文档库 最新最全的文档下载
当前位置:文档库 › 全等三角形角平分线2

全等三角形角平分线2

11.1《角平分线的性质及判定》导学案

课型:新课执笔:组别:初二数学审核:

学习目标:

1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.

2.能应用这两个性质解决一些简单的实际问题.

重难点分析:角平分线的性质及其应用.

灵活应用两个性质解决问题.

教法学法分析:探索、归纳的方法.

预习要求

简单的用角平分线的性质和判定,基本了解作角平分线的步骤。一.创设情境,引入新课

[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?

二.导入新课

角平分线的性质即已知角的平分线,能推出什么样的结论.

操作:

1.折出如图所示的折痕PD、PE.

2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:

按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?

拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.

问题1:你能用文字语言叙述所画图形的性质吗?

问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:

学生通过讨论作出下列概括:

已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.

由已知事项推出的事项:PD=PE.

于是我们得角的平分线的性质:

在角的平分线上的点到角的两边的距离相等.

那么到角的两边距离相等的点是否在角的平分线上呢?

问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:

下面请同学们思考一个问题.见课本P17页思考

总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,?使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,?我们可以直接利用性质解决实际问题.见课本例题

三.随堂练习

1.课本P22练习.

2.课本P22习题11.3第3题.

学生注意:直接利用角平分线的性质,无须再证三角形全等.

四.课时小结

五.课后作业:课本P22页习题11.3第4、5、6题.

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

角平分线和全等三角形证明分类

精锐教育学科教师辅导讲义 学员编号:年级:初二课时数:3 学员姓名:辅导科目:数学学科教师: 授课类型T 角平分线C专题精讲 授课日期时段 教学内容 1. 角平分线的作法(尺规作图) ①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点; ②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P; ③过点P作射线OP,射线OP即为所求. 2. 角平分线的性质及判定 (1)角平分线的性质:角的平分线上的点到角的两边的距离相等. 几何表达:(角的平分线上的点到角的两边的距离相等) 如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB。 (2)角平分线的判定:到角的两边的距离相等的点在角的平分线上. 几何表达:(到角的两边的距离相等的点在角的平分线上.) 如图所示,∵PA⊥OM,PB⊥ON,PA=PB,∴∠1=∠2(OP平分∠MON) (3)三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。 3. 角平分线性质及判定的应用

①为推导线段相等、角相等提供依据和思路; ②实际生活中的应用. 例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由. 【例题讲解】 1.在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长。 2.如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB 3.如图,P 为∠AOB 内一点,OA=OB ,且△OPA 与△OPB 面积相等,求证∠AOP=∠BOP . 4.如图,AB=AC ,AD=AE ,BD 、CE 交于O ,求证AO 平分∠BAC. E D C B A E A B C D F

八年级数学学案28 全等三角形的复习(3)--一线三等角

期中考试复习——全等三角形的复习(3) 一线三等角 班级: 姓名: 一. 学习目标 1. 掌握“一线三等角”的基本图形. 2. 能在复杂图形中找出“”的基本图形,并能利用其解决问题. 二. 自学指导 【基本图形】一线三等角 如图1,在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A 、B 两点分别作l 的垂线AE 、BF ,E 、F 为垂足. (1)求证:△AEC ≌△CFB . (2)还能得到EF 、AE 、BF 三者之间怎样的关系? 【变式1】如图,将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α. C B A C B A C B A C B A

(1)求证:△AEC≌△CFB. (2)还能得到EF、AE、BF三者之间怎样的关系? 【变式2】如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状. 【变式3】如图,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.

编号28 全等三角形的复习(2)当堂训练 班级: 姓名: 1.如图所示,Rt △ABE ≌Rt △ECD ,点B 、E 、C 在同一直线上,则结论:①AE =ED ;②AE ⊥DE ; ③BC =AB +CD ; ④AB ∥DC 中成立的是 . 2.如图,等边三角形ABC 中,ED =DF ,∠EDF =60°,求证:BC =BE +CF . 3.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S 是 . E D C B A F E D C B A 436 H C B G A F D E

初二数学上全等三角形知识点总结汇编

全等三角形 知识梳理 一、知识网络 ???? ?? ????→??????? ?? ?? ???? ? ?对应角相等 性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上

(二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 常见考法 (1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等; (2)利用判定公理来证明两个三角形全等; (3)题目开放性问题,补全条件,使两个三角形全等。 误区提醒 (1)忽略题目中的隐含条件;

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

(完整版)利用角平分线构造全等三角形

善于构造 活用性质 安徽 张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证 明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点 H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. 【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,?故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证. 【证明】过P 作PE ⊥AC 于E . ∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF 又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上, D C A E H I F G

一线三角与全等

一线三角与全等三角形 探究: 在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时, ○图中有几对相等的锐角 ○求证:AEC ?≌CFB ?; ○试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; 、 结论: 巩固提高: 1.如图,ABC ?是等腰三角形,DE 过直角顶点A ,?=∠=∠90E D ,则下列结论正确的个数有( ) ○AE CD =;○21∠=∠;○?=∠+∠9043;○BE AD =.

(A )1个 (B )2个 (C )3个 (D )4个 (第1题图) (第2题图) 2.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点 E ,l B F ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 3.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且 CD AE ⊥于点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE , 则=AB _______________. 4.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若?=∠45BED ,4=AE ,则=AB _______________. (第3题图) (第4题图) 5.在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 6.在ABC Rt ?中,?=∠90ACB ,25==BC AC ,直线l 经过斜边AB 的中点D ,且l AE ⊥于点E ,l CF ⊥于点F .若4=AE ,则=EF _______________. F

一线三等角在全等三角形中的应用

线三等角在全等三角形中的应用一图形特征:一条直线上有三个相等的角,三个角可以是锐角,直角,钝角。二解题方法:利用两角一边证三角形全等找到边之间的关系。 三例题讲解 图形一,三等角为锐角

图形二,三等角为直角钝角

(1)已知,如图①’在^ABC中,ABAC = 90o I AB = 4C,直线m经过点A, BD丄直线m, CEA.直线m,垂足分别为点D、E,求证: DE = BD + CE. ⑵如图②将⑴中的条件改为:在AAEC Φ, AB = AC l O. A、E三点都在直线m上,并且有ABDA = ZAEC = ABAC =α,其中Q 为任意钝角,请问结论DE = ED + CE是否成立?若 成 立,请你给出证明:若不成立,请说明理由. m ①D AE^ 图②

.?ΛCAE= ΛABD, ?∕^±ΔADB 和 ACEA 中 AABD = ACAE ΔBDA = ΔCEA I AB = AC :AADB=^CEA{AAS^ 证明:(1) ??BD 丄直线g CEL 直线叽 90O l -.ABAC= 9()。, .??ZBW+∕C4E = 9() ?^BAD^ AABD =

四八年级期中期末考试题型 八年级期中考试卷,变形后的应用

如图①,在zMBC中,乙ACB= 90。MC = BC,过点C 在ZUBC外作直线I1AMLl于点M,BN丄2于点N. (1) 求证:MN=AM + BN?j (2) 如图②,若过点C作直线I与线段AB相交UM ■ 丄/于点M J BNlI于点7V(4Λf>BΛΓ),(l)? 的 结论是否仍然成立?说明理由. I

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

全等三角形中考真题汇编[解析版]

全等三角形中考真题汇编[解析版] 一、八年级数学轴对称三角形填空题(难) 1.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为 ___________. 【答案】4 【解析】 【分析】 延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED, ∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案. 【详解】 延长AC至E,使CE=BM,连接DE. ∵BD=CD,且∠BDC=140°, ∴∠DBC=∠DCB=20°, ∵∠A=40°,AB=AC=2, ∴∠ABC=∠ACB=70°, ∴∠MBD=∠ABC+∠DBC=90°, 同理可得∠NCD=90°, ∴∠ECD=∠NCD=∠MBD=90°, 在△BDM和△CDE中,

BM CE MBD ECD BD CD ? ? ∠∠ ? ? ? = =, = ∴△BDM≌△CDE(SAS), ∴MD=ED,∠MDB=∠EDC, ∴∠MDE=∠BDC=140°, ∵∠MDN=70°, ∴∠EDN=70°=∠MDN, 在△MDN和△EDN中, MD ED MDN EDN DN DN ? ? ∠∠ ? ? ? = =, = ∴△MDN≌△EDN(SAS), ∴MN=EN=CN+CE, ∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4; 故答案为:4. 【点睛】 本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键. 2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形 (1)如图,在ABC ?中,25,105 A ABC ∠=?∠=?,过B作一直线交AC于D,若BD 把ABC ?分割成两个等腰三角形,则BDA ∠的度数是______. (2)已知在ABC ?中,AB AC =,过顶点和顶点对边上一点的直线,把ABC ?分割成两个等腰三角形,则A ∠的最小度数为________. 【答案】130? 180 7 ? ?? ? ?? 【解析】 【分析】 (1)由题意得:DA=DB,结合25 A ∠=?,即可得到答案; (2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,

全等三角形之辅助线(习题及答案)

全等三角形之辅助线(习题) 例题示范 例1:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】1 读题标注:2梳理思路: 要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明. 观察图形,发现不存在全等的三角形. 结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE 在Rt △ACE 和Rt △ADE 中 AE AE AC AD =??=?(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等) 过程规划:1.描述辅助线:连接AE 2.准备条件:∠C =∠ADE =90°3.证明△ACE ≌△ADE 4.由全等性质得,CE = DE

巩固练习1.已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF . 2.已知:如图,∠C =∠F ,AB =DE ,DC = AF ,BC =EF .求证:AB ∥DE .过程规划: 过程规划:

3.已知:如图,AB∥CD,AD∥BC,E,F分别是AD,BC的 中点.求证:BE=DF. 4.已知:如图,在正方形ABCD中,AD=AB,∠DAB=∠B=90°, 点E,F分别在AB,BC上,且AE=BF,AF交DE于点G.求证:DE⊥AF.

一线三角与全等三角形B4

一线三角与全等三角形 探究: 在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时, ○ 1图中有几对相等的锐角? ○ 2求证:AEC ?≌CFB ?; ○ 3试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; 、 巩固提高: 1.如图,ABC ?是等腰三角形, DE 过直角顶点A ,?=∠=∠90E D ,则下列结论正确的个数有( ) ○1AE CD =;○2 21∠=∠;○ 3?=∠+∠9043;○4BE AD =. (A )1个 (B )2个 (C ) 3个 (D )4个 (第1题图) (第2题图) 2.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 3.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且CD AE ⊥于 点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE ,则=AB _______________. 4.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若?=∠45BED ,4=AE ,则=AB _______________. (第3题图) (第4题图) 5.在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 6.在ABC Rt ?中,?=∠90ACB ,25==BC AC ,直线l 经过斜边AB 的中点D ,且l AE ⊥于点E ,l CF ⊥于点F .若4=AE ,则=EF _______________. (第6题图) 7.如图,在等边ABC ?中,点D 为边AB 上一点,连接CD ,点E 在CD 上,连接AE , ?=∠60AED ,过点B 作BF ∥AE 交CD 的延长线于点F . 求证:EF AE =. (第7题图) F

全等三角形中辅助线的添加解析

全等三角形中辅助线的添加 一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。 二.知识要点: 1、添加辅助线的方法和语言表述 (1)作线段:连接……; (2)作平行线:过点……作……∥……; (3)作垂线(作高):过点……作……⊥……,垂足为……; (4)作中线:取……中点……,连接……; (5)延长并截取线段:延长……使……等于……; (6)截取等长线段:在……上截取……,使……等于……; (7)作角平分线:作……平分……;作角……等于已知角……; (8)作一个角等于已知角:作角……等于……。 2、全等三角形中的基本图形的构造与运用 常用的辅助线的添加方法: (1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 (2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。 (3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。 (4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。 (5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。 (6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。 三、基本模型: (1) △ABC中AD是BC边中线 方式1:延长AD到E,使DE=AD,连接BE

八年级数学上册 《全等三角形常考题型总结》

全等三角形题型总结 题型一、一线三垂直 1、如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E,(1)求证:BD=AE。 (2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系? 2、如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,此人的运动速度为1m/s,求这个人运动了多长时间. 27、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以 放进一个等腰直角三角板(AC=BC, ∠ABC=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵 木墙之间的距离.

题型二、角平分线与全等 1、如图所示,四边形ABCD中AB=AD,CA平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由。 2.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F是OC上除点P、O外的一点,连接DF,EF,则DF与EF的关系如何?证明你的结论. 图 题型三、旋转与全等 1、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DC之间的大小关系,并证明你的结论。(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。

B A C D E 2、图17,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M ,BD 交AC 于点N . 证明:(1)BD =CE ; (2)BD ⊥CE . 图17 3、如图,ABC ?为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形 CDE ?,连接AE . (1)求证:CBD ?≌CAE ?. (2)判断AE 与BC 的位置关系,并说明理由. 4、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关 系. A B D C E F

全等三角形辅助线技巧

注意全等三角形的构造方法 搞清了全等三角形的证题思路后, 还要注意一些较难的一些证明问题, 只要构造合适 的 全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了?下面举例说明几 种常见的构造方法,供同学们参考. 1 ?截长补短法 例1.如图(1)已知:正方形 ABCD 中, 求证:AB+BE=AC 由已知△ AEF ^A AEC, ???/ F=Z ACE=45), ??? BF=BE ?- AB+BE=AB+BF=AF=AC 解法(二)(截长法或分割法)在AC 上截取AG=AB,由已知 △ ABE BA AGE, ? EG=BE, / AGE=Z ABE,: / ACE=45o, ? CG=EG, ? AB+BE=AG+CG=AC 2 .平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对 Rt △,有时可作出斜边的中线. 例 2. △ ABC 中,/ BAC=60 , / C=40° AP 平分/ BAC 交 BC 于 P , BQ 平分/ ABC 交 AC 于 Q , 求证:AB+BP=BQ+AQ 证明:如图(1),过 O 作 OD// BC 交 AB 于 D , ?/ ADO=/ ABC =180 ° - 60°- 40 ° =80°,又???/ AQO=/ C+/ QBC=80°, ???/ ADO=/ AQO ,又I/ DAO=/ QAO , OA=AO, ? △ ADO BA AQO ,「. OD=OQ , AD=AQ ,又T OD / BP, ? / PBO=/ DOB ,又 T/ PBO=/ DBO, ?/ DBO=/ DOB , ? BD=OD,「. AB+BP=AD+DB+BP 解法(一) (补短法或补全法)延长AB 至F 使AF=AC F

20全等三角形中的角平分线-学生版

全等三角形中的角平 分线 中考要求 知识点睛 板块 考试要求 A 级要求 B 级要求 C级要求 全等三角形的性质及判定 会识别全等三角形 掌握全等三角形的概念、判定和 性质,会用全等三角形的性质和判定解决简单问题 会运用全等三角形的性质和判定解决有关问题 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SA S):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(A SA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(S SS ):三边对应相等的两个三角形全等. (4) 角角边定理(A AS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(H L):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 第十讲

例题精讲 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 与角平分线相关的问题 角平分线的两个性质: ⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性. 角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线, 2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍, A B O P P O B A A B O P 【例1】 如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于 D ,且3OD =,求ABC ?的面积. 【例2】 在ABC ?中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =. 【例3】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠. A D O C B D C B A

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

相关文档
相关文档 最新文档