文档库 最新最全的文档下载
当前位置:文档库 › 污泥浓缩工艺的应用现状和发展对策

污泥浓缩工艺的应用现状和发展对策

污泥浓缩工艺的应用现状和发展对策
污泥浓缩工艺的应用现状和发展对策

污泥处置各种方法的优缺点对比及可行性分析

污泥处置利用 一、污泥处理的难点及危害 污泥是指处理污水所产生的固态、半固态及液态的废弃物,含有大量的有机物、丰富的氮磷等营养物、重金属以及致病菌和病原菌等,如果不加处理的任意排放和投弃对环境造成的危害如下:(1)侵占土地;(2)污染土壤。污泥堆置的有害成分聚集,风吹雨淋。产生高温或者其他化学反应,会杀灭土壤微生物,破坏土壤结构,使其丧失腐蚀分解能力;(3)污泥直接摔放淤积河床、污染水体; (4)污染大气,污泥有机物被微生物分解释放出有害气体、尘埃.会加重大气污染;(5)病原菌,主要有肠道细菌、寄生虫及病毒三大类,大部分被浓缩结合在污泥颗粒物上,其数量比污水中的高数十倍,威胁人类健康。 二、污泥处理遵循的原则 减量化、稳定化、无害化、资源化 三、污泥处理的方式及优缺点 污泥处置方式有:卫生填埋、焚烧、污泥直接制砖、堆肥后农用、污泥热解等。几种处置方式的优缺点如下表 污泥处置方法情况分析表

四、 污泥处置方式的可行性分析 1. 卫生填埋 卫生填埋难点在于填埋场和填埋污泥要满足一定的要求。对于填埋污泥应满足以下要求: a 、污泥含水率 混合填埋要求污泥含水率小于65%。一般污泥脱水后污泥含水率为75%以上,因此需对脱水后的污泥进行干化处理。 b 、土力学指标(抗剪强度) 混合填埋时,一般要求污泥的抗剪强度最低不小于20kN/m 2 。我国城市污水处理厂污泥投加电解质脱水后,含固率一般在20%~30%之间,其抗剪强度一般在 10kN/m 2左右;根据有些研究,投加聚合物电解质经带式压滤机或者离心脱水机脱水后,含固率为35%的污泥其抗剪强度一般不会超过20kN/m 2 ,含固率25%的污泥平均强度不超过6kN/m 2,含固率20%的污泥平均强度在5kN/m 2左右,因此,脱水后的污泥一般不能满足填埋要求的强度,还必须通过增加添加剂或者降低含水率或者其它方式提高其抗剪强度。脱水后污泥如果不用添加剂,就不能大面积用机械操作连续填埋。 污泥填埋场的选址及工程设计应满足生活垃圾填埋污染控制标准(GB16889-97)。 2. 焚烧 污泥焚烧的难点在于投资及成本过高。以中国某南方城市30t/d 污泥焚烧项目为例。工程项目投资700万元(含土建、工艺设备、电气仪表控制等)。 直接运行消耗成本如下表:

污泥处理及处置工艺

污泥处理及处置工艺 污水处理过程中产生的污泥集中到污泥处理系统,进行统一处理和处置。如果污泥处理或处置不当,将会造成二次污染,形成新的公害,达不到保护环境、解决环境污染的污水治理最终目的。 1.污泥处理设计原则 (1)根据污水处理工艺,按其产生的污泥量、污泥性质,结合青冈镇的自然环境及处置条件选用符合实际污泥处理工艺。 (2)根据城市污水处理厂污泥排出标准,采用合适的脱水方法、脱水后污泥含固率大于20%。 (3)妥善处置污水处理过程中产生的栅渣、垃圾、沉砂和污泥,避免二次污染。 (4)尽可能利用污泥中的营养物质,变废为宝。 2.污泥处理及处置工艺 污水经二级处理后,水中大多数有机物和无机物都转化为污泥,如果污泥处理不当,将造成二次污染,形成新的公害,使污水处理事倍功半。 污泥处理要求如下: (1)减少污泥体积,降低污染后续处置费用; (2)减少污泥中的有害物质; (3)利用污泥中可用物质,化害为利; (4)因选用生物脱氮除磷工艺,尽量避免磷的二次污染。 一般现行的污泥处理工艺流程如下:

剩余污泥污泥浓缩厌氧消化污泥脱水污泥处置在上述污泥处理工艺中,厌氧消化是为了去除污泥中有机质变稳定,同时可以减少污泥的体积(约60%~70%),改善污泥的性质,使之易于脱水,破坏和控制致病的生物,并获得有用的副产物沼气等。污泥消化一般采用中温消化,在寒冷季节需要大量的热量,其运用费用很高,而且消化池的建设费用高,设备工艺复杂,运行管理难度较大。 鉴于本工程的污水处理厂的工程规模不大,且缺少高寒地区的运行经验,本期工程不设污泥消化设施,而只采用污泥浓缩脱水工艺。 污泥处理工艺如下: 剩余污泥污泥浓缩污泥脱水污泥处置 3.污泥浓缩及脱水 污泥浓缩一般有重力浓缩、气浮浓缩及机械浓缩等三种方式。 重力浓缩具有不需要投药、能耗低、运行稳定、管理简单等优点,污泥含水率由98%~99.5%浓缩到97%以下,但对于含磷污泥重力浓缩会因厌氧而出现磷的释放,从而影响整个系统的除磷效果。 气浮浓缩适用于浓缩活性污泥和生物滤池等的轻质污泥,可将污泥含水率由99.5%降到94%~96%,其含水率低于采用重力浓缩后所达到的含水率,但其运行费用较高、系统复杂、运行管理难度大。 机械浓缩是新近发展的污泥浓缩方式,通过将污泥化学絮凝后,以机械方式降低污泥含水率,因此适合各类污泥,可将污泥含水率从

好氧发酵生物干化一体化污泥处理处置实用工艺

好氧发酵生物干化一体化污泥处理处置工艺(请点击图片进入阅读界面) 一、企业基本情况

(一)湖南省九方环保机械有限公司 湖南省九方环保机械有限公司(以下简称“九方环保公司”)是一家专注于城市污泥处理处置和资源利用,集污泥处理设备研发、生产、销售、系统设计、安装和项目投资、运营于一体的高新技术环保企业。公司总部坐落于湖南省长沙市(国家级)经济技术开发区,是湖南省高新技术企业、湖南省城市建设行业协会排水分会副会长单位,获得了湖南省守合同重信用单位、长沙市守合同重信用单位、长沙纳税先进单位等荣誉,是湖南省政府重点支持的环保企业之一。以“一种新型圆柱多棱多层发酵塔”和“一种好氧堆肥法”等自有专利技术处于行业领先地位,在湖南省内污泥处理行业属于龙头骨干企业。 九方环保公司拥有四项发明专利和十余项实用新型专利技术,其中污泥处理处置技术具有处置彻底、能耗低、运行成本低、占地少、自动化程度高等优点,实现了污泥处理处置的“减量化、稳定化、无害化、资源化”的要求。 2012年,该技术装置通过了湖南省科技厅组织的成果鉴定,鉴定意见为:“居国内领先水平”;同时纳入湖南省战略性新兴产业项目。2013年,列入湖南省十大低碳环保节能技术推广名录。 2011年,该公司在株洲建成20吨/日污泥处理处置示范工程,已连续稳定运行近三年;2013年9月在平江县投产运行30吨/日污泥处理处置BOT工程;2012年住建部城建司张悦司长到九方环保污泥处理项目现场考察时给予了高度认可和评价。现省内长沙、衡阳、怀化、涟源

和周边省份如贵阳、珠海等多个重要城市已与九方环保达成污泥处理处置建设意向。 今年9月由九方环保和华北市政设计院联合主办的全国污泥处理处置技术论坛会议将在长沙召开。 (二)湖南福天兴业投资集团有限公司 湖南福天兴业投资集团成立于2002年,现发展为集环保产业、房地产投资与开发、农业产业化及食品深加工于一体的大型集团企业。集团公司2013年实现销售收入80多亿元,利税近20亿元,资金实力雄厚、各种资质齐全。 2012年-2014年,福天兴业集团出资收购了三家技术领先、资质完备的环保企业:湖南省九方环保机械有限公司、湖南恒凯环保科技投资有限公司、湖南省新九方环保药剂公司。其中,九方环保专注于城市污泥处理与资源化处置,是湖南省政府重点支持的环保企业;恒凯环保公司具有环保工程设计、施工、运营、机动车环保检测等资质,致力于污水处理、重金属治理和汽车尾气的监测与处理;湖南省新九方环保药剂公司致力于水、土壤氧化、还原改造以及重金属污染治理和环境修复。 二、工艺情况 1、多棱多层发酵塔污泥生物干化处理处置一体化装置工艺 多棱多层发酵塔污泥生物干化处理装置工艺分为:脱水污泥好氧发酵生物干化处理工序、污泥干燥处理工序和污泥焚烧处置工序。 1)脱水污泥好氧发酵生物干化处理工序:

传统活性污泥工艺

传统活性污泥工艺:工艺特征:吸附和代谢的完整过程、完全生长周期、需氧量延池长逐渐降低。优点:处理效果好经验成熟。问题:前段缺氧后端富余能耗大、占地面积大基建费用高、对水质水量变化的适应性弱 曝气活性污泥工艺特点:分段进水多段进水、需氧和供氧平衡、耐冲击负荷能力强 完全混活性污泥工艺:特点:池中个点水质相同各部分有机物降解工况相同、抗冲击能力强、处理效果差与推流式、易出现污泥膨胀 吸附再生活性污泥工艺:特点:吸附池能接触时间短、占地面积小、耐冲击负荷能力强、处理效果低于传统法 SBR工艺(间歇式活性污泥法):特点:工艺简单可省略掉二沉池和污泥回流设备、反应推动力大效率高、沉淀效果好、调节运行方式可脱氮除磷、便于自动控制、适用于中小型污水处理 AB法工艺:特点:无初沉池、AB段有各自的微生物群体、A段起到微生物选择器作用、处理效果好、可分期建设 活性污泥工艺发展方向:提高氧利用率、减少占地面积、减少运行费用、提供自动化水平、强化净化功能 普通生物滤池:原理:污水时间以滴状喷洒在滤料表面,与生物膜中的微生物充分接触,有机污染物被微生物吸附并降解,使污泥得以净化。优点:BOD去除率高运行稳定节约能源。缺点:占地面积大进水负荷低易阻塞有气味问题 高负荷生物滤池:特征:大幅提高了滤池负荷、限制进水BOD值、采用处理水回流技术、均化水质加大水力负荷减轻臭味抑制滤池蝇 塔式生物滤池:特征:滤层内部的分层微生物的优势菌种、能抵御较高的冲击负荷、水量不超过10000m3/d、充氧效果好污染物降解速度快 曝气生物滤池:原理:过滤生物吸附与生物代谢作用净化污水。特征:三相接触充分O2的转移效率高、不需要沉淀池占地少、滤料3-5mm比表面积大微生物附着力强、不需要污泥回流无污泥膨胀。 向上曝气生物滤池的特点:在整个滤池高度上提供正压条件避免短流、延长反冲洗周期减少清洗时间和水,气的量 生物转盘:净水机理:当转盘浸没水中时有机物被生物膜吸附、转盘离开水面时固着水层从空气中吸收氧转移到生物膜和污水中、盘的搅动使大气中的氧进入水中、生物膜与水及空气交替接触去除BOD COD工艺特征:转速可调适用性强、耐冲击负荷、不需要污泥回流动力消耗低、不产生池蝇 生物接触氧化池:特征:采用蜂窝状波纹板状软性纤维状填料形成生物膜立体结构、完全混合型流态充氧抑制厌氧膜的增殖、负荷高处理时间短、可间歇运行、不需要污泥回流不产生污泥膨胀 厌氧法工艺:特征:污泥回流可降低停留时间、真空脱气设备可避免污泥上浮、冷却器使混合液降温抑制甲烷菌在沉淀池内活动 厌氧生物滤池:机理:涂料表面形成厌氧生物膜污水淹没通过滤料水中的有机物被截流吸附及分解。特征:生物量浓度高、抗冲击负荷能力强、不需污泥回流运行管理方便、适合于处理多种浓度的有机废水 升流式厌氧污泥槽:特征:适合处理高中低浓度的有机废水、无需设沉淀池和污泥回流装置、无需填料节约费用提高了容积利用率

(完整版)污泥浓缩池设计说明书

第一节 污泥重力浓缩池设计计算 采用带有竖向栅条污泥浓缩机的辐流式重力浓缩池,用带有栅条的刮泥机刮泥,采用静压排泥。计算草图如图10所示: d 1 图10 浓缩池计算草图 d 2 H i =0.0 5 D h 1. 设计参数 污泥总量计算及污泥浓度计算 二沉池排放的剩余污泥量: Q =870.86m 3 /d ,本设计含水P 率取为99.2%,浓缩后污泥含水率97% ,污泥浓度C 为8g/L ,二沉池污泥固体通量M 采用30kg/(m 2 ·d)。 采用中 温二级消化处理,消化池停留天数为30d ,其中一级消化20d ,二级消化10d 。消化池控制温度为33~35C o ,计算温度为35C o 。 2. 浓缩池面积 2870.8610362.86241 QC F m G ?= ==? 式中: C ——流入浓缩池的剩余污泥浓度(kg/s ),本设计取10kg/m 3 Q ——二沉池流入剩余污泥流量(m 3 /h ), G ——固体通量2/()kg m h ?????,一般采用0.8-1.22 /()kg m h ?;取1.0. 本设计采用四个污泥浓缩池,单个池面积为 90.72m 2 3. 浓缩池的直径 4490.72 10.75F D m ππ ?= = =,本设计取11.0m 4. 浓缩池的容积 3870.8616 145.144244 QT V m ?= ==? 式中:T ——浓缩池浓缩时间(h ),一般采用10-16h ,本设计取16h 。 5. 浓缩沉淀池有效水深

2145.14 1.6090.72 V h m F === 6.浓缩后剩余污泥量 31010010099.2 870.86232.23/10010097 P Q Q m d P --==?=-- 7. 池底高度 辐流沉淀池采用中心驱动刮泥机,池底需做成1%的坡度,刮泥机连续转 动将污泥推入泥斗。池底高度: 411 0.010.05522 D h i m = =?= 8. 污泥斗容积 5t ()55(1.250.25) 1.43h g a b tg m α=-=-= 式中: α— 泥斗倾角,为保证排泥顺畅,圆形污泥斗倾角本设计取55 a — 污泥斗上口半径(m );本设计取1.25m ; b — 污泥斗底部半径(m),本设计取0.25m 。 污泥斗的容积: 222231511 () 1.43(1.25 1.250.250.25) 2.933V h a ab b m ππ=++=??+?+= 9. 浓缩池总高度 本设计取浓缩池超高h 1 = 0.30 m ,缓冲层高度h 3 = 0.30 m , 23450.3 1.60.30.055 1.43 3.685H h h h h h m =++++=++++= 10. 浓缩后的污泥体积 剩余含水率P 1为99.2%,浓缩后的污泥含水率P 2为96%,浓缩后的污泥体积为: 3 12 (1)870.86(199.2%) 174.17/1196% Q P V m d P -?-= = =-- 11.排泥管 采用污泥管道最小管径DN150mm ,间歇将污泥排出贮泥池。

HiROS污泥资源化处理处置工艺简介

HiROS污泥资源化处理处置工艺简介 北京绿创生态科技有限公司 一、HiROS污泥资源化处理处置工艺概述 HiROS(High-rate Recovery of Organic Solid-wastes)技术可实现污泥等有机固废的高速资源化。其遵循资源循环最短原则,采用用部分湿式氧化并与活化膨化相结合,在一定的温度、压力和氧化剂作用下,将污泥中易降解有机物(糖类、脂肪、蛋白质等)水解、氧化;使污泥稳定、减量、无害化,同时释放出能量供工艺回用;然后将原污泥中较难降解的木质素、纤维素活化、膨化,成为高吸附性的物质;最终实现污泥的稳定处理处置和资源化。 整个工艺处理过程在密闭的反应器系统中连续进行,处理过程中充分利用反应自身产生的热能,以降低整个系统的能耗。进料中含有杂质或有害物质亦在过程中去除(如各类菌类、重金属等),工艺过程中不产生其他次生污染物。污泥从进入系统到形成资源化产品仅需一个小时的时间,设备的处理能力可以根据需要定制,通常单机处理规模可以从50吨/天到500吨/天。 经该技术处理后得到的资源化产品具有很高的吸水及持水性、投入土壤可有效提高土壤的氮磷钾(NPK)的缓释、改良,提高土壤透气、隔热性以及颗粒稳定性。产品可作为高品质有机肥直接使用,也可用于农业面源污染防治、土壤板结贫瘠治理、植被修复、荒漠化治理、水土保持、固碳、及其他生态保护等多种用途。 2011年8月26日,住房和城乡建设部科技发展促进中心在北京主持召开了本技术及装备科技成果评估会。评估委员会认为:该技术在污泥部分湿式氧化和活化膨化方面具有创新性,其成套装备水平达到国内领先,具有推广应用价值。 二、技术背景 (一)土地利用的政策趋向 今年3月住建部和发改委联合发布的《城镇污水处理厂污泥处理处置指南(试行)》(以下简称《指南》)为今后几年我国污泥处理事业的发展明确了方向,明确将污泥土地利用作为污泥处置的主要方式和鼓励方向。 在这一方向指引下,结合碳减排的环境要求,焚烧等技术因未实现资源化、尾气治理、增加碳负荷等因素会越来越受到限制,欧美及日本已在陆续关停相关设施;以低温生物过程为特征的厌氧、好氧技术的应用推广受生物反应过程本身的技术限制,包括低温生物反应耗时长,相应的占地面积大,温度低不足以杀死细菌病毒虫卵等有害生命体致使终端产物无法有效利用等。 《指南》第四章<污泥处理的单元技术>第六节<其他技术>中提及,“热处理没有氧化剂通入,而湿式氧化需要向反应器内通入氧化剂”,经处理后的污泥“脱水性能大幅度提高,

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

污泥重力浓缩池设计计算

污泥重力浓缩池设计计算Last revision on 21 December 2020

第一节 污泥浓缩池的设计计算 一、设计要求: (一)连续式重力浓缩池可采用沉淀池形式,一般为竖流式或辐流式; (二)浓缩时间一般采用10~16h 进行核算,不宜过长,活性污泥含水率一般为%~%; (三)污泥固体负荷采用20~30kg/m 3,浓缩后污泥含水率可达97%左右; (四)浓缩池的有效水深一般为4m 左右; (五)浮渣挡板高出水面~,淹没深度为~二、设计参数 采用连续式重力浓缩池,进入浓缩池的剩余污泥量为Q =2253.33m 3/d =93.89m 3/?,污泥初始含水率为P 1=99.5%(即固体浓度C 0=5kg/m 3),浓缩后污泥含水率为P 2=97%,污泥固体通量采用30kg/(m 2.d)。 三、设计计算 (一)浓缩池面积 A =QC 0 =2253.33×5 =375.56m 2 式中:Q —污泥量,m 3/d ; C 0—污泥固体浓度,kg/m 3; G —污泥固体通量,kg/(m 2.d) (二)浓缩池之径D 设计采用2座圆形辐流池,单池面积为: A 1=A =375.56 2 =187.78m 2 浓缩池直径D: D =√4A 1 =√4×187.78 3.14 =15.47m ,取D =16m 。 (三)浓缩池深度H 有效水深?2: ?2=QT 24A =2253.33×14 24×375.56

=3.5m 式中:T —污泥浓缩时间,采用14h 设超高?1=0.3m ,缓冲层高度?3=0.3m ,浓缩池设机械刮泥设备,池底坡度i =1/20,污泥斗上底直径D 2=2.4m ,下底直径D 1=1m ,则池底坡度造成的深度?4为: ?4=(D 2?D 2 2)i =(162?2.4 2 )×0.05 =0.34m 污泥斗高度?5为: ?5=(D 22?D 1 2)tan 55° =(2.42?1 2 )×tan 55° =1.0m 则浓缩池深度为: H =?1+?2+?3+?4+?5 =0.3+3.5+0.3+0.34+1.0 =5.44m (四)排泥管 剩余污泥量为15.65m 3/?=0.00435m 3/s ,泥量很小,采用最小管径DN200mm ,连续地将污泥排入贮泥池里。 图 污泥浓缩池计算图 三、设备选型 池径D =16m ,水深为,选用SNZ 型中心传动浓缩机,参数如下: Q 1=Q 100?P 1 100?P 2 =93.89×100?99.5 100?97 =15.65m 3/?=375.6m 3/d 式中:Q 1—浓缩后污泥量; P 1—浓缩前污泥含水率; P 2—浓缩后污泥含水率 五、上清液回流计算 (一)浓缩后分离出的上清液为 Q 2=Q P 1?P 2 100?P 2 =93.89×99.5?97 100?97 =78.24m 3/?

污泥浓缩池设计参考

关于污泥浓缩的设计规定及数据 (1)、进泥含水率:当为初次污泥时,其含水率一般为95%-97%;当为剩余活性污泥时,其含水率一般为99.2%-99.6%。 (2)、污泥固体负荷:当为初次污泥时,污泥固体负荷宜采用80-120Kg/(m2.d);当为剩余法泥时,污泥固体负荷宜采用30-60Kg/(m2.d)。 (3)、浓缩后污泥含水率:由曝气池后二次沉淀池进入污泥浓缩池的污泥含水率,当采用99.2%-99.6%时,浓缩后污泥含水率宜为97%-98%。 (4)、浓缩时间不宜小于12h;但也不要超过24h。 (5)、有效水深一般宜为4m,最低不小于3m。 (6)、污泥室容积和排泥时间,应根据排泥方法和两次排泥间时间而定,当采用定期排泥时,两次排泥间一般可采用8h。 (7)、集泥设施:辐流式污泥浓缩池的集泥装置,当采用吸泥机时,池底坡度可采用0.003;当采用刮泥机时,不宜小于0.01。不设刮泥设备时,池底一般设有泥斗。其泥斗与水平面的倾角,应不小于50度。刮泥机的回转速度为0.75-4r/h,吸泥机的回转速度为1r/h,其外缘线速度一般宜为1-2m/min。同时在刮泥机上可安设栅条,以便提高浓缩效果,在水面设除浮渣装置。 8)、构造及附属设施 一般采用水密性钢肋混凝土建造。设污泥投入管、排泥管、排上清液管,排泥管最小管径采用150mm,一般采用铸铁管。 (9)、竖流式浓缩池:当浓缩池较小时,可采用竖流式浓缩池,一般不设刮泥机,污泥室的截锥体斜壁与水平面所形成的角度,应不小于50°,中心管按污泥流量计算。沉淀区按浓缩分离出来的污水流量进行设计。 (10)、上清液:浓缩池的上清液,应重新回到初沉池前进行处理。其数量和有机物含量参与全厂的物料平衡计算。 (11)、二次污染:污泥浓缩池一般均散发臭气,必须时应考虑防臭或脱臭措施。臭气控制可以从以下三方面着手,即封闭、吸收和掩撇。所谓封闭,是指用盖子或其它设备封住臭气发生源;所谓吸收,是指用化学药剂来氧化或净化臭气;所谓掩蔽,是指采用掩蔽剂使臭气暂时不向外扩散。 重力浓缩池设计参数 污泥种类

活性污泥法工艺的原理

活性污泥法工艺的原理 一、活性污泥的形态、组成与性能指标 1.活性污泥法工艺 活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。 2.活性污泥的形态和组成 活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。 活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。

污泥浓缩工艺选择

污泥浓缩工艺选择-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

污泥浓缩工艺选择 污泥浓缩的目的是降低污泥的含水率,减少污泥体积,以利于后续处理。选择污泥浓缩方法时,应综合考虑污泥本身的性质和最终处置方法。常用的污泥浓缩法有重力浓缩法、气浮浓缩法和机械浓缩法。 气浮浓缩法由于动力消耗大,操作管理要求高,通常适用于生物膜法产生的污泥,故本工程不考虑采用气浮浓缩法。重力浓缩法和机械浓缩法的比较见表3-10。 从表3-10可看出,虽然重力浓缩土建费用较机械浓缩高,但其设备费用较低,电耗低。机械浓缩在污泥量较低时,其优势较为明显,但在污泥量较高时,其电耗较高,重力浓缩优势较为明显。本工程污水处理规模大,污泥量较大,采用重力浓缩更为稳定及节能。因此,本工程污泥浓缩处理工艺推荐采用重力浓缩方案。 3.7.3.3污泥脱水工艺选择 污泥脱水的目的是进一步降低污泥的含水率,减少污泥体积,便于污泥运输和处 置。 污泥脱水有机械脱水和自然干化两种方法。污泥干化场虽然基建费用低,设备投资少,操作简单,运行费用低,但占地面积大,卫生条件很差,且受污泥性质和气候的影 响大,在降雨量充沛的浙江上虞不适用。 本工程污泥脱水处理工艺推荐采用机械脱水。

常见的机械脱水机有带式和离心式污泥脱水机两种,它们的技术经济比较列于表3-11中。 表3-11 带机与离心机技术经济比较表 从表3-11中看出: 1. 脱水污泥含水率带式污泥脱水机与离心脱水机相当。 2. 运行的可靠性:带式机具有成熟的运行经验,而离心机自动运转,维修量小,可实现无人管理,运转的可靠性相对较高。 3. 噪声:离心机高速旋转,噪声较大。 4. 环境卫生:离心机完全在全封闭状态下工作,环境卫生条件好。但带式机即使采用加盖型,卫生条件也较差。 5. 运行维护管理:带式机所需辅助设备较多,需要高压冲洗水泵和空压机等,需清洗、更换滤布及滤布纠编等,设备运行维护管理较麻烦。离心机自动运转,维修量小,可实现无人管理。 6. 设备投资及运行成本:离心机价格较高,电耗较大,但其药耗较低,维修及操作工作量较小,其综合运行成本与带式机相当。 经综合比较,本工程污泥处理拟推荐离心式脱水机设备。

污泥浓缩工艺选择

污泥浓缩工艺选择 污泥浓缩的目的是降低污泥的含水率,减少污泥体积,以利于后续处理。选择污泥浓缩方法时,应综合考虑污泥本身的性质和最终处置方法。常用的污泥浓缩法有重力浓缩法、气浮浓缩法和机械浓缩法。 气浮浓缩法由于动力消耗大,操作管理要求高,通常适用于生物膜法产生的污泥,故本工程不考虑采用气浮浓缩法。重力浓缩法和机械浓缩法的比较见表3-10。 从表3-10可看出,虽然重力浓缩土建费用较机械浓缩高,但其设备费用较低,电耗低。机械浓缩在污泥量较低时,其优势较为明显,但在污泥量较高时,其电耗较高,重力浓缩优势较为明显。本工程污水处理规模大,污泥量较大,采用重力浓缩更为稳定及节能。因此,本工程污泥浓缩处理工艺推荐采用重力浓缩方案。 3.7.3.3污泥脱水工艺选择 污泥脱水的目的是进一步降低污泥的含水率,减少污泥体积,便于污泥运输和处置。 污泥脱水有机械脱水和自然干化两种方法。污泥干化场虽然基建费用低,设备投资少,操作简单,运行费用低,但占地面积大,卫生条件很差,且受

污泥性质和气候的影响大,在降雨量充沛的浙江上虞不适用。 本工程污泥脱水处理工艺推荐采用机械脱水。 常见的机械脱水机有带式和离心式污泥脱水机两种,它们的技术经济比较列于表3-11中。 表3-11 带机与离心机技术经济比较表 从表3-11中看出: 1. 脱水污泥含水率带式污泥脱水机与离心脱水机相当。 2. 运行的可靠性:带式机具有成熟的运行经验,而离心机自动运转,维修量小,可实现无人管理,运转的可靠性相对较高。 3. 噪声:离心机高速旋转,噪声较大。 4. 环境卫生:离心机完全在全封闭状态下工作,环境卫生条件好。但带式机即使采用加盖型,卫生条件也较差。 5. 运行维护管理:带式机所需辅助设备较多,需要高压冲洗水泵和空压机等,需清洗、更换滤布及滤布纠编等,设备运行维护管理较麻烦。离心机自动运转,维修量小,可实现无人管理。 6. 设备投资及运行成本:离心机价格较高,电耗较大,但其药耗较低,维修及操作工作量较小,其综合运行成本与带式机相当。 经综合比较,本工程污泥处理拟推荐离心式脱水机设备。

污泥浓缩池设计

一、设计参数 (1)进泥含水率:当为初次沉淀池污泥时,其含水率一般为95%~97%;当为二次沉淀池进入污泥浓缩池的污泥时,其含水率一般为99.2%~99.6%;当为混合污泥时,其含水率一般为98%~99.5%。由于本设计进入污泥浓缩池的污泥为沉砂池和曝气池的混合污泥,因此进泥含水率P1取99.0%。 (2)浓缩后污泥含水率:浓缩后污泥含水率宜为97%~98%,本设计P2取97%。 (3)污泥固体负荷:当为混合污泥时,污泥固体负荷为25~80kgSS/(m2 · d),本设计取=25kgSS/(m2 · d)。 (4)污泥浓缩时间:浓缩时间不宜小于12h,但也不要超过24h,以防止污泥厌氧腐化,本设计取浓缩时间T=17h。 (5)贮泥时间:定期排泥时,贮泥时间t=4h。 (6)进泥浓度取c=10g/L。 (7)浓缩池固体通量M为0.5~10kg/(m2 · h),本设计取1.0 kg/(m2 · h),即24 kg/(m2 · d)。 二、设计计算 (1)浓缩池池体计算 浓缩池污泥量为混凝沉淀池和二沉池的污泥量之和,由前面计算可知,混凝沉淀池的产泥量为=64m3/d,二沉池的产泥量为=12.5m3/d,则浓缩池污泥总流量为: m3/d =3.19 m3/h (2)浓缩池总面积 m2 (3)单池面积m2 (4)浓缩池直径 m 取D=4.6m (5)浓缩池工作部分高度

m (6)排泥量与存泥容积 浓缩后排出含水率P2=97.0%的污泥,则 =m3/d=1.06 m3/h 按4h贮泥时间计泥量,则贮泥区所需容积 =4 =4 1.06=4.24m3 泥斗容积 =m3 式中:h4——泥斗的垂直高度,取1.2m r1——泥斗的上口半径,取1.1m r2——泥斗的下口半径,取0.6m 设池底坡度为0.06,池底坡降 m 故池底可贮泥容积 =m3 因此,总贮泥容积 m3 m3(满足要求)(7)浓缩池总高度 浓缩池的超高h2取0.30m,缓冲层高度h3取0.30m,则浓缩池的总高度H为 (8)浓缩池排水量

污泥浓缩工艺的分类及发展趋势和特性比较

污泥浓缩 污泥浓缩(Thicken)的目的是降低污泥含水率,减少污泥体积,以利于后续处理与利用。 污泥浓缩的方法通常有五种:重力浓缩,气浮浓缩、离心浓缩、带式浓缩机浓缩和转鼓浓缩机浓缩等。 1. 污泥浓缩工艺 1)重力浓缩 重力浓缩本质上是一种沉淀工艺,属于压缩沉淀。在污水处理厂中一般将初沉污泥和二沉污泥混合后采用重力浓缩,这样可以提高重力浓缩池的浓缩效果,重力浓缩池固体表面负荷根据取决于二种污泥的比例。 重力浓缩可以分为间歇式和连续式两种,间歇式重力浓缩主要用于小型污水处理厂,连续式重力浓缩主要用于大、中型污水处理厂。 2)气浮浓缩 根据气泡形成的方式,气浮可以分为:压力溶气气浮、生物溶气气浮、涡凹气浮、真空气浮、化学气浮、电解气浮等,在污泥处理中压力溶气气浮工艺已广泛应用于剩余活性污泥浓缩中,生物溶气气浮工艺浓缩活性污泥也已有应用,涡凹气浮工艺在污泥浓缩中的应用正在摸索中,其它几种气浮在污泥浓缩中的应用尚未见报道。 3)离心浓缩 离心浓缩工艺的动力是离心力,离心力是重力的500~3000倍。 离心浓缩工艺最早始于上世纪20年代初,当时采用的是取原始的筐式离心机,后经过盘嘴式等几代更换,现在普遍采用的是卧螺式离心机。与离心脱水的区别在于离心浓缩用于浓缩活性污泥时,一般不需加入絮凝剂调质,只有当需要浓缩污泥含固率大于6%时,才加入少量絮凝剂。而离心脱水机要求必须加入絮凝剂进行调质。 离心浓缩占地小,不会产生恶臭,对于富磷污泥可以避免磷的二次释放,提高污泥处理系统总的除磷率,造价低,但运行费用的机械维修费用高,经济性差,一般很少用于污泥浓缩,但对于难以浓缩的剩余活性污泥可以考虑使用。 4)带式浓缩机浓缩 带式浓缩机主要用于污泥浓缩脱水一体化设备的浓缩段。重力带式机械浓缩机(Gravity Belt Thickener, GBT)主要由框架、进泥配料装置、脱水滤布、可调泥耙和泥坝组成。其浓缩过程是这样的:污泥进入浓缩段时被均匀摊铺在滤布上,好似一层薄薄的泥层,在重力作用下泥层中污泥的表面水大量分离并通过滤布空隙迅速排走,而污泥固体颗粒则被截留在滤布上。带式机械浓缩机通常具备很强的可调节性,其进泥量、滤布走速,泥耙夹角和高度均可进行有效地调节以达到预期的浓缩效果。 污泥浓缩脱水一体化设备浓缩过程是关键控制环节,因此水力负荷显得更为重要。一般,设备厂家通常会根据具体的泥质情况提供水力负荷或固体负荷的建议值。应当注意的是,不同厂商设备之间的水力负荷可以相差很大,质量一般的设备只有20~30m3/(m带宽?h),但好的设备可以做到50~60m3/(m带宽?h)甚至更高,设备带宽最大为3.0m。在没有详细的泥质分析资料时,设计选型的水力负荷可按40~45m3/(m带宽?h)考虑。 深圳罗芳污水处理厂,肇庆污水处理厂等采用了带式机械浓缩机。 5)转鼓机械浓缩 转鼓转筛机械浓缩机(Rotary Drum Thickener,RDT或Rotary Sieve Thickener,RST)或类似的装置主要用于浓缩脱水一体化设备的浓缩段,转鼓机械浓缩是将经化学混凝的污泥进行螺旋推进脱水和挤压脱水[14],是污泥含水率降低的一种简便高效的机械设备。 宜兴华都琥珀环保机械制造有限公司采用德国琥珀公司的技术和标准进行生产制造的ROS2系列污泥浓缩机采用浓缩挤压,对含固率大过0.5%的污泥可浓缩到含固率6~10%以

污泥处理的一般工艺

典型的污泥处理工艺流程,包括四个处理或处置阶段。第一阶段为污泥浓缩,主要目的是使污泥初步减容,缩小后续处理构筑物的容积或设备容量;第二阶段为污泥消化,使污泥中的有机物分解;第三阶段为污泥脱水,使污泥进一步减容;第四阶段为污泥处置,采用某种途径将最终的污泥予以消纳。以上各阶段产生的清液或滤液中仍含有大量的污染物质,因而应送回到污水处理系统中加以处理。以上典型污泥处理工艺流程,可使污泥经处理后,实现“四化”: (1)减量化:由于污泥含水量很高,体积很大,且呈流动性。经以上流程处理之后,污泥体积减至原来的十几分之一,且由液态转化成固态,便于运输和消纳。 (2)稳定化:污泥中有机物含量很高,极易腐败并产生恶臭。经以上流程中消化阶段的处理以后,易腐败的部分有机物被分解转化,不易腐败,恶臭大大降低,方便运输及处置。 (3)无害化:污泥中,尤其是初沉污泥中,含有大量病原菌、寄生虫卵及病毒,易造成传染病大面积传播。经过以上流程中的消化阶段,可以杀灭大部分的姻虫卵、病原菌和病毒,大大提高污泥的卫生指标。 (4)资源化:污泥是一种资源,其中含有很多热量,其热值在10000~15000kJ/kg (干泥)之间,高于煤和焦炭。另外,污泥中还含有丰富的氮磷钾,是具有较高肥效的有机肥料。通过以上流程中的消化阶段,可以将有机物转化成沼气,使其中的热量得以利用,同时还可进一步提高其肥效。污泥浓缩常采用的工艺有重力浓缩、离心浓缩和气浮浓缩等。污泥消化可分成厌氧消化和好氧消化两大类。污泥脱水可分为自然干化和机械脱水两大类。常用的机械脱水工艺有带式压滤脱水、离心脱水等。污泥处置的途径很多,主要有农林使用、卫生填埋、焚烧和生产建筑材料等。 以上为典型的污泥处理工艺流程,在各地得到了普遍采用。但由于各地的条件不同,具体情况也不同,尚有一些简化流程。当污泥采用自然干化方法脱水时,可采用以下工艺流程:污泥—→污泥浓缩—→干化场—→处置 也可进一步简化为: 污泥—→干化场—→处置 当污泥处置采用卫生填埋工艺时。可采用以下流程: 污泥—→浓缩—→脱水—→卫生填埋 我国早期建成的处理厂中,尚有很多厂不采用脱水工艺,直接将湿污泥用做农肥,工艺流程如下: 污泥—→污泥浓缩—→污泥消化—→农用 污泥—→污泥浓缩—→农用 污泥—→农用 国外很多处理厂采用焚烧工艺,其中很多不设消化阶段,流程如下: 污泥—→浓缩—→脱水—→焚烧 省去消化的原因,是不降低污泥的热值,使焚烧阶段尽量少耗或不耗另外的燃料。

污水厂污泥计算

是使污泥减量、稳定、无害化及综合利用。 (1)确保水处理的效果,防止二次污染; (2)使容易腐化发臭的有机物稳定化; (3)使有毒有害物质得到妥善处理或利用; (4)使有用物质得到综合利用,变害为利。 (1)按成分不同分: 污泥:以有机物为主要成分。其主要性质是易于腐化发臭,颗粒较细,比重较小(约为~),含水率高且不易脱水,属于胶状结构的亲水性物质。初次沉淀池与二次沉淀池的沉淀物均属污泥。 沉渣:以无机物为主要成分。其主要是颗粒较粗,比重较大(约为2左右),含水率较低且易于脱水,流动性差。沉砂池与某些工业废水处理沉淀池的沉淀物属沉渣。 (2)按来源不同分: 初次沉淀污泥(也称生污泥或新鲜污泥):来自初次沉淀池。 剩余活性污泥(也称生污泥或新鲜污泥):来自活性污泥法后的二次沉淀池。 腐殖污泥(也称生污泥或新鲜污泥):来自生物膜法后的二次沉淀池。 消化污泥(也称熟污泥):生污泥经厌氧消化或好氧消化处理后的污泥。 化学污泥(也称化学沉渣):用化学沉淀法处理污水后产生的沉淀物。例如,用混凝沉淀法去除污水中的磷;投加硫化物去除污水中的重金属离子;投加石灰中和酸性污水产生的沉渣以及酸、碱污水中和处理产生的沉渣等均称为化学污泥。 (3)城市污水厂污泥的特性见表8-1 表8-1 城市废水厂污泥的性质和数量

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可 通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起 附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒 相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中 细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中: p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很 多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1()/(100-95)=(1/2)V1 可见污泥含水率从%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物 含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另 一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)] ×100 (8-2) 式中:R d——可消化程度,%;

污泥浓缩池的设计规定与数据

关于污泥浓缩池的设计规定及数据 摘要:介绍了关于污泥浓缩池的设计规定及数据。 (1)、进泥含水率:当为初次污泥时,其含水率一般为95%-97%;当为剩余活性污泥时,其含水率一般为99.2%-99.6%。 (2)、污泥固体负荷:当为初次污泥时,污泥固体负荷宜采用80-120Kg/(m2.d);当为剩余法泥时,污泥固体负荷宜采用30-60Kg/(m2.d)。 (3)、浓缩后污泥含水率:由曝气池后二次沉淀池进入污泥浓缩池的污泥含水率,当采用99.2%-99.6%时,浓缩后污泥含水率宜为97%-98%。 (4)、浓缩时间不宜小于12h;但也不要超过24h。 (5)、有效水深一般宜为4m,最低不小于3m。 (6)、污泥室容积和排泥时间,应根据排泥方法和两次排泥间时间而定,当采用定期排泥时,两次排泥间一般可采用8h。 (7)、集泥设施:辐流式污泥浓缩池的集泥装置,当采用吸泥机时,池底坡度可采用0.003;当采用刮泥机时,不宜小于0.01。不设刮泥设备时,池底一般设有泥斗。其泥斗与水平面的倾角,应不小于50度。刮泥机的回转速度为0.75-4r/h,吸泥机的回转速度为1r/h,其外缘线速度一般宜为1-2m/min。同时在刮泥机上可安设栅条,以便提高浓缩效果,在水面设除浮渣装置。 (8)、构造及附属设施 一般采用水密性钢肋混凝土建造。设污泥投入管、排泥管、排上清液管,排泥管最小管径采用150mm,一般采用铸铁管。 (9)、竖流式浓缩池:当浓缩池较小时,可采用竖流式浓缩池,一般不设刮泥机,污泥室的截锥体斜壁与水平面所形成的角度,应不小于50°,中心管按污泥流量计算。沉淀区按浓缩分离出来的污水流量进行设计。 (10)、上清液:浓缩池的上清液,应重新回到初沉池前进行处理。其数量和有机物含量参与全厂的物料平衡计算。 (11)、二次污染:污泥浓缩池一般均散发臭气,必须时应考虑防臭或脱臭措施。臭气控制可

相关文档