如帧间交织和块交织(IS-95)来抵抗时间选择性衰落第三代(3G)的主要特征是多媒体服务。它在本世纪初刚刚投入商业运营。其中最具代表性的是北美的CDMA2000、欧洲和日本的WCDMA和我国提出的TD-SCDMA,此外还有欧洲的DECT和北美的UMC-136。 技术上,3G基于2G系统自适应信道和用户的双重动态特性引入服务动态,即在3G系统中,用户服务可以是单一的语音、数据、图像或多媒体服务,用户选择服务是随机的。这是第三种动态的引入,它

哈工大无线定位原理与技术实验报告

无线电定位原理与技术 实验报告 课程名称:无线电定位原理与应用 院系:电子工程系 班级:1305203 姓名:黄晓明、大头光 学号:指导教师:张云 实验时间:12周周二,13周周二 实验成绩: 电信学院

实验一 调频法测距实验 2.1 实验要求 1.掌握调频法测距原理 2.利用给定的仿真信号通过MA TLAB 编程计算线性调频信号的参数(带宽,中心频率,时宽,调频斜率)并计算目标的距离。 2.2 线性调频脉冲测距实验 图2-1 线性调频信号与反射回波 反射回波相对于发射的线性调频信号产生了固定时延或固定频差F ? 。假设目标处于静止状态,总的频偏F ?为 2R F c α ?= (2.1) 根据该式可以反推出距离R 。 图1线性调频信号与反射回波时域图

图2混频后频谱图 图3

根据公式 2c F R α ?= (2.2) 解得R=750m ,与5us 延迟一致。 积化和差公式: 1 cos cos [cos()cos()]2 αβαβαβ=++- (2.3)

实验二 连续波雷达测速实验 3.1 实验要求 1. 掌握雷达测速原理。 2. 了解连续波雷达测速实验仪器原理及使用。 3. 采集运动物体回波数据,并在PC 机使用Matlab 对实验数据进行分析。 4. 使用Matlab 对实验数据进行分析,得到回波多普勒频率和目标速度。 3.2 雷达测速原理 00022d r vf v f f f f c v c --?? =-= ≈ ?+?? (如果v c <<) 图3-1 多普勒效应 3.2 连续波雷达测速实验仪器 连续波发射机 混频器 放大滤波 测速传感器 AD 采集 串行接口PC 机 图3-2 连续波雷达测速实验仪器原理框图

详解无线传感器网络定位技术

详解无线传感器网络定位技术 引言 无线传感器网络作为一种全新的信息获取和处理技术在目标跟踪、入侵监测及一些定位相关领域有广泛的应用前景。然而,无论是在军事侦察或地理环境监测,还是交通路况监测或医疗卫生中对病人的跟踪等应用场合,很多获取的监测信息需要附带相应的位置信息,否则,这些数据就是不确切的,甚至有时候会失去采集的意义,因此网络中传感器节点自身位置信息的获取是大多数应用的基础。首先,传感器节点必须明确自身位置才能详细说明“在什么位置发什么了什么事件”,从而实现对外部目标的定位和跟踪;其次,了解传感器节点的位置分布状况可以对提高网络的路由效率提供帮助,从而实现网络的负载均衡以及网络拓扑的自动配置,改善整个网络的覆盖质量。因此,必须采取一定的机制或算法来实现无线传感器网络中各节点的定位。 无线传感器网络定位最简单的方法是为每个节点装载全球卫星定位系统()接收器,用以确定节点位置。但是,由于经济因素、节点能量制约和对于部署环境有一定要求等条件的限制,导致方案的可行性较差。因此,一般只有少量节点通过装载或通过预先部署在特定位置的方式获取自身坐标。另外,无线传感器网络的节点定位涉及很多方面的内容,包括定位精度、网络规模、锚节点密度、网络的容错性和鲁棒性以及功耗等,如何平衡各种关系对于无线传感器网络的定位问题非常具有挑战性。可以说无线传感器网络节点自身定位问题在很大程度上决定着其应用前景。因此,研究节点定位问题不仅必要,而且具有很重要的现实意义。 定位技术基本概念 定位方法的相关术语 )锚节点():也称为信标节点、灯塔节点等,可通过某种手段自主获取自身位置的节点; )普通节点():也称为未知节点或待定位节点,预先不知道自身位置,需使用锚节点的位置信息并运用一定的算法得到估计位置的节点; )邻居节点():传感器节点通信半径以内的其他节点; )跳数():两节点间的跳段总数; )跳段距离():两节点之间的每一跳距离之和; )连通度():一个节点拥有的邻居节点的数目;

《移动通信原理与系统》考点

移动通信原理与系统 第1章概论 1.(了解)4G网络应该是一个无缝连接的网络,也就是说各种无线和有线网络都能以IP协议为基础连接到IP核心网。当然为了与传统的网络互连则需要用网关建立网络的互联,所以将来的4G网络将是一个复杂的多协议的网络。 2.所谓移动通信,是指通信双方或至少有一方处于运动中进行信息交换的通信方式。 移动通信系统包括无绳电话、无线寻呼、陆地蜂窝移动通信、卫星移动通信等。无线通信是移动通信的基础。 3.移动通信主要的干扰有:互调干扰、邻道干扰、同频干扰。(以下为了解) 1)互调干扰。指两个或多个信号作用在通信设备的非线性器件上,产生与有用信号频率相近的组合频率,从而对通信系统构成干扰。 2)邻道干扰。指相邻或邻近的信道(或频道)之间的干扰,是由于一个强信号串扰弱信号而造成的干扰。 3)同频干扰。指相同载频电台之间的干扰。 4.按照通话的状态和频率的使用方法,可以将移动通信的工作方式分成:单工通信、双工通信、半双工通信。 第2章移动通信电波传播与传播预测模型 1.移动通信的信道是基站天线、移动用户天线和两副天线之间的传播路径。 对移动无线电波传播特性的研究就是对移动信道特性的研究。 移动信道的基本特性是衰落特性。 2.阴影衰落:由于传播环境中的地形起伏、建筑物及其他障碍物对电磁波的遮蔽所引起的衰落。 多径衰落:无线电波呢在传播路径上受到周围环境中地形地物的作用而产生的反射、绕射和散射,使其到达接收机时是从多条路径传来的多个信号的叠加,这种多径传播多引起的信号在接收端幅度、相位和到达时间的随机变化将导致严重的衰落。 无线信道分为大尺度传播模型和小尺度传播模型。大尺度模型主要是用于描述发射机与接收机之间的长距离(几百或几千米)上信号强度的变化。小尺度衰落模型用于描述短距离(几个波长)或短时间(秒级)内信号强度的快速变化。 3.在自由空间中,设发射点处地发射功率为P t,以球面波辐射;设接收的功率为P r,则 P r=(A r/4πd2)P t G t 式中,A r=λ2G r/4π,λ为工作波长,G t、G r分别表示发射天线和接收天线增益,d为发射天线和接收天线间的距离。 4.极化是指电磁波在传播的过程中,其电场矢量的方向和幅度随时间变化的状态。 电磁波的极化可分为线极化、圆极化和椭圆极化。 线极化存在两种特殊的情况:电场方向平行于地面的水平极化和垂直于地面的垂直极化。在移动通信中常用垂直极化天线。 5.极化失配:接收天线的极化方式只有同被接收的电磁波的极化形式一致时,才能有效地接收到信号,否则将使接收信号质量变坏,甚至完全收不到信号。 6.阴影衰落又称慢衰落,其特点是衰落与无线电传播地形和地理的分布、高度有关。 7.多径衰落属于小尺度衰落,其基本特性表现在信号的幅度衰落和时延扩展。 8.多普勒频移:f d=(v/λ)cosα,式中v为移动速度;λ为波长;α为入射波与移动台方向之间的夹角;v/λ=f m为最大多普勒频移。

定位技术的发展及现代应用分解

定位技术的发展及现代应用 定位技术的发展 早在15 世纪,人类开始探索海洋的时候,定位技术也随之催生。主要的定位方法是运用当时的航海图和星象图,确定自己的位子。 随着社会和科技的不断发展,对导航定位的需求已不仅仅局限于传统的航 海、航空、航天和测绘领域。GPS 乍为常见的导航定位系统已经逐渐进入社会的各个角落。尤其在军事领域,对导航定位提出了更高的要求。导航定位的方法从早期的陆基无线电导航系统到现在常用的卫星导航系统,经历了80 多年的发展,从少数的几种精度差、设备较庞大的陆基系统到现在多种导航定位手段共存,设备日趋小型化的发展阶段,在技术手段、导航定位精度、可用性等方面均取得质的飞越。 1.1陆基无线电导航系统 1.1.1 第一次世界大战期间 陆基无线电导航系统是从20 世纪20年代第一次世界大战期间开始发展起来 的。首先是应用在航海,逐渐扩展到航空领域。其技术手段主要是采用无线电信标。 舰船和飞机接受信标的发射信号,通过方向图调制测出与信标的方位,从而确定自身的航向。这时的导航主要侧重是侧向,定位能力比较差。 1.1.2 第二次世界大战及战后时期 第二次世界大战及后期,无线电导航定位系统飞速发展,出现了许多新的系统,并在不断发展,到目前大多系统仍在广泛使用。 这其中主要有罗兰-A (Loran-A )、罗兰-C (Loran-C )、台卡(Decca-A)、奥米伽系统、伏尔/测距器(DME和塔康(Tacan)等。 (1) 罗兰-A和罗兰-C 罗兰-A和罗兰-C的基本原理是发射脉冲信号,利用双曲线交会定位,20世 纪50 年代末产生的罗兰-C 在罗兰-A 的基础上,对发射信号进行了改进,使得用户可以得到几百米量级的定位精度和微妙级的授时精度。目前各国已建成近100 个发射台站,但仍不能覆盖全球。 2) 台卡和奥米伽

移动通信原理与系统习题答案

移动通信原理与系统习题答案 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输; ②移动通信在强干扰环境下工作; ③通信容量有限; ④通信系统复杂; ⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰; ②邻道干扰; ③同频干扰;(蜂窝系统所特有的) ④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的 TACS (Total Access Communication System)两大系统,另外还有北欧的 NMT 及日本的 HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址 FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩

大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的 IS-95 两大系统,另外还有日本的 PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用 TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK (IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA 方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和 Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块

利用告警关联分析技术实现网络故障定位

利用告警关联分析技术实现网络故障定位 摘要电信网络的规模和复杂程度越来越大,每时每刻,网络上都会发生很多各种各样的故障,每个故障都会导致系统发出一个或多个告警通知网络运行维护人员,面对这些海量的告警数据,必须快速定位故障来源,本文主要研究利用告警关联分析技术实现快速故障定位,更好更快的处理解决故障,提升电信服务的品质。 关键词告警关联:关联规则:集中告警 1引言 电信运营公司为了降低企业的运营成本,提高服务质量,以谋求企业的竞争优势,必须有效地管理好自己的网络,使网络安全,稳定、高效地运行。但是,随着电信网规模的不断扩大,电信设备、网络结构复杂度的不断提高以及网络带宽的迅速增长,电信网产生的告警数量也不断增多,使得对网络的实时监控和故障管理变得更加困难,面对故障处理反应迟钝,对于问题的处理往往都是采用被动响应式的管理模式,其主要特征是:一般是客户觉察到业务故障,相电信的业务部门投诉和告警(这时往往发生故障有一段时间),业务部门通知后台运行维护部门被动地采取诊断措施。直到最后故障的解决。其显著的特点是,由于故障发生到采取恢复措施之间的时间差,导致业务中断的时间较长,效率相对低,对于客户的SLA服务水平不够。这就必须要有,机制和系统能够接受到海量告警后,及时进行告警关联分析,以最快的速度定位故障。 通信设备作为统一的整体,各个部分相互协作实现各项功能,设备某一部分出现问题影响到功能的实现时,设备中其他相关部分也不能很好的完成预定功能,这些相关部分就会各自发出相关告警,这些告警虽然发生在不同网无之上,发生时间也有一定的先后顺序,但实际上表述的是同一个故障源引发的故障,表达了相同或者相近的意思,因此可以合并成一条或几条,以便于维护人员从浩如烟海的告警中迅速分析出故障发生原因,快速定位故障和解决故障,这就是告警的关联分析技术。 2故障与告警 2.1故障与告警的基本关系

移动通信原理与系统(北京邮电出版社)课后习题答案

第一章概述 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰;②邻道干扰;③同频干扰(蜂窝系统所特有的);④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT 及日本的HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95 两大系统,另外还有日本的PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK(IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块交织方式(IS-95)抗时间选择性衰落。 第三代(3G)以多媒体业务为主要特征,它于本世纪初刚刚投入商业化运营。其中最具有代表性的有北美的CDMA2000、欧洲和日本的WCDMA及我国提出的TD-SCDMA三大系统,另外还有欧洲的DECT及北美的UMC-136。 从技术上看,3G 是在2G 系统适配信道与用户二重动态特性的基础上又引入了业务的动态性,即在3G 系统中,用户业务既可以是单一的语音、数据、图像,也可以是多媒体业务,且用户选择业务是随机的,这个是第三重动态性的引入使系统大大复杂化。所以第三代是在第二代数字化基础上的、以业务多媒体化为主要目标,全面考虑并完善对信道、用户二重动态特性匹配特性,并适当考虑到业务的动态性能,尽力采用相应措施予以实现的技术。其主要实现措施有: (1)继续采用第二代(2G)中所采用的所有行之有效的措施; (2)对CDMA 扩频方式应一分为二,一方面扩频提高了抗干扰性,提高了通信容量;另一方面由于扩频码互相关性能的不理想,使多址干扰、远近效应影响增大,并且对功率控制提出了更高要求等; (3)为了克服CDMA 中的多址干扰,在3G 系统中,上行链路建议采用多用户检测与智能天线技术;下行链路采用发端分集、空时编码技术; (4)为了实现与业务动态特性的匹配,3G 中采用了可实现对不同速率业务(不同扩频比)间仍具有正交性能的OVSF(可变扩频比正交码)多址码; (5)针对数据业务要求误码率低且实施性要求不高的特点,3G 中对数据业务采用了Turbo 码。

定位技术的发展及现代应用

定位技术的发展及现代应用 一、定位技术的发展 早在15世纪,人类开始探索海洋的时候,定位技术也随之催生。主要的定位方法是运用当时的航海图和星象图,确定自己的位子。 随着社会和科技的不断发展,对导航定位的需求已不仅仅局限于传统的航海、航空、航天和测绘领域。GPS作为常见的导航定位系统已经逐渐进入社会的各个角落。尤其在军事领域,对导航定位提出了更高的要求。导航定位的方法从早期的陆基无线电导航系统到现在常用的卫星导航系统,经历了80多年的发展,从少数的几种精度差、设备较庞大的陆基系统到现在多种导航定位手段共存,设备日趋小型化的发展阶段,在技术手段、导航定位精度、可用性等方面均取得质的飞越。 1.1陆基无线电导航系统 1.1.1 第一次世界大战期间 陆基无线电导航系统是从20世纪20年代第一次世界大战期间开始发展起来的。首先是应用在航海,逐渐扩展到航空领域。其技术手段主要是采用无线电信标。 舰船和飞机接受信标的发射信号,通过方向图调制测出与信标的方位,从而确定自身的航向。这时的导航主要侧重是侧向,定位能力比较差。 1.1.2 第二次世界大战及战后时期 第二次世界大战及后期,无线电导航定位系统飞速发展,出现了许多新的系统,并在不断发展,到目前大多系统仍在广泛使用。 这其中主要有罗兰-A(Loran-A)、罗兰-C(Loran-C)、台卡(Decca-A)、奥米伽系统、伏尔/测距器(DME)和塔康(Tacan)等。 (1)罗兰-A和罗兰-C 罗兰-A和罗兰-C的基本原理是发射脉冲信号,利用双曲线交会定位,20世

纪50年代末产生的罗兰-C在罗兰-A的基础上,对发射信号进行了改进,使得用户可以得到几百米量级的定位精度和微妙级的授时精度。目前各国已建成近100个发射台站,但仍不能覆盖全球。 (2)台卡和奥米伽 台卡也是一种双曲线,主要针对欧洲的海上用户。其精度和覆盖范围均不如罗兰-C。随着罗兰-C西北欧台链的建成,其永华逐渐减少。 奥米伽是针对以上几种系统存在的不能覆盖全球的问题而由美国在20世纪50年代中期研制的。采用低频连续波发射(10—14KHz),双曲线定位。缺点是定位精度低、有多值性、数据率低和设备昂贵等。随着卫星导航定位系统的使用,奥米伽已于1997年关闭。 (3)伏尔+测距器(DME) 该系统主要针对航空用户研制。本质仍是一种甚高频全向信标,只能给飞机指示方位。所以,在1949年又将测距器纳入了系统中。测距器与伏尔信标置于一地,采用询问和应答的方式,能够为110架左右飞机提供距离测量的服务。(4)塔康(Tacan) 工作在L频段,采用脉冲体制,同时提供方位和距离坐标,具有设备小的优点,在航空导航欧较为广泛的应用。 1.2自主式导航 路基导航定位系统虽然具有价格低、可靠新高等优点,但它依赖于电磁波在空中的传播,系统的生存能力、抗干扰能力和抗欺骗能力较为薄弱。因此,自主导航也逐渐得到了发展。主要有惯性导航和多普勒导航两种。 1.2.1惯性导航 惯性导航系统(INS)是一种推算导航,20世纪60年代开始投入使用。是以惯性测量器件——陀螺为中心,通过测量载体的三维加速度。积分测速和测距,然后根据起点坐标推算载体当前坐标的一种定位方法。其优点是完全自主导航,缺点是精度随着距离和时间的退役逐渐降低,往往需要定期校准。 目前惯性导航系统一般都和卫星导航系统结合使用,利用卫星导航系统为其提供校准坐标。

移动通信原理与系统(总结)

第一、二章 1、900 MHz 频段: 890~915 MHz (移动台发、基站收)—上行 935~960 MHz (基站发、移动台收)—下行 2、移动通信的工作方式:单工通信、双工通信、半双工通信 3、单工通信: (1)定义:通信双方电台交替地进行收信和发信。 (2)方式:根据通信双方是否使用相同的频率,单工制又分为同频单工和双频单工。 4、双工通信定义:通信双方均同时进行收发工作。即任一方讲话时,可以听到对方的话音。有时也叫全双工通信。 5、半双工通信:通信双方中,一方使用双频双工方式,即收发信机同时工作;另一方使用双频单工方式,即收发信机交替工作。 6、移动通信的分类方法: (1)按多址方式:频分多址(FDMA )、时分多址(TDMA )和码分多址(CDMA ) (2)按业务类型:电话网、数据网和综合业务网。 (3)按工作方式:同频单工、双频单工、双频双工和半双工。 7、三种基本电波的传播机制:反射、绕射和散射。 8、阴影衰落定义:移动无线通信信道传播环境中的地形起伏、建筑物及其它障碍物对电波传播路径的阻挡而形成的电磁场阴影效应。阴影衰落的信号电平起伏是相对缓慢的,又称为慢衰落。 9、多普勒频移公式:fd=v *cos α/λ v :移动速度 λ:波长 α:入射波与移动台移动方向之间的夹角。 v/λ=fm :最大多普勒频移 移动台朝向入射波方向运动,则多普勒频移为正(接收信号频率上升),反之若移动台背向入射波方向运动,则多普勒频移为负(接收信号频率下降)。 10、多径衰落信道的分类: (1)由于时间色散导致发送信号产生的平坦衰落和频率选择性衰落。 (2)根据发送信号与信道变化快慢程度的比较,也就是频率色散引起的信号失真,可将信道分为快衰落信道和慢衰落信道。 11、平坦衰落信道的条件可概括为:Bs<> 12、产生频率选择性衰落的条件:Bs>Bc;Ts< 13、信号经历快衰落的条件:Ts>Tc ;Bs>B D 15、衰落率定义:信号包络在单位时间内以正斜率通过中值电平的次数,即包络衰落的速率与发射频率,移台行进速度和方向以及多径传播的路径数有关。 16 v :——运动速度(km/h )f :——频率(MHz )A :——平均衰落(Hz ) 17、衰落深度:信号有效值与该次衰落的信号最小值的差值。 18、电平通过率定义:单位时间内信号包络以正斜率通过某一规定电平值R 的平均次数。描述衰落次数的统计规律。 深度衰落发生的次数较少,而浅度衰落发生得相当频繁。 19、平均电平通过率表达式: 其中f m :——最大多普勒频率 ρ=R/R min 其中Rmin= 为信号有效值,R 为规定电平 T τσ T τσ

浅谈无线定位技术

龙源期刊网 https://www.wendangku.net/doc/bd17587775.html, 浅谈无线定位技术 作者:李倩 来源:《卷宗》2012年第06期 摘要:无线定位作为无线技术的一项重要应用,近年来发展迅猛被广泛应用于导航、虚 拟实现和军事目标定位等方面。本文重点对几种常用的无线定位技术进行了深入分析和讨论。 关键词:无线定位、GPS、TDOA 1. 什么是无线定位技术 无线定位技术是利用WiFi技术的射频识别和传感器等设备,通过测量接收到的无线电波的时间、幅度、相位等参数,根据相关算法判断被测物体的位置,实现定位、监测和追踪特定目标位置,广泛应用于导航、机器人跟踪、虚拟实现和军事目标定位等方面。 2. 常用的无线定位技术 无线定位主要包括GPS、移动定位、超声波、UWB、 RFID、WiFi等几种定位方式。其 中GPS和移动定位主要应用在室外环境适合广域定位,其余几种主要应用在室内环境,适合短距离定位。下面本文将重点讨论几种常用的无线定位技术。 2.1 GPS定位技术 GPS包括21颗工作卫星和3颗备用卫星,均匀分布在6个轨道上。地面的接收机会接收GPS卫星发送的信号,从而获取导航和定位信息及观测量,并经过简单数据处理获取到达时间(TOA)信息,再结合卫星广播的星历信息实现实时导航和定位。GPS定位系统在开阔地定位精度高,具有良好的抗干扰和保密性,可应用于室外车辆定位导航。但由于卫星信号容易被建筑物、金属覆盖物、浓密树林阻挡,往往无法精确定位。目前比较实用的是A-GPS即辅助GPS技术。它利用通信网络基站从远程定位服务器获取当前卫星的星图、俯仰角等信息,从而提高 GPS 卫星定位系统的性能和速度。 2.2Cell-ID定位技术 Cell-ID即小区识别号,在移动网络中每个小区都有一个唯一的利用移动终端所在Cell对应的小区识别号。只要系统能够把该小区基站设置的中心位置和小区的覆盖半径发送给移动终端,就可以粗略确定移动终端的位置。Cell-ID定位实现简单,响应速度快,不需改动网络和 移动终端,有良好的覆盖性和可靠性。但是定位精度比较差且依赖于基站覆盖范围的大小,如果在基站分布较少的地区则很难精确定位,通常需与其他定位结合使用。 2.3智能天线AOA

蜂窝网络无线定位技术及应用

蜂窝网络无线定位技术及应用 一、前言 近年来,随着蜂窝移动通信技术的迅速发展,蜂窝无线定位技术越来越受到人们的重视。 这主要归因于政府的强制性要求和市场本身的驱动。FCC于1996年10月颁布了无线E9ll呼叫应急服务功能,其核心是要求所有移动通信网络必须分阶段的提供紧急呼叫用户的经纬度位置信息。针对E911定位需求的具体实施,各国主要大公司均就GSM、IS-95CDMA 以及第三代移动通信系统开始制定各自的定位实施方案。特别是 3GPP和3GPP2上对定位的要求更加具体化,这也是对蜂窝无线定位市场潜力的肯定。另一方面,移动通信用户对移动定位业务的需求日益迫切。蜂窝网络无线定位技术能够在移动台处于空闲状态或通话状态的情况卜获取其地理位置等信息,利用移动台的定位信息,运营商可以1hJ用户提供各种增值业务,如位置环境信息查询、紧急救援、智能交通、广告发布等等,同时还可以作为移动通信网络运行、维护和管理的辅助数据。到目前为止,基于蜂窝网络的无线定位技术的研究已经取得了很大的进展。可以预见在未来几年,基于蜂窝网络定位技术的移动业务将得以迅猛的发展。 二、蜂窝网络无线定位技术 利用移动蜂窝网络对移动台定位的方法主要有三类,(l)基于电波场强的定位技术;(2)基于电波到达入射角(AOA)的定位技术;(3)基于电波到达时间(TOA)或到达时间差(TDOA)的定位技术。 1.场强定位技术 电波场强定位技术根据移动台接收的信号强度与移动台至基站的距离成反比关系,通过测量接收信号的场强值和已知信道衰落模型及发射信号的场强值可以估算出收发信机之间的距离,由多个距离测量值(至少三个)可以估算移动台的位置。这一技术的关键在于如何建立一个能够准确的反映服务传播围的无线电波传播模型,这在实际应用中很难实现。除此之外,由于小区基站的扇形特性、天线有可能倾斜、无线系统的不断调整以及地理环境、车辆等因素都会对定位精度产生影响。由于移动通信环境中电波传播的复杂性,决定了这?技术在定位精度上的局限性,但是由于该技术比较简单易行、在对精度要求不是很高的情况下仍被采用。为了改善其性能,人们开始研究利用电波传播中的射线跟踪方法来逛一步提高定位的精度。 2.到达入射角的定位技术 电波到达入射角的定位技术利用基站的阵列天线来测出移动台来波信号的人射角、构成从基站到移动台的径向连线,即测位线,这两条连线的交点即为目标移动台的位置。由于两条直线只能相交于?点,这种方法不会产生定位模糊性。但是它需要在每个小区基站上放置4?12组的天线阵。这些天线阵?起工作,从而确定移动台发送信号相对于基站的角度。当有多个基站都发现了该信号源时,那么它们分别从基站引出射线,这些射线的交点就是移动台的位置。AOA的优点在于它仅需要两个基站参与便可实现移动台定位,同时不存在移动台位置的模糊性问题。但是该技术需要在现有的基站增加天线阵列,由此增加了大量的建设费用。与此同时,电波到达入射角估计会受到由多径和其它环境因素所引起的无线信号波阵面扭曲的影响,移动台距离基站较远时,基站定位角度的微小偏差也会导致定位距离的较大误差。 3.到达时间/到达时间差的定位技术 到达时间/到达时间差的定位技术是基于蜂窝网络的无线定位系统应用最广泛的一项技术。到达时间定位技术通过测量从目标移动台发出的信号以直线到达基站的时间,根据电磁波在空中的传播速度可以得到移动台与基站之间的距离。移动台即位于以基站为圆心,移动台到基站的电波传播距离为半径的圆上。通过多个基站进行上述测量计算,移动台的二维

相关文档
相关文档 最新文档