文档库 最新最全的文档下载
当前位置:文档库 › 四电压比较器LM339详解-lm393典型应用电路

四电压比较器LM339详解-lm393典型应用电路

四电压比较器LM339详解-lm393典型应用电路
四电压比较器LM339详解-lm393典型应用电路

LM339 (LM139,LM239)

LM339 (LM139LM239) PDF

LM339

LM339 1 2mV 2 2-36V ±1V-±18V 3 4 0~ Ucc-1.5V Vo 5

6

LM339 C-14 LM339 IC IR2339 ANI339 SF339

1

LM339 “+ “- LM339

“+ “- “- “+ 10mV LM339 LM339 3-15K

1a Uin Ur Uin>Ur U OH 1

b

3 1/4LM339 R1 R2 U R=R2/ R1+R2 *U CC R t “+ “- Uo “- “+ Uo R1

3

Ui n

1a 1b

1

U U

2

2

3 1/4LM339 U4<2.8V U5=2.8V BG1 242V U4>2.8V 0V BG1 U5 R1 R2 2.7V U

4 U

5 242-5=237V U4

3

1 LM339 Uin U R1

2 U O=U OH Uin Uin>U R2 Uin

LM339

1 1/4LM339 C1 C1=0.1uF f=53Hz C1=0.01uF f=530Hz C1=0.001uF f=5300Hz

电压比较器原理介绍

一、电压比较器原理 电压比较器是集成运放非线性应用电路,常用于各种电子设备中,那么什么是电压比较器呢? 它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压ui加在反相的输入端。 图1电压比较器原理图(a)及传输特性(b) (a)电路图 (b)传输特性当ui<U R时,运放输出高电平,稳压管Dz反向稳压工作。输出端电位被其箝位在稳压管的稳定电压U Z,即 u O=U Z 当ui>U R时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降U D,即 uo=-U D 因此,以U R为界,当输入电压ui变化时,输出端反映出两种状态,高电位和低电位。 表示输出电压与输入电压之间关系的特性曲线,称为传输特性。图1(b)为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压比较器,窗口(双限)电压比较器。 二、集成电压比较器简介 作用:可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。应用:作为模拟电路和数字电路的接口电路。 特点:比集成运放的开环增益低,失调电压大,共模抑制比小;但其响应速度快,传输延迟时间短,而且不需外加限幅电路就可直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力很强,还可直接驱动继电器和指示灯(例如LM311)。 三、电压比较器的应用 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压V A,反相端输入V B。V A和V B的变化如图1(b)所示。

LM339在电磁炉里面的运用各脚电压

LM339的中文资料以及在电磁炉里面的运用各脚电压 第1脚5.14V第2。0.26V第3。18.45V第4。5.12V第5。4.7V第6。3.86V第7。4. 02V第8。1.37V第9。4.76V第10。5.64V第11。1.88V第12。0V由于LM339应用广泛控制使用灵活等特点,所以被很多生产电磁炉的厂家选用,美的电磁炉也不例外。美的电磁炉主电路板也均有运算放大器LM339。在早期生产美的电磁炉电路中,就采用二片运算放大器LM339。从04年后随着电磁炉新产品电路设计不断更新提高,电磁炉主电路板运算放大器LM339也改为单片电路,减少了整机造价成本。(典型代表型号有:MC-PY18B、MC-EF197、MC-SY1913、MC-SY191B第二代、MC-EP2 01)等机型。电磁炉,主电路用LM339是来控制、同步电压、振荡电路、高压保护电路、浪涌保护电路。我们今天了解、掌握、LM339工作原理、及性能参数和特点。明天在售后维修电磁炉中就能得心应手维修好各种电磁炉故障,避免少走弯路。从中节省维修时间,从而提高维修速度、质量、效率、和维修水平。LM339内部有四组电压比较器,自身电压从(+2V-+36V)均可设计选定使用。比较器有“反相输入端”分别为:第4脚,第6脚,第8脚,第10脚:有“同相输入端”分别为:第5脚,第7脚,第9脚,第11脚:有“输出端”分别为:第1脚,第2脚,第13脚,第14脚:(第12脚为负极接地端,第3脚为正极电源接整机电源+18V端)。每个比较器“反相输入端”用“-”表示:“同相输入端”用:“+”表示:和一个输出端。当+端电位高于,“-端时”输出端截止(输出端开路)。当-端电位高于,“+端时”输出端翻转,使输出端变为低电位(输出端饱和)。下面以维修美的MC—SY1913电磁炉为例:一、“浪涌”保护电路故障维修:测比较器LM339第1脚输出端为高电平+4.5V为正常,若为低电平时,应测LM3 39第7脚同相输入端对地+2.1V电压为正常,当电压偏低、或0电压时,则电阻R22变值、或开路损坏。若测LM339第7脚同相输入端对地电压、电阻R22均正常时,测LM339第6脚反相输入端对地+1.9V电压为正常。当电压偏低、或0电压时,则电阻R 34、R33、R50变值或开路,电容器C22、C23漏电,二极管D14断极开路损坏。若LM339第6脚反相输入端对地电压为正常,则LM339损坏,更换以上元器件故障排除。 二、高压保护电路故障维修:当IGBT的集电极脉冲电压高于+1135V时,高压保护电路PWM脉宽调控电路就动作保护,令IGBT输出功率减小,从而避免IGBT 和主电路元器件不受损坏。维修时先拆下加热线盘,测比较器LM339第14脚输出端为高电平+1.2V为正常,若是低电平,则高压保护电路已动作。测LM339第9脚同相输入端对地+4.2V电压为正常,当电压偏低时。为电容器C20漏电、或电阻R36变值开路。如果LM339第9脚同相输入端对地电压正常,则比较器LM339损坏。更换LM 339后故障排除。另外;当浪涌保护电路、高压保护电路故障时,均造成电磁炉出现提锅具时“不报警不加热”故障。三、同步电路故障维修:维修时先接上加热线盘,测比较器LM339第2脚输出端对地+4.8V电压为正常。若电压偏低,测比较器LM33 9第4脚反相输入端对地+3.7V电压为正常。当偏低时,则滤波电容器C2、5uf/275V 失效、及电阻R23(330K/2W)变值受损。测比较器LM339第5脚同相输入端对地+ 3.8V电压为正常,当电压偏低时,则电阻R24(240K/2W)、R27(240K/2W)变值

LM339电压比较器原理应用

四电压比较器LM339的8个典型应用例子 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图2a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。当输入电压Uin>Ur时,输出为高电平UOH。图2b为其传输特性。

电压比较器电路图

电压比较器电路图 单限比较器电路 OH。图1B为其传输特性。 图3为某仪器中过热检测保护电路。它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。UR=R2/(R1+R2)*UCC。同相端的电压就等于热敏元件RT的电压降。当机内温度为设定值以下时,“+”端电压大于“-”端电压,UO为

高电位。当温度上升为设定值以上时,“-”端电压大于“+”端,比较器反转,UO输出为零电位,使保护电路动作,调节R1的值可以改变门限电压,既设定温度值的大小。 图3 迟滞比较器 图1 不难看出,当输出状态一旦转换后,只要在跳变电压值附近的干扰不超过ΔU之值,输出电压的值就将是稳定的。但随之而来的是分辨率降低。因为对迟滞比较器来说,它不能分辨差别小于ΔU的两个输入电压值。迟滞比较器加有正反馈可以加快比较器的响应速度,这是它的一个优点。除此之外,由于迟滞比较器加的正反馈很强,远比电路中的寄生耦合强得多,故迟滞比较器还可免除由于电路寄生耦合而产生的自激振荡。 图2 图3为某电磁炉电路中电网过电压检测电路部分。电网电压正常时,1/4LM339的U4<,U5=,输出开路,过电压保护电路不工作,作为正反馈的射极跟随器BG1是导通

的。当电网电压大于242V时,U4>,比较器翻转,输出为0V,BG1截止,U5的电压就完全决定于R1与R2的分压值,为,促使U4更大于U5,这就使翻转后的状态极为稳定,避免了过压点附近由于电网电压很小的波动而引起的不稳定的现象。由于制造了一定的回差(迟滞),在过电压保护后,电网电压要降到242-5=237V时,U4UR2或UIN

常见电压比较器分析比较

常见电压比较器分析比较 电压比较器通常由集成运放构成,与普通运放电路不同的是,比较器中的集成运放大多处于开环或正反馈的状态。只要在两个输入端加一个很小的信号,运放就会进入非线性区,属于集成运放的非线性应用范围。在分析比较器时,虚断路原则仍成立,虚短及虚地等概念仅在判断临界情况时才适应。 一、零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 图1 过零比较器 (a)反相输入;(b)同相输入 通常用阈值电压和传输特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。

估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)电路,U–=Ui, U+=0, UTH=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种情况下,输出电压的变化规律,然后画出传输特性。 二、任意电平比较器(俘零比较器) 将零电平比较器中的接地端改接为一个参考电压UR(设为直流电压),由于UR的大小和极性均可调整,电路成为任意电平比较器或称俘零比较器。

图2 任意电平比较器及传输特性 (a)任意电平比较器;(b)传输特性 图3 电平检测比较器信传输特性 (a)电平检测比较器;(b)传输特性 电平电压比较器结构简单,灵敏度高,但它的抗干扰能力差。也就是说,如果输入信号因干扰在阈值附近变化时,输出电压将在高、低两个电平之间反复地跳变,可能使输出状态产生误动作。为了提高电压比较器的抗干扰能力,下面介绍有两个不同阈值的滞回电压比较器。 三、滞回电压比较器 滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回比较器也有反相输入和同相输入两种方式。

电压比较器

模拟电子技术自主设计实验 姓名:林启震班级:04101 学号1120410121 实验日期:5.27 台号:教师签字: 电压比较器 一、实验目的 1、掌握电压比较器的分析及其计算 2、学习测试比较器的方法 二、实验仪器 1、双踪示波器 2、信号发生器 3、数字万用表 4、直流电源。 三、实验原理及测量方法 电压比较器(通常称为比较器)的功能是比较两个电压的大小。例如,将一个信号电压Ui和另一个参考电压Ur进行比较,在Ui>Ur和Ui0时,Uo为低电平 Ui<0时,Uo为高电平 集成运放输出的高低电平值一般为最大输出正负电压值U om (a)电路图(b)电压传输特性曲线 图1 过零比较器 2、滞回电压比较器 滞回电压比较器是由集成运放外加反馈网络构成的正反馈电路,如图2所示。Ui为信号电压,Ur为参考电压值,输出端的稳压管使输出的高低电平值为±Uz。可以看出,此电路形成的反馈为正反馈电路。

(a )电路图 (b )电压传输特性曲线 图2 反向滞回电压比较器 电压比较器的特性可以用电路的传输特性来描述,它是指输出电压与输入电压的关系曲线,如图1(b )为过零比较器的电压传输特性曲线。 可以看出,当输入电压从低逐渐升高或从高逐渐降低经过0电压时,Uo 会从一个电平跳变为另一个电平,称0为过零比较器的阈值。阈值定义为当比较器的输出电平从一个电平跳变到另一个电平时对应的输入电压值。 滞回电压比较器的电压传输特性曲线如图2(b )所示。 曲线表明,当输入电压由低向高变化,经过阈值1TH U 时,输出电平由高电平(Uz )跳变为低电平(-Uz )。 2123z TH R U U R R = + 当输入电压由高向低变化,经过阈值2TH U 时,输出电平由低电平(-Uz)跳变为高电平(Uz)。 2123z TH R U U R R -= + 3、电压比较器的测试 测试过零比较器时,可以用一个低频的正弦信号输入至比较器中,直接用双踪示波器监看输出和输入波形,当输入信号幅度适中时,可以发现输入电压大于零、小于零时,输出的高、低电平变化波形,即将正弦波变换为方波。 滞回电压比较器测试时也可由用同样的方法,但在示波器上读取上、下阈值时,误差较大。采用直流输入信号的方案较好,调节输入信号变化,测出输出电平跳变时对应的输入电压值即为阈值。 四、实验内容 1、 过零比较器 (1)连接图1(a )实验电路,检查无误后,接通12V ±直流电源 (2)测量当Ui 悬空时,Uo 的值 (3)调节信号源,使输出频率为100Hz ,有效值为1V 的正弦波信号,并输入至Ui 端,用示波器观察比较器的输入Ui 与输出Uo 波形并记录 (4)改变信号发生器的输出电压Ui 幅值,用示波器观察Uo 变化,测出电压传

LM339--迟滞比较器

LM339 ——迟滞比较器 一、功能描述 本电路是将LM339制作成一个反相迟滞比较器,通过在反相端输入信号,与 同相端的基准电压比较,当U +> U - 时,输出端相当于开路,输出高电平;当U + < U - 时,输出管饱和,相当于输出端接低电平。 二、数据说明 1、测试条件:TDS1012示波器、SG1020A数字合成信号发生器、TH-SS3022 型数显直流稳压电源 2、测试工具:万用表、TDS1012示波器、SG1020A数字合成信号发生器、 TH-SS3022型数显直流稳压电源 3、测试方法:测试前用万用表检测电路的通路与断路,测试时用示波器观 察输入和输出波形并记录。 4、测试数据: 表1 输入频率与输出的关系 测试条件:单电源输入Vcc=12V,输入正弦波,峰峰值为2V,加1V偏置,Vref=1V)

图1 输入频率与输出的关系 表2 输入电压与输出的关系 测试条件:单电源输入Vcc=12V,输入正弦波,频率为5K,Vref=1V) 5、结果分析: 迟滞比较器中加入正反馈可以克服输出端的抖动,所以在输入电压幅值增加时,输出端的幅值没有发生任何改变。输出电压的幅值不会随频率的改变而改变,但是保持高低电平的时间高度随着频率的增大而减小,并且波形随频率的增大开始产生失真,在我们的测量中,最大可以达到210KHZ。同时从上面的数据可以看出,上升时间总是大于下降时间。 三、芯片介绍 1、芯片特点:内部装有四个独立的电压比较器,工作电源电压范围宽,单

电源、双电源均可工作(单电源: 2~36V ,双电源:±1~±18V );消耗电流小,I CC =1.3mA;输入失调电压小,V IO =±2mV ; 共模输入电压范围宽, Vic=0~Vcc-1.5V;输出与TTL ,DTL ,MOS ,CMOS 等兼容; 输出可以用开路集电极连接“或”门. 2、芯片用途: 满足比较器的基本用途,可以用作单限比较器,迟滞比较器,窗口比较器等,用来比较电压,用得最多的是在电磁炉中,做过压过热保护。 3、引脚及封装: 采用双列直插14 脚塑料封装(DIP14)和微形的双列14 脚塑料封装(SOP14) 图2 引脚图及内部结构图 表3 主要参数

电压比较器教程文件

电压比较器

实验十集成运放基本应用之三——电压比较电路 姓名:班级:学号:实验时间: 一、实验目的 1、掌握比较器的电路构成及特点 2、学会测试比较器的方法 二、实验原理 1、图1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。图1(b)为(a)图比较器的传输特性。 (a) 图1 电压比较器 (b) 当UiUR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。 因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。高电位和低电位。 2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。 (1)、图2过零比较器 D1D2为幅稳压管。信号从运放的反相端输入,参考电压为零。当u1>0 时,u0=-(Uz+U D),当u1<0时,u0=+(Uz+U D)

(a) 图2 过零比较器 (b) (2)、图3为滞回比较器。 过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。为此就需要输出特性具有滞回现象。如图3所示: (a) (b) 图3 滞回比较器 从输出端引入一个电阻分压支路到同相输入端,若Uo 改变状态,U∑ 点也随着改变点位,使过零点离开原来位置。当Uo 为正(记作U D )U∑=[ R2/( R2+ R f )]* U D ,则当UD> U∑后,Uo 再度回升到UD,于是出现图(b)中所示的滞回特性。- U∑ 与U∑ 的差别称为回差。改变R2 的数值可以改变回差的大小。 三、实验设备与器件 1、±12V直流电源 2、直流电压表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器 6、运算放大器μA741×2 7、稳压管2CW231×1 8、二极管4148×2 9、电阻器等

四电压比较器LM339的典型应用

四电压比较器LM339的典型应用 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图2a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。当输入电压Uin>Ur 时,输出为高电平UOH。图2b为其传输特性。

电压比较器电路图

电压比较器电路。 电压比较器是比较两个电压和开关输出或高或低的状态,取决于电压较高的电路。一个基于运放电压比较器上显示。图1显示了一个电压比较器的反相模式图显示了在非反相模式下的电压比较。 电压比较器 非反相比较 在非反相比较器的参考电压施加到反相输入电压进行比较适用于非反相输入。每当进行比较的电压(Vin)以上的参考电压进入运放的输出摆幅积极饱和度(V+),和副反之亦然。实际上发生了什么是VIN和Vref(VIN-VREF)之间的差异,将是一个积极的价值和由运放放大到无穷大。由于没有反馈电阻Rf,运放是在开环模式,所以电压增益(AV)将接近无穷。+所以最大的可能值,即输出电压摆幅,V。请记住公式AV=1+(Rf/R1)。当VIN低于VREF,反向发生。 反相比较

在相比较的情况下,参考电压施加到非反相输入和电压进行比较适用于反相输入。每当输入电压(Vin)高于VREF,运放的输出摆幅负饱和。倒在这里,两个电压(VIN-VREF)之间的差异和由运放放大到无穷大。记住公式AV=-Rf/R1。在反相模式下的电压增益的计算公式是AV=-Rf/R1.Since没有反馈电阻,增益将接近无穷,输出电压将尽可能即负,V-。 实际电压比较器电路 一种实用的非基于UA741运放的反相比较器如下所示。这里使用R1和R2组成的分压器网络设置参考电压。该方程是VREF=(五+/(R1+R2)的)×R2的。代入这个方程电路图值,VREF=6V。当VIN高于6V,输出摆幅?+12V直流,反之亦然。从A+/-12V 直流双电源供电电路。 电压比较器的使用741

一些其他的运放,你可能会感兴趣的相关电路 1求和放大器:总结放大器可以用来找到一个信号给定数量的代数和。 2。集成使用运放:对于一个集成的电路,输出信号将输入信号的积分。例如,一个集成的正弦波使余弦波,方波一体化为三角波等。 3。反相放大器:在一个反相放大器,输出信号将输入信号的倒版,是由某些因素放大。 4,仪表放大器:这是一个类型的差分放大器输入额外的缓冲阶段。输入阻抗高,易于匹配结果。仪表放大器具有更好的稳定性,高共模抑制比(CMRR),低失调电压和高增益。

lm339应用电路图

lm339应用电路图 lm339应用电路图:LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:失调电压小,典型值为2mV;电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;对比较信号源的内阻限制较宽;共模范围很大,为0~(Ucc-1.5V)Vo;差动输入电压范围较大,大到可以等于电源电压;输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM 339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端

电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。L M339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图3为某仪器中过热检测保护电路。它用单电源供电,1/4LM3 39的反相输入端加一个固定的参考电压,它的值取决于R1于R2。UR=R2/(R1+R2)*UCC。同相端的电压就等于热敏元件Rt的电压降。当机内温度为设定值以下时,“+”端电压大于“-”端电压,Uo为高电位。当温度上升为设定值以上时,“-”端电压大于“+”端,比较器反转,Uo输出为零电位,使保护电路动作,调节R1的值可以改变门限电压,既设定温度值的大小。

LM339比较器应用电路

lm339应用电路图:LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:失调电压小,典型值为2mV;电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;对比较信号源的内阻限制较宽;共模范围很大,为0~(Ucc-1.5V)Vo;差动输入电压范围较大,大到可以等于电源电压;输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图3为某仪器中过热检测保护电路。它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。UR=R2/(R1+R2)*UCC。同相端的电压就等于热敏元件Rt的电压降。当机内温度为设定值以下时,“+”端电压大于“-”端电压,Uo为高电位。当温度上升为设定值以上时,“-”端电压大于“+”端,比较器

电压比较器

实验十集成运放基本应用之三——电压比较电路 姓名:班级:学号:实验时间: 一、实验目的 1、掌握比较器的电路构成及特点 2、学会测试比较器的方法 二、实验原理 1、图1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。图1(b)为(a)图比较器的传输特性。 (a) 图1 电压比较器 (b) 当UiUR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。 因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。高电位和低电位。 2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。 (1)、图2过零比较器 D1D2为幅稳压管。信号从运放的反相端输入,参考电压为零。当u1>0时,u0=-(Uz+U D),当u1<0时,u0=+(Uz+U D) (a) 图2 过零比较器(b)

(2)、图3为滞回比较器。 过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo 将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。为此就需要输出特性具有滞回现象。如图3所示: (a) (b) 图3 滞回比较器 从输出端引入一个电阻分压支路到同相输入端,若Uo 改变状态,U∑ 点也随着改变点位,使过零点离开原来位置。当Uo 为正(记作U D )U∑=[ R2/(R2+ R f )]* U D ,则当UD> U∑后,Uo 再度回升到UD,于是出现图(b)中所示的滞回特性。- U∑ 与U∑ 的差别称为回差。改变R2 的数值可以改变回差的大小。 三、实验设备与器件 1、±12V直流电源 2、直流电压表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器 6、运算放大器μA741×2 7、稳压管2CW231×1 8、二极管4148×2 9、电阻器等 四、实验内容 1、过零电压比较器 (1)如图5所示在运放系列模块中正确连接电路,并接通±12V电源。 图5 过零比较器

全面分析运算放大器和电压比较器的区别

全面分析运算放大器和电压比较器的区别 作者:Mymusics@快修网https://www.wendangku.net/doc/bd3841928.html, 运算放大器和比较器无论外观或图纸符号都差不多,那么它们究竟有什么区别,在实际维修中如何区分?今天我来图文全面分析一下,夯实大家的基础,让维修更上一层楼。 先看一下它们的内部区别图: 从内部图可以看出运算放大器和比较器的差别在于输出电路。运算放大器采用双晶体管推挽输出,而比较器只用一只晶体管,集电极连到输出端,发射极接地。

比较器需要外接一个从正电源端到输出端的上拉电阻,该上拉电阻相当于晶体管的集电极电阻。 运算放大器可用于线性放大电路(负反馈),也可用于非线性信号电压比较(开环或正反馈)。 电压比较器只能用于信号电压比较,不能用于线性放大电路(比较器没有频率补偿)。 两者都可以用于做信号电压比较,但比较器被设计为高速开关,它有比运算放大器更快的转换速率和更短的延时。 运算放大器:做为线性放大电路,我这里就不多说了(以后有需要单独讨论放大器),这个在主板电路图很常见,一般用于稳压电路,使用负反馈电路它与晶体管配合相当于一个三端稳压器,但使用起来更灵活。如下图: 在许多情况下,需要知道两个信号中哪个比较大,或一个信号何时超出预设的电压(用作电压比较)。用运算放大器便可很容易搭建一个简单电路实现该功能。当V+电压大于V-电压时,输出高电平。当V+电压小于V-电压时,输出低电平。如下图:

分析一下电路,2.5v经电阻分压得到1V输入到V-端,当总线电压正常产生1.2v 时,输入到V+,此时V+电压比V-电压高,输出一个高电平到CPU电源管理芯片的EN开启脚。如果总线电压没输出或不正常少于1v,此时V+电压比V-电压低,输出低电平。 电压比较器:当比较器的同相端电压(V+)低于反相端电压(V-)时,输出晶体管导通,输出接地低电平;当同相端电压高于反相端时,输出晶体管截止,通过上拉电阻的电源输出高电平。如下图: 分析一下该电路,上面的比较器U8A当有VCC输出时经过分压电阻分压后,输入到同相端(V+),其电压大于5VSB经分压后输入到反相端(V-)的电压,内部晶体管截止,输出经上拉电阻的电源12v(同时下面的比较器U8B同相端电压也大于反相端,内部晶体管也是截止),N沟道场管Q37导通,输出VCC5V。同时P 沟道场管Q293截止。反之,当反相端电压大于同相端电压时,内部晶体管导通,

(完整版)四电压比较器LM339简介

四电压比较器LM339简介 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)V o;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 图1 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路

电磁炉LM339比较器工作原理

电磁炉LM339比较器工作原理 整理日期:2013.6.25. 21:28:12 资料整理者 zhuwenwenwen 李英丽: LM339比较器引脚图 LM339内部有四组电压比较器,自身电压从(+2V-+36V)均可设计选定使用。比较器有: “反相输入端”分别为:第4脚,第6脚,第 8脚,第 10脚:有 “同相输入端”分别为:第5脚,第7脚,第 9脚,第 11脚:有“ 输出端”分别为:第2脚,第1脚,第14脚,第13脚:(第12脚为负极接地端,第3脚为正极电源接整机电源+18V端)。每个比较器“反相输入端”用“-”表示:“同相输入端”用:“+”表示:和一个输出端。当+端电位高于,“-端时”输出端截止(输出端开路)。当-端电位高于,“+端时”输出端翻转,使输出端变为低电位(输出端饱和)。 下面以维修美的MC—SY1913电磁炉为例: 一、“浪涌”保护电路故障维修: 测比较器LM339第1脚输出端为高电平+4.5V为正常,若为低电平时,应测LM339第7脚同相输入端对地+2.1V电压为正常,当电压偏低、或0电压时,则电

阻R22变值、或开路损坏。若测LM339第7脚同相输入端对地电压、电阻R22均正常时,测LM339第6脚反相输入端对地+1.9V电压为正常。当电压偏低、或0电压时,则电阻R34、R33、R50变值或开路,电容器C22、C23漏电,二极管D14断极开路损坏。若LM339第6脚反相输入端对地电压为正常,则LM339损坏,更换以上元器件故障排除。 二、高压保护电路故障维修: 当IGBT的集电极脉冲电压高于+1135V时,高压保护电路PWM脉宽调控电路就动作保护,令IGBT输出功率减小,从而避免IGBT和主电路元器件不受损坏。维修时先拆下加热线盘,测比较器LM339第14脚输出端为高电平+1.2V为正常,若是低电平,则高压保护电路已动作。测LM339第9脚同相输入端对地+4.2V电压为正常,当电压偏低时。为电容器C20漏电、或电阻R36变值开路。如果LM339第9脚同相输入端对地电压正常,则比较器LM339损坏。更换LM339后故障排除。另外;当浪涌保护电路、高压保护电路故障时,均造成电磁炉出现提锅具时“不报警不加热”故障。 三、同步电路故障维修: 维修时先接上加热线盘,测比较器LM339第2脚输出端对地+4.8V电压为正常。若电压偏低,测比较器LM339第4脚反相输入端对地+3.7V电压为正常。当偏低时,则滤波电容器C2、5uf/275V失效、及电阻R23(330K/2W)变值受损。测比较器LM339第5脚同相输入端对地+3.8V电压为正常,当电压偏低时,则电阻R24(240K/2W)、R27(240K/2W)变值开路受损、电容器C19漏电、稳压二极管Z3击穿、及CPU芯片第9脚PAN-IRO输出电压失地损坏。均导致LM339第2脚输出端对地电压偏低,更换损坏元器件故障排除。 四、驱动放大电路故障维修: 测驱动放大部分三极管Q9集电极对地+18V电压为正常,测比较器LM339第10脚反相输入端对地+4.6V电压为正常。当电压偏低时,则电阻R31变值。测比较

LM324电压比较器电路图和应用

电压比较器基本原理及设计应用 本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。 什么是电压比较器 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电 平(饱和输出);VB>VA时,Vout输出低电平。根据输出电平的高低便可知道哪个电压大。

如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。 图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。

如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4 个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

LM339芯片介绍

LM339芯片介绍 LM339电压比较器芯片内部装有四个独立的电压比较器,利用LM339可以方便组成各种电压比较器电路和振荡器电路。 LM339电压比较器的特点是:①失调电压小,典型值为2mV;②电源电压范围宽,单电源为2-36V,双电源电压为±1V-- ±18V;③对比较信号源的内阻限制较宽;④共模范围很大,为0--(Ucc-1.5V)V o;⑤差动输入电压范围较大,大到可以等于电源电压;⑥输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,外型及管脚排列如图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竞相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 LM339的应用范围有:①LM339可构成单限比较器、迟滞比较器、双限比较器(窗口比较器)、振荡器等。②LM339还可以组成高压数字逻辑门电路,并可直接与TTL、CMOS电路接口。LM339引脚功能配置图如图1所示。 图1 LM339引脚功能配置图

相关文档
相关文档 最新文档