文档库 最新最全的文档下载
当前位置:文档库 › 普通车床主轴变速箱设计说明书

普通车床主轴变速箱设计说明书

普通车床主轴变速箱设计说明书
普通车床主轴变速箱设计说明书

金属切削机床课程设计说明书

加Q1162401387获取Cad装配图,零件图设计题目:普通车床主轴变速箱设计

学院:安徽农业大学经济技术学院

专业:机械设计制造及其自动化

姓名: 00000

学号: 00000

指导老师: 00000

一、设计题目:普通车床主轴变速箱设计

二、设计参数:

主电机功率: 7.5 KW

主轴最高转速: 1360 r/min

主轴最低转速: 35 r/min

三、设计要求

1、主轴变速箱装配图1张(A0)(展开图和主要的横向剖视图)

2、主零件工作图(A3)和传动系统图(A3)

3、设计计算说明书1份

目录

一、传动设计

1.1电机的选择 (6)

1.2运动参数 (6)

1.3拟定结构式 (6)

1.3.1 传动结构式、结构网的选择 (6)

1.3.2 传动组和传动副数可能的方案 (6)

1.3.3 结构网和结构式各种方案的选择 (6)

1.3.4 各方案的分析比较 (7)

1.4转速图和系统图的拟定 (7)

1.5确定带轮直径 (8)

1.5.1确定计算功率 (8)

1.5.2选择V带类型 (8)

1.5.3确定带轮直径并验算带速V (8)

1.5.4 确定带传动的中心距和带的基准长度 (8)

1.5.5验算小带轮的包角 (8)

1.5.6 确定带的根数 (8)

F (9)

1.5.7计算带的张紧力

1.5.8计算作用在轴上的压轴力 (9)

1.6确定各变速组传动副齿数 (9)

1.7绘制传动系统图 (10)

二、动力设计 (10)

2.1确定传动件计算转速 (10)

2.1.1主轴计算转速 (10)

2.1.2各传动轴计算转速 (11)

2.1.3各齿轮计算转速 (11)

2.1.4核算主轴转速误差 (11)

2.2 各传动组齿轮模数的确定和校核 (11)

.

2.3 齿轮强度校核 (13)

2.3.1校核a传动组齿轮 (13)

2.3.2 校核b传动组齿轮 (14)

2.3.3校核c传动组齿轮 (14)

2.4主轴挠度的校核 (15)

2.4.1 确定各轴最小直径 (15)

2.4.2轴的校核 (16)

2.5片式摩擦离合器的选择及计算 (16)

2.5.1决定外摩擦片的内径

d (16)

2.5.2选择摩擦片尺寸 (17)

2.5.3计算摩擦面对数Z (17)

2.5.4计算摩擦片片数 (18)

2.5.5计算轴向压力Q (18)

三、结构设计 (18)

3.1带轮的设计 (18)

3.2主轴换向机构的设计 (18)

3.3制动机构的设计 (19)

3.4齿轮块的设计 (19)

3.5轴承的选择 (19)

3.6主轴组件的设计 (19)

3.6.1各部分尺寸的选择 (19)

3.6.1.1主轴通孔直径 (19)

3.6.1.2轴颈直径 (19)

3.6.1.3支承跨距及悬伸长度 (20)

3.6.2主轴轴承的选择 (20)

3.7润滑系统的设计 (20)

四、设计小结 (20)

五、参考文献 (20)

一、传动设计

1.1电机的选择

(1)床身上最大回转直径:400mm (2)主电机功率:7.5KW (3)主轴最高转速:1360r/min

参考《机床主轴变速箱设计指导》(以下简称《设计指导》)P16选择Y100L2-4型异步电动机。

1.2运动参数

变速范围 Rn=

min

max

v v =1360/35=38.86=1-Z ? 对于中型车床,?=1.26或?=1.41 此处取?=1.26 得转速级数Z=17。查《设计指导》P6标准数列表得转速系列为:33 44 55 69 87 106 132 170 212 265 335 425 530 670 850 1060 1360

1.3拟定结构式 1、确定公比φ

根据设计数据,公比φ=1.26 2、求出主轴转速级数Z 由题目可知,转速级数Z=17 3、确定结构式

(1) 确定传动组和传动副数

由于总级数为17,先按18设计再减掉一组。共有以下几种方案:18=3*3*2

=3*2*3

=2*3*3

根据传动副前多后少原则,以减少传动副结构尺寸选择第一组方案 即: 18=3*3*2 (2) 确定结构式

按前密后疏原则设计结构式中的级比指数,得到:

减掉一组转速为:

对于该结构式中的第二扩大组,因此

该方案符合升二降四原则。

1.4转速图和系统图的拟定

由于车床Ⅰ轴转速一般取700~1000 r/min 。在中型通用机床中,通常传动比u = 1~2.5的范围内,u=u主/uI=1440/850 =1.69 故初选Ⅰ轴转速为850r/min。

拟定转速图如图1

1.5确定带轮直径

1.5.1确定计算功率Pca

K=1.1故

由《机械设计》表8-7查得工作情况系数

A

Pca =K P=1.1×7.5=8.2KW

1.5.2选择V 带类型

据Pca 、N1的值由《机械设计》图8-11选择A 型带。 1.5.3确定带轮直径并验算带速V

由《机械设计》表8-7、表8-9,取基准直径1d =100mm 。

验算带速V V =π1d E n /(60×1000)=π×100×1440/(60×1000)=7.5m/s 因为5m/s <V <25m/s,所以带轮合适。 定大带轮直径2d

2d =i 1d =100×2=200mm 据《机械设计》表8-7,取基准直径2d =200mm 。

1.5.4 确定带传动的中心距和带的基准长度

设中心距为0a ,则

0.7(21d d +)≤a ≤2(21d d +)

于是 210≤a ≤600,初取中心距为=0a 400mm 。

带长0

2

1221004)()(22a d d d d a L -+++=π

=1277

查表取相近的基准长度d L ,d L =1430mm 。 带传动实际中心距a=a 。+(Ld-L 。)/2=477mm

1.5.5验算小带轮的包角

一般小带轮的包角不应小于 120。

1201683.571801

21=?--

≈a

d d α。合适。 1.5.6 确定带的根数 L

ca

k k p p p Z α)(00?+=

其中: 0p ?-1≠i 时传递功率的增量; αk -按小轮包角α,查得的包角系数; k -长度系数;

为避免V 型带工作时各根带受力严重不均匀,限制根数不大于10。 L

ca

k k p p p Z α)(00?+=

= 6

1.5.7计算带的张紧力0F 20)5.2(500

qv k k vZ p F ca +-=α

α

其中: ca p -带的传动功率,KW ; v-带速,m/s ;

q-每米带的质量,kg/m ;取q=0.17kg/m 。 v = 1440r/min = 9.42m/s 。 20)5.2(500

qv k k vZ p F ca +-=α

α

=131.4N 1.5.8计算作用在轴上的压轴力 Fp=2ZF 。Sin (a/2)=1568 N 1.6确定各变速组传动副齿数 (1)确定变速组齿轮传动副的齿数

①变速组a:

变速组a 有三个传动副,传动比分别为ai1=1/1.26 ai2=1/1.58 ai3=1/2 由参考文献[1]表5-1查得:

ai1=1/1.26时:=z S ……61、63、65、66、68、70、72、74…… ai2=1/1.58时:=z S ……62、65、67、69、70、72、73…… ai3=1/2时:=z S ……63、66、69、72、75、78……

可取=z S 72, 查表可得轴Ⅰ主动齿轮齿数分别为:32、28、24。 根据相应传动比, 可得轴Ⅱ上的三联齿轮齿数分别为:40、44、48。 ②变速组b:

变速组b 有三个传动副,传动比分别是bi1=1, bi2=1/2, bi3=1/4, 查表得:

bi1=1时:=z S ……80、82、84、86、88、90、92…… bi2=1/2时:=z S ……81、84、86、87、89、90、92……

bi3=1/4时:=z S ……80、81、84、85、86、89、90……

可取 =z S 90,于是可得轴Ⅱ上两联齿轮的齿数分别为:45、30、18。 于是根据相应传动比,得轴Ⅲ上两齿轮的齿数分别为:45、60、72。 ③变速组c:

查表8-1,4/11=i c ,22=c i

4/11=i c 时:=z S ……84、85、89、90、94、95…… 22=c i 时: =z S ……72、75、78、81、84、87、89、90……

可取 =z S 90.

4/11=i c 为降速传动,取轴Ⅲ齿轮齿数为18; 22=c i 为升速传动,取轴Ⅳ齿轮齿数为30。

于是得72/181=i c ,30/602=c i

得轴Ⅲ两联动齿轮的齿数分别为18,60; 得轴Ⅳ两齿轮齿数分别为72,30 1.7绘制传动系统图

二、动力设计

2.1确定传动件计算转速

2.1.1主轴计算转速

主轴计算转速是第一个三分之一转速范围内的最高一级转速,即 n j = n min 13

-Z ?

=100r/min 即n 4=100r/min;

2.1.2各传动轴计算转速

轴Ⅲ可从主轴100r/min 按72/18的传动副找上去,轴Ⅲ的计算转速 400r/min ;.而变速组C 有两个传动副,轴Ⅲ的最低转速为106 r/min 时,通过60/30的传动副可使主轴获得250 r/min 的转速,250 r/min >105 r/min,能传递全部功率,所以轴Ⅲ的计算转速为106 r/min ,轴Ⅱ的计算转速为425r/min ;轴Ⅰ的计算转速为850r/min 。

2.1.3各齿轮计算转速

传动组c 中,18/72只需计算z = 18 的齿轮,计算转速为475r/min ;60/30只需计算z = 30的齿轮,计算转速为355r/min ;传动组b 计算z = 45的齿轮,计算转速为425r/min ;传动组a 应计算z =32的齿轮,计算转速为850r/min 。

2.1.4核算主轴转速误差

%5%64.1%100)

(<=?-标

标实n n n 所以合适。

2.2 各传动组齿轮模数的确定和校核

一般同一变速组中的齿轮取同一模数,选择负荷最重的小齿轮,按简化的接触疲劳强度下列公式进行计算: ()[]d

j m j j

u N m z u σn +=φ3

22

1116338 其中, j m -按接触疲劳强度计算的齿轮模数;

u -大小齿轮齿数比;

d N -电动机功率kw ,d N = 4.96KW ; m φ-齿宽系数,取m =8φ; z 1-小齿轮齿数

[]j σ-齿轮传动许用接触应力 j n -计算齿轮计算转速(r/min )。

齿轮材料初选45钢调质+表面淬火(硬度约45HRC ),按较高可靠度选择安全系数为1.25,得:

lim

1120[]8961.25

H H H

MPa

MPa S σσ=

=

=

变速组a :()().[]d a m j j u N m mm z μσn ++?===????φ33

22221121516338163382188242896850

, 取m a=2.5

得轴Ⅰ上齿轮的直径:

da1=2.5*32=80mm,da2=2.5*28=70mm ,da3=2.5*24=60 轴Ⅱ上两联齿轮的直径分别为:

Da1=2.5*40=100mm,Da2=2.5*44=110mm, Da3=2.5*48=120mm 变速组b :()().[]d b m j j u N m mm z μσn ++?===????φ33

22221141516338163383138184896425

,取.b m mm

=35

于是轴Ⅱ齿轮的直径分别为:

db1=3.5*45=158mm,db2=3.5*30=105mm,db3=3.5*18=63mm 轴Ⅲ上与轴Ⅱ三联齿轮啮合的两齿轮直径分别为: Db1=3.5*45=158mm,Db2=3.5*60=210mm,Db3=3.5*72=252mm

变速组c :()().[]d c m j j u N m mm z μσn ++?===????φ33

22221141516338163383168204896335

,取.c m mm =35

轴Ⅲ上齿轮的直径分别为: dc1=3.5*18=63mm,dc2=3.5*60=210mm 轴四上两齿轮的直径分别为:

Dc1=3.5*72=252mm,Dc2=3.5*30=105mm

2.3 齿轮强度校核:计算公式bm

Y Y KT Sa

Fa F 12=

σ

2.3.1校核a 传动组齿轮

校核齿数为32的即可,确定各项参数 ⑴ P=2.88KW,n=850r/min,

T=9.55*10^6*2.88/850=3.22*10^4N.mm

⑵确定动载系数:v=3.14*d*n/(60*1000)=2.14m/s 齿轮精度为7级,由《机械设计》查得使用系数Kv=1.1 ⑶b=8*2=16mm

⑷确定齿向载荷分配系数:取齿宽系数1=d ?

非对称()2231.120.1810.60.2310H d d K b βφφ-=+++?=1.39 b/h=16/(2*2)=4,查《机械设计》得KFb=1.25 ⑸确定齿间载荷分配系数: Ft=2T/d=1200N KA*Ft/b=75<100N/mm 由《机械设计》查得

1.2H F K K βα==

⑹确定动载系数: 6.127.12.105.10.1=???==ααH F v A K K K K K ⑺查表 10-5

65.2=Fa Y 58.1=Sa F

⑻计算弯曲疲劳许用应力

由图查得小齿轮的弯曲疲劳强度极限a FE Mp 540=σ。

图10-18查得 9.0=N K ,S = 1.3

a F Mp 3743

.1540

9.0][=?=

σ 3.8958

.165.2374

][=?=Sa Fa F Y Y σ, KFt/(bm)=61.9<89.3 故合适。

2.3.2 校核

b 传动组齿轮

校核齿数为45的即可,确定各项参数 ⑴ P=2.77KW,n=425r/min,

T=9.55*10^6*2.77/425=6.67*10^4N.mm

⑵确定动载系数:v=3.14*d*n/(60*1000)=1.83m/s 齿轮精度为7级,由《机械设计》查得使用系数0.1=v K ⑶b=8*3=24mm

⑷确定齿向载荷分配系数:取齿宽系数1=d ?

非对称()2231.120.1810.60.2310H d d K b βφφ-=+++?=1.41 b/h=24/(3*2.8)=2.86,查《机械设计》得27.1=βF K ⑸确定齿间载荷分配系数: Ft=2T/d=1687.9N KA*Ft/b=70.3<100N/mm 由《机械设计》查得

1.1==ααH F K K

⑹确定动载系数: 397.127.11.10.10.1=???==ααH F v A K K K K K ⑺查表 10-5

72.2=Fa Y 57.1=Sa F

⑻计算弯曲疲劳许用应力

由图查得小齿轮的弯曲疲劳强度极限a FE Mp 540=σ。 图10-18查得 9.0=N K ,S = 1.3

a F Mp 3743

.1540

9.0][=?=

σ 5.8757

.172.2374

][=?=Sa Fa F Y Y σ, KFt/(bm)=35.7<87.5 故合适。

2.3.3校核

c 传动组齿轮

校核齿数为18的即可,确定各项参数 ⑴ P=2.66KW,n=475r/min,

T=9.55*10^6*2.66/475=4.16*10^5N.mm

⑵确定动载系数:v=3.14*d*n/(60*1000)=0.48m/s 齿轮精度为7级,由《机械设计》查得使用系数9.0=v K ⑶b=8*3=24

⑷确定齿向载荷分配系数:取齿宽系数1=d ?

非对称()2231.120.1810.60.2310H d d K b βφφ-=+++?=1.41 b/h=24/(3*4)=2,查《机械设计》得27.1=βF K ⑸确定齿间载荷分配系数: Ft=2T/d=3311N KA*Ft/b=82.78<100N/mm 由《机械设计》查得

1.1==ααH F K K

⑹确定动载系数: 2573.127.11.19.00.1=???==ααH F v A K K K K K ⑺查表 10-5

91.2=Fa Y 53.1=Sa F

⑻计算弯曲疲劳许用应力

由图查得小齿轮的弯曲疲劳强度极限a FE Mp 540=σ。 图10-18查得 9.0=N K ,S = 1.3

a F Mp 3743

.1540

9.0][=?=

σ 8453

.191.2374

][=?=Sa Fa F Y Y σ, KFt/(bm)=70.1<84 故合适。

2.4主轴挠度的校核

2.4.1 确定各轴最小直径 [1]Ⅰ轴的直径:

4

91?

I I =n N d j =33mm

[2]Ⅱ轴的直径: 4

91?

∏∏=n N d j =38mm

[3]Ⅲ轴的直径: 4

91?

ⅢⅢn N d j ==54mm

[4]主轴的直径:

4

91?

ⅣⅣn N d j ==59mm

2.4.2轴的校核

Ⅰ轴的校核:通过受力分析,在一轴的三对啮合齿轮副中,中间的两对齿轮对Ⅰ轴中点处的挠度影响最大,所以,选择中间齿轮啮合来进行校核 T=9.55*10^6*2.88/850=3.22*10^4N.mm Ft=2T/d=1341N P=F=1836N

已知:d=30mm ,E=200*10^9Pa [y]=0.03*2=0.06mm X=300mm,b=228mm

()

mm l

I E b x l x b F Y B 32

221091.06-?=???--??-=

[]所以合格,y Y B <。

Ⅱ轴、Ⅲ轴的校核同上。

2.5片式摩擦离合器的选择及计算

2.5.1决定外摩擦片的内径0d

结构为轴装式,则外摩擦片的内径0d 比安装轴的轴径D 大2~6 mm 有 0d =D+(2~6)=36+(2~6) =38~42mm 取0d =42mm 2.5.2选择摩擦片尺寸

参考《设计指导》P41表摩擦片尺寸及花键规格自行设计摩擦片的尺寸如图所示

6

内摩擦片

外摩擦片

厚度 1.5

24

φ90

φ98

φ9

0φ38

φ32

φ

42

2.5.3计算摩擦面对数Z

z K Z KvKm

d p f MnK )D (10123

033

-?=

][π

式中Mn ――额定动扭矩;Mn =9550

ηj

n N

=76.6N ·m K =1.3~1.5;取 K =1.3;

f ——摩擦片间的摩擦系数;查《设计指导》表12 f =0.08(摩擦片材料10钢,油润)

[P]——摩擦片基本许用比压;查《设计指导》表12 [P]=0.8MPa (摩擦片材料10钢,油润);

D ——摩擦片内片外径 mm ;

0d ――外摩擦片的内径mm ;

V K ——速度修正系数;根据平均圆周速度(1.62m/s )查《设计指导》表13近似取为1.2;

m K ——结合次数修正系数;查《设计指导》表13取为0.84;

z K ――接合面修正系数;

把数据代入公式得z K Z =10.8 查《设计指导》表13取Z =14

2.5.4计算摩擦片片数

摩擦片总片数(Z +1)=15片 2.5.5计算轴向压力Q Q =

)(402

02d D -π[p ]Kv =)4290(40

22-π

×0.8×1.2 =478N

三、结构设计

3.1带轮的设计

根据V 带计算,选用5根A 型V 带。由于Ⅰ轴安装摩擦离合器及传动齿轮,为了改善它们的工作条件,保证加工精度,采用卸荷式带轮结构输入。如图所示,带轮支承在轴承外圆上,而两轴承装在与箱体固定的法兰盘上,扭矩从端头花键传入。

3.2主轴换向机构的设计

主轴换向比较频繁,才用双向片式摩擦离合器。这种离合器由内摩擦片、外摩擦片、滑动套筒、螺母、钢球和空套齿轮等组成。离合器左右两部门结构是相同的。左离合器传动主轴正转,用于切削加工。需要传递的转矩较大,片数较多。右离合器用来传动主轴反转,主要用于退回,片数较少。

这种离合器的工作原理是,内摩擦片的花键孔装在轴Ⅰ的花键上,随轴旋转。外摩擦片的孔为圆孔,直径略大于花键外径。外圆上有4个凸起,嵌在空套齿轮的缺口之中。内外摩擦片相间安装。移动套筒4时,钢球沿斜面向中心移动并使滑块3、螺母1向左移动,将内片与外片相互压紧。轴Ⅰ的转矩便通过摩擦片间的摩擦力矩传递给齿轮,使主轴正传。同理,当滑块7、螺母8向右时,使主轴反转。处于中间位置时,左、右离合器都脱开,轴Ⅱ以后的各轴停转。摩擦片的间隙可通过放松销6和螺母8来进行调整。

摩擦片的轴向定位是由两个带花键孔的圆盘实现。其中一个圆盘装在花键上,另一个装在花键轴的一个环形沟槽里,并转过一个花键齿,和轴上的花键对正,然后用螺钉把错开的两个圆盘连接起来。

3.3制动机构的设计

根据制动器的设计原理,将其安装在靠近主轴的较高转速的轴Ⅲ,在离合器脱开时

制动主轴,以缩短辅助时间。此次设计采用带式制动器。该制动器制动盘是一个钢制圆盘,与轴用花键联接,周边围着制动带。制动带是一条刚带,内侧有一层酚醛石棉以增加摩擦。制动带的一端与杠杆连接。另一端与箱体连接。为了操纵方便并保证离合器与制动器的联锁运动,采用一个操纵手柄控制。当离合器脱开时,齿条处于中间位置,将制动带拉紧。齿条轴凸起的左、右边都是凹槽。左、右离合器中任一个结合时,杠杆都按顺时针方向摆动,使制动带放松。

3.4齿轮块的设计

机床的变速系统采用了滑移齿轮变速机构。根据各传动轴的工作特点,基本组(传动组b)滑移齿轮采用平键联接装配式齿轮,固定齿轮用独立式;第一扩大组(传动组a)的滑移齿轮采用了整体式滑移齿轮;第二扩大组(传动组c)传动转矩较大用平键联接装配式齿轮,此时平键传递转矩,弹性挡圈轴向固定,简单、工艺性好、结构方便。所有滑移齿轮与传动轴间均采用花键联接。

从工艺角度考虑,其他固定齿轮(主轴上的齿轮除外)也采用花键联接。由于主轴直径较大,为了降低加工成本而采用了单键联接。

由各轴的圆周速度参考《设计指导》P53,Ⅰ~Ⅲ轴间传动齿轮精度为8-7-7Dc ,Ⅲ~Ⅳ轴间齿轮精度为7-6-6 Dc 。

齿轮材料为45钢,采用整体淬火处理。

3.5轴承的选择

为了方便安装,Ⅰ轴上传动件的外径均小于箱体左侧支承孔直径,均采用深沟球轴承。为了便于装配和轴承间隙调整,Ⅱ、Ⅲ轴均采用圆锥滚子轴承。滚动轴承均采用E 级精度。

3.6主轴组件的设计

3.6.1各部分尺寸的选择 3.6.1.1主轴通孔直径

参考《设计指导》P5,取主轴通孔直径d =30mm 。 3.6.1.2轴颈直径

按电机功率在参考文献一图6-15选择主轴前端直径,结合卧式铣镗床主轴端部尺寸标准JB/T 4241.3-1999,选择主轴前端直径为90mm 。 后轴颈直径选择按照以下经验公式:

21(0.75~0.85)67.5~76.5D D mm == ,取 270D mm =。

3.6.1.3支承跨距及悬伸长度

为了提高刚度,应尽量缩短主轴的悬伸长度a,适当选择支承跨距L。取L/a=3.24,由头部尺寸取a=100mm则L=324mm。

3.6.2主轴轴承的选择

为提高刚度,主轴采用三支承,前支承和中支承为主要支承,后支承为辅助支承。这是因为主轴上的传动齿轮集中在前部;容易满足主轴的最佳跨距要求;箱体上前、中支承的同轴度加工容易保证,尺寸公差也易控制。

前轴承选用一个型号为32316的圆锥滚子轴承,中轴承选一个用型号为30214的圆锥滚子轴承,后轴承选用一个型号为6312深沟球轴承。前轴承D级精度,中轴承E级精度,后轴承E级精度。前轴承内圈配合为k5,外圈配合为M6;中轴承内圈配合为js5,外圈配合为K6;后轴承内圈配合为js6,外圈配合为H7。

3.7润滑系统的设计

主轴箱内采用飞溅式润滑,油面高度为65mm左右,甩油环浸油深度为10mm左右。润滑油型号为:IIJ30。

卸荷皮带轮轴承采用脂润滑方式。润滑脂型号为:钙质润滑脂。

4.设计小结

这次课程设计用了三个星期,回想起来,花在画图的时间不多,主要还是在设计计算上。能过本次课程设计,我不但巩固了旧的知识,如:机械设、金属切削机床等。利用绘图软件绘图,而且学到了怎样设计变速箱,如何设计每一个细节。

课程设计是一次知识综合的考验,要考虑的问题很多,一个人的能力三周时间是不够的,我们通过讨论更加深一层俯了设计的过程。而且老师的指导也是不可或缺的。

车床主轴箱设计说明书

中北大学 课程设计任务书 15/16 学年第一学期 学院:机械工程与自动化学院 专业:机械设计制造及其自动化 学生姓名:王前学号:1202014233 课程设计题目:《金属切削机床》课程设计 (车床主轴箱设计) 起迄日期:12 月21 日~12 月27 日课程设计地点:机械工程与自动化学院 指导教师:马维金讲师 系主任:王彪 下达任务书日期: 2012年12月21日

课程设计任务书

课程设计任务书

目录 1.机床总体设计 (5) 2. 主传动系统运动设计 (5) 2.1拟定结构式 (5) 2.2结构网或结构式各种方案的选择 (6) 2.2.1 传动副的极限传动比和传动组的极限变速范围 (6) 2.2.2 基本组和扩大组的排列顺序 (6) 2.3绘制转速图 (7)

2.5确定带轮直径 (8) 2.6验算主轴转速误差 (8) 2.7 绘制传动系统图 (8) 3.估算传动件参数确定其结构尺寸 (10) 3.1确定传动见件计算转速 (10) 3.2确定主轴支承轴颈尺寸 (10) 3.3估算传动轴直径 (10) 3.4估算传动齿轮模数 (10) 3.5普通V带的选择和计算 (11) 4.结构设计 (12) 4.1带轮设计 (12) 4.2齿轮块设计 (12) 4.3轴承的选择 (13) 4.4主轴主件 (13) 4.5操纵机构、滑系统设计、封装置设计 (13) 4.6主轴箱体设计 (13) 4.7主轴换向与制动结构设计 (13) 5.传动件验算 (14) 5.1齿轮的验算 (14) 5.2传动轴的验算 (16) 5.3花键键侧压溃应力验算 (19)

车床尾架设计说明书资料讲解

C0630 车床尾架设计说明书

一、车床尾架的设计背景及意义制造业中的车床是主要用车刀对旋转工件进行车削加工的机床。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。其结构主要分为:主轴箱、尾架、光杠、丝杠、溜板箱、床身、进给箱、刀架。 尾架是车床的重要部件之一,它在车床加工中起到了重要的作用。尾架体安装在车床的右导轨上,尾架套筒可以安装顶尖,以支撑较长的工件的右端、安装钻头、铰刀,进行加工。也可以安装丝锥攻螺纹工具、圆柱牙套螺纹工具加工内、外螺纹。尾架体可以沿尾座导轨作纵向调整移动,然后压下尾座紧固手轮,将尾座夹紧在所需位置,摇动尾座手轮可以实现对工件的顶紧、松开或对工件进行切削的纵向进给。 C0630车床是一种经济型轻型车床,具有加工范围大、主轴变速范围广,具备普通车床的基本功能,消耗功率小等特点。在该机床上,除可完成车削外圆、端面、切槽、镗孔等工艺工作外,还可进行钻孔、铰孔、车削公英制内外螺纹及攻丝、套丝等工作。因此,本机床适用于仪器、仪表制造,医疗卫生器械制造,适用于单件小批量生产。 二、车床尾架的工作原理 顶针(4)以1:20 的圆锥体装在轴套(6)的锥孔内,螺母(9)用两外螺钉 M12x20(10)与轴套固定,螺钉M15x30(8)用其圆柱端限制轴套只能作轴向移动。当转动手轮(14)时,通过键A8x14(15)使螺杆(11)旋转(不能轴向移动),再通过螺母(9)的作用,使轴套带着顶针作轴向移动。当顶针移动到所需要的位置时,转动手柄(7)和螺杆(19),使夹紧套(18、20)将轴套锁紧。整个尾架是靠定位键(25)嵌入床身的T 型槽内作横向定位,但可沿槽作纵向滑动来改变尾架与主轴端面的位置,以适应加工不同长度的工件。顶紧工件后,可旋紧螺母M24(22)和双头螺柱 M24X75(23),带动螺柱头(24)将尾架锁紧在床身上。(注:零件编号详情见配套A0 图纸) 三、车床尾座的设计 尾座是卧式车床的重要附属部件,其主要作用是在加工特别是轴类零件时,可以定心,同时具有辅助支撑和夹紧的功能。C0630 卧式车床的尾座采用的结构设计合理,动、静刚度好,精度高。套筒和尾座的移动均为机械传动,套筒和尾座的夹紧、放松均采用相关机构夹紧,夹紧力足够大,安全可靠,工人操作简单、方便、效率高。这种结构

数控机床课程设计指南(doc 9页)

数控机床课程设计指南(doc 9页)

数控机床课程设计指导书应用专业:机械设计制造及其自动化 班级 学号 姓名

1.设计任务 本次课程设计是通过分析零件图,合理选择零件的数控加工工艺过程,对零件进行数控加工工艺路线进行设计,从而完成零件的数控加工程序的编写。使零件能在数控机床上顺利加工,并且符合零件的设计要求。 2.设计要求 1 绘制二维、三维零件图各一张; 2 数控加工工序卡一份; 3 走刀路线图一份; 4 数控加工程序清单一份(含注释); 5 设计说明书一份。(分析零件结构;选择机床设备、刀具;编 写数控加工工艺;写出数值计算过程) 3.零件图的分析 在数控车床上加工如图所示的带螺纹的轴类零件,该零件由外圆柱面,槽和螺纹所构成,零件的最大外径为Φ56,加工粗糙度要求较高,并且需要加工M30×1.5的螺纹,其材料为45﹟,分析其形状为不规范的阶梯轴类零件,可以采用端面粗车循环加工指令,选择毛坯尺寸为Φ60mm×150mm的棒料。

4.机床设备的选择 根据该零件图所示为轴类零件,需要的加工的为外轮廓和螺纹,以及毛坯的尺寸大小,查机械设计手册选择FANUC系统的CK7815型数控车床来加工此零件。 5.确定工件的装夹方式 由于这个工件时一个实心轴类零件,并且轴的长度不是很长,所以采用工件的左端面和Φ60的外圆为定位基准。使用普通三爪卡盘加紧工件,取工件的右端面中心为工件的坐标系的原点。 6.确定数控加工刀具及加工工序卡片 根据零件的加工要求,T01号刀为450硬质合金机夹粗切外圆偏刀;T02号刀为900硬质合金机夹粗切外圆偏刀;T03号刀为900硬质合金机夹精切外圆偏刀;T04号刀为硬质合金机夹切槽刀,刀片宽度为5mm,用于切槽、切断车削加工;选择5号刀为硬质合金机夹螺纹刀,用于螺纹车削加工。该零件的数控加工工艺卡片如表1-1所示。 加工流程:加工右端面→粗车外轮廓→精车外轮廓→切螺纹退刀槽→车螺纹→切断 表1-1数控加工工序卡片

CM6132机械系统设计课程设计精密车床主轴箱与变速箱系统设计说明

目录 绪论 (1) 1.概述 (5) 1.1机床主轴箱课程设计的目的 (5) 1.2设计任务和主要技术要求 (5) 1.3操作性能要求 (6) 2.技术参数确定与方案设计 (6) 2.1原始数据 (6) 2.2开展CM6132功能原理设计 (6) 3.运动设计 (7) 3.1确定转速极速 (7) 3.1.1计算主轴最高转速 (9) 3.1.2计算主轴最低转速 (10) 3.1.3确定主轴标准转速数列 (11) 3.2主电动机的选择 (12) 3.3变速结构的设计 (14) 3.3.1 主变速方案拟定 (14) 3.3.2 拟定变速结构式 (14) 3.3.3拟定变速结构网 (15) 3.3.4 验算变速结构式 (16)

3.4绘制转速图 (17) 3.5 齿轮齿数的估算 (20) 3.6 主轴转速误差 (23) 4.动力设计 (26) 4.1电机功率的确定 (26) 4.2确定各轴计算转速 (26) 4.3 带轮的设计 (27) 4.4传动轴直径的估算 (30) 4.5齿轮模数的确定 (33) 4.6主轴轴颈的直径 (36) 4.6.1主轴悬伸量a (36) 4.6.2主轴最佳跨距0L 的确定和轴承的选择 (36) 4.6.3主轴组件刚度验算 (37) 5. 结构设计 (38) 5.1齿轮的轴向布置 (39) 5.2传动轴及其上传动元件的布置 (40) 5.2.1 I 轴的设计 (42) 5.2.2 II 轴的设计 (42) 5.2.3 III 轴的设计 (42) 5.2.4 带轮轴的设计 (42) 5.2.5 Ⅳ轴的设计 (43) 5.2.6主轴的设计 (43) 5.2.7 主轴组件设计 (43) 5.3齿轮布置的注意问题 (44)

#C6136机床主轴箱设计说明书14896

C6136型机床主轴箱课程设计说明书系别:交通和机械工程学院 专业:机械设计制造及其自动化 班级:机械10-4班 姓名:富连宇 学号:1008470434 吗 指导老师:赵民 目录 一、设计目的 (1) 二、机床主要技术要求 (1) 三、确定结构方案 (1) 四、运动设计 (1) 4.1确定极限转速 (1) 4.2拟订结构式 (1) 4.3绘制转速图 (2) 4.4 确定齿轮齿数 (2) 4.5 验算主轴转速误差: (3) 4.6 绘制传动系统图 (3) 五、动力设计 (3) 5.1 V带的传动计算 (3) 5.2各传动轴的估算 (4) 5.3齿轮模数确定和结构设计: (5) 5.4摩擦离合器的选择和计算: (6) 5.5结构设计 (7) 六、齿轮强度校核 (8) 6.1、各齿轮的计算转速 (8) 6.2、齿轮校核 (9) 七、主轴刚度校核 (9) 八、主轴最佳跨度确定 (10) 8.1计算最佳跨度 (10) 8.2校核主轴挠度 (10) 8.2主轴图:(略)见附图2 (10) 九、各传动轴支持处轴承选用 (10) 十、键的选择和校核 (10) 1)、轴IV的传递最大转矩 (10) 十一、润滑和密封 (11) 十二、总结 (11) 十三、参考文献 (11) 十四、附 (12)

一、设计目的 通过机床主运动机械变速传动系统得结构设计,在拟定传动和变速的结构方案过程中,得到设计构思、方案分析、结构工艺性、机械制图、零件计算、编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并具有初步的结构分析、结构设计和计算能力。可使我们学会理论联系实际的工作方法,培养独立工作的能力;学会基本的设计的方法;熟悉手册、标准、资料的运用;加强机械制图、零件计算、编写技术文件的能力,学会设计说明书的编写。为接下去的毕业设计、毕业论文积累经验。 二、机床主要技术要求 [1]车床类型为C6136型车床主轴变速箱(采用机械传动结构)。 [2]加工工件最大直径:360mm [3]加工工件最大长度:1500mm [4] 主轴通孔直径:40-50mm [5]主轴前锥孔:莫式5号 [6]主轴采用三相异步电机 [7]主电动机功率为n电额:4kw [8]转速nmin:33.5r/min mmax:1700 r/min n额:1000r/min [9]主轴变速系统实现正传12级变速,反转6级变速(采用摩擦离合器) 三、确定结构方案 [1] 主轴传动系统采用V带、齿轮传动; [2]传动形式采用集中式传动; [3]主轴换向制动采用双向片式摩擦离合器和带式制动器; [4]变速系统采用多联滑移齿轮变速。 四、传动方案 4.1确定极限转速 转速n min:33.5r/min n max:1700 r/min n额:1000r/min 4.2拟订结构式 1)确定变速组传动副数目: 传动副中由于结构的限制以2或3为合适,即变速级数Z应为2和3的因子,为实现12级主轴转速变化的传动系统可以以下多种传动副组合: ①12=3x2x2 ②12=2x2x3 ③12=2ⅹ3ⅹ2等 18级转速传动系统的传动组,选择传动组安排方式时,考虑到机床主轴箱的具体结构、装置性能,主轴上的传动副数主轴对加工精度、表面粗糙度的影响很大,因此主轴上的齿轮少些为好。按照1 符合变速级数、级比规律 2 传动件前多后少3 结构网前密后疏4 第二扩大组变速范围r=8满足变速范围要求

金属切削机床课程设计说明书

目录 第1章概述 1 1.1 金属切削机床课程设计目的 1 1.2 机床的分类和功用 1 1.3 操作性能要求 1第2章机床参数的拟定 1 2.1 公比的确定 1 2.2 转速系列的选择 2 2.3 主电机选择 2 第3章机床传动设计 2 3.1 主传动方案拟定 2 3.2 传动结构式、结构网的选择 2 3.3 转速图的拟定 4 3.4 齿轮齿数的确定 5 3.5 传动系统图 6 第4章传动件的估算 7 4.1 普通V带的选择和计算 7 4.2 传动轴的计算转速 8 4.3 传动轴直径的估算 8 4.4 带轮结构设计 10 4.5 齿轮齿数的确定 10 4.6 齿轮模数的计算 11 4.7 齿轮齿宽的确定 13 第5章动力校核 14 5.1 齿轮的弯曲疲劳强度计算 14 5.2 传动轴的刚度校验 16 5.3 滚动轴承的验算 19 第6章主轴位置及传动示意图 20 6.1 结构设计的内容、技术要求和方案 20 6.2 展开图及其布置 21 6.3 I轴(输入轴)的设计 21 6.4 齿轮块设计 22 6.5 传动轴设计 23 6.6 主轴主件设计 24 第7章个人总结 26参考文献

第1章概述 1.1 金属切削机床课程设计的目的 金属切削机床是用切削的方法将金属毛坯加工成机器零件的机器,它是制造机器的机器,习惯上简称为机床。机床课程设计,在于通过设计,比较分析机床主传动中某些典型机构,进行选择和改进,学习构造设计,进行设计计算和编写技术文件。完成机床主传动设计,达到学习设计步骤和方法的目的。在此过程中,学习查阅有关的设计手册、设计标准和资料,达到累计设计知识和提高设计能力的目的。并获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力。同时,学生在拟定传动和变速的结构方案过程中,进行设计构思,方案分析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力。 1.2 机床的分类和功用 根据我国制定的机床型号编制方法,目前将机床分为12大类,包括车床、钻床、镗床、磨床、铣床、拉床、锯床、刨插床、齿轮加工机床、螺纹加工机床、特种加工机床和其它机床。机床工业为各种类型的机械制造提供先进的制造技术与优质高效的机床设备,促进了机械制造工业的的生产能力和工艺水平的提提高。一个国家的机床工业的技术水平,在很大程度上标志着国家的工业生产能力和科学技术水平。本次的金属切削机床课程设计,进行的是普通铣床主轴箱的设计。 1.3 操作性能要求 (1)具有皮带轮卸荷装置 (2)主轴的变速由变速手柄,和滑移齿轮完成 第2章机床参数的拟定 2.1 公比的确定 (1)确定变速范围Rn及公比 已知最高转速n max =2000rpm,最低转速n min =160rpm,变速级数Z=12。 变速范围: R n=n max n min = 2000 160 =12.5 R n=φz?1

数控车床主轴箱设计

第一章概述 1.1设计目的 (2) 1.2主轴箱的概述 (2) 第2章主传动的设计 (2) 2.1驱动源的选择 (2) 2.2转速图的拟定 (2) 2.3传动轴的估算 (4) 2.4齿轮模数的估算 (3) 2.5V带的选择 (4) 第3章主轴箱展开图的设计 (7) 3.1各零件结构尺寸的设计 (7) 3.1.1 设计内容和步骤 (7) 3.1.2有关零件结构和尺寸的设计 (7) 3.1.3各轴结构的设计 (9) 3.1.4主轴组件的刚度和刚度损失的计算 (10) 3.1.5轴承的校核 (13) 3.2装配图的设计的概述 (13) 总结 (19) 参考文献 (20)

第一章概述 1-1设计目的 数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。 1-2 主轴箱的概述 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来手比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 第二章2主传动设计 2-1驱动源的选择 机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。 根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。 2-2 转速图的拟定 根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围Rdp=nmax/nd=3 而主轴要求的恒功率转速范围Rnp=3,远大于交流主轴电动机所能提供的恒功率

机床夹具设计课程设计

机床夹具设计课程设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

机床夹具设计课程设计说明书课题名称: 机床夹具设计 专业:机械设计制造及其自动化 班级:13机械一班 姓名:阮吴祥 学号: 指导老师:张秀香 2017年 1月

目录 一、机床夹具课程设计任务书 (1) 二、机床夹具课程设计说明书 (2) 1.对加工件进行工艺分析 (2) 2.定位方案设计 (2) 3.导引方案设计 (4) 4.夹紧方案设计 (5) 5.夹具体设计 (6) 6.其它装置设计 (6) 7.技术条件制定 (6) 8.夹具工作原理(操作)简介 (6) 9.设计心得 (7) 三、参考文献 (8) 四、附录 (9)

一、机床夹具课程设计任务书

二、机床夹具课程设计说明书 1、对加工件进行工艺分析: 零件名称为通孔套,为铸件,本工序铣削加工直径22mm的孔,设计手动钻绞孔专用夹具。工件已加工过的孔径为φ22mm,厚度为50mm。 在加工槽时,槽的尺寸精度和表面粗糙度要求不是很高,由铣削直接加工就可以达到要求,其中槽的宽度由刀具的尺寸保证,槽的深度尺寸和位置精度由设计的夹具来保证。槽的位置包括如下两方面要求: 加工槽的宽度为12mm,且两个侧面相对于中心面A对称度; 加工槽的深度为30±。 2、定位方案设计: 根据加工孔两侧面相对于中心面对称要求,需要限制工件X方向转动自由度、Y方向转动自由度和Z方向转动自由度;根据加工孔宽度和深度要求,需要限制工件X方向移动自由度和Z方向移动自由度。但考虑到加工时工件定位的稳定性,可以将六个自由度全部限制。 工件相对中心面对称,要实现加工孔两侧面相对中心面对称的要求,且根据基准重合的原则应选A面作为定位基准,但A面实际不存在,故可选工件的两侧面M或N的任一面作为定位基准,限制三个不定自由度,此为第一定位基准。

CA6140型卧式车床进给箱设计-开题报告

本科毕业设计(论文)开题报告(综述)机电工程学院机械工程及其自动化专业 题目:CA6140车床进给箱设计 本课题来源及研究现状: 工业革命以后,蒸汽机出现,提供了新型巨大的能源,使生产技术发生了革命性的变化。车床也不断的演变,之前的皮带车床由于它的主轴转速低,变速级数少,刚度不高,抗振性差,加工精度低;并且车螺纹和进给使用同一根传动丝杠,丝杠易磨损,影响螺纹加工精度;用塔轮改变传动比,变速费时费力,生产率低。所以被齿轮传动车床所取代。 随着要求的不断提高,对进给箱内结构提出了更高的要求。只有在原有的基础上不断改进,才能实现新时代的发展。近年来,随着电子技术,计算机技术,信息技术以及激光技术等的发展并应用与机床领域,数控机床作为新一代标志,推动了自动化,精密化,高效化和多样化的发展。数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势 课题研究目标、内容、方法和手段: CA6140型车床是我国自行设计制造的一种卧式车床,具有以下特点:机床刚性好,抗振性能好,可进行高速强力切削和重载荷切削;机床操纵手柄集中,安排合理,溜板箱有快速移动机构,进给操纵较直观,操作方便,可减轻劳动强度;机床具有高速细进给量,加工精度高,表面粗糙度小(公差等级能达到IT6一IT7,表面粗糙度可达Ral.25):机床溜板刻度盘有照明装置,尾座有夹紧机构,操作方便等等。 本课题主要研究生产实际中车床进给箱变速结构的原理及运动传动链的设计及改进。这一课题在实际生产中有着十分重要的现实意义,进给运动链使刀架实现纵向或横向的进给运动及变速换向,实现了四种标准螺纹的车削。卧式车床在切削螺纹时,进给传动链是内联系传动链。主轴每转刀架的移动量应等于螺纹的导程。在切削圆柱面和端面时,进给传动链是外联系传动链。进给传动链的优化直接影响机床加工的精密度。 同时本课题作为毕业设计,可以有效的培养我们独立工作、发现问题和解决问题的能力;能根据设计课题查找有关的资料,了解本课题的前沿和发展方向;

最新CA6140普通车床主轴变速箱设计及主轴箱设计说明书汇总

C A6140普通车床主轴变速箱设计及主轴箱 设计说明书

目录 1 绪论 (1) 1.1 课题研究背景及选题意义 (1) 1.1.1课题的背景 (1) 1.1.2课题的目的 (5) 1.2 完成的内容 (5) 2 参数拟定 (6) 2.1 主电机动力参数的确定 (6) 2.2 运动设计 (7) 2.2.1确定主轴极限转速 (7) 2.2.2确定转速范围n R定公比 确定主轴转速数例: (8) 3 传动设计 (8) 3.1 传动方案拟定 (8) 3.1.1传动组和传动副数的确定 (9) 3.2 传动结构式的选择 (10) 3.2.1基本组和扩大组的确定 (10) 3.2.2分配总降速比 (11) 3.3 带轮直径和齿轮齿数的确定及转速图拟定 (12) 3.3.1确定皮带轮动直径 (12) 3.3.2确定齿轮齿数 (13) 3.3.3画出转速图如下[1]: (15) 3.3.4验算转速误差 (15) 3.4 齿轮的计算转速的确定及传动系统的拟定的计算转速 (17) 3.4.1确定各轴和齿轮 (17) 3.4.2由转速图拟定传动系统图 (18)

4 传动件的估算和验算 (19) 4.1齿轮模数的估算和设计 (19) 4.1.1 计算各轴传动的功率 (19) 4.1.2 计算传动轴齿轮模数 (20) 4.1.3 计算各轴之间的中心距 (22) 4.2 三角带传动的计算 (22) 4.2.1计算皮带尺寸[6] (22) 4.3 传动轴的估算和齿轮尺寸的计算 (24) 4.3.1确定各轴的直径 (24) 4.3.2 计算各齿轮的尺寸[6] (25) 5 各部件结构设计 (27) 5.1 皮带轮及齿轮块设计 (27) 5.1.1 皮带及皮带轮的设计 (27) 5.1.2 齿轮及齿轮块设计 (28) 5.2 轴承的选择及箱体设计 (28) 5.2.1各轴承的选择 (28) 5.2.2 主轴及箱体设计 (28) 5.3 密封结构及润滑 (29) 6 主轴组件的验算 (30) 6.1验算主轴轴端的位移a y (30) 6.2 前轴承的转角及寿命的验算 (32) 6.2.1 验算前轴承处的转角Q (32) 6.2.2 验算前支系寿命 (33) 6.3 箱体设计 (34) 总结 (34) 致谢 (36)

数控机床课程设计说明书

目录 1、前言 (2) 2、控制系统硬件的基本组成 (2) 2.1系统扩展 (2) 2.1.1 8031芯片引脚 (3) 2.1.2 数据存储器的扩展 (6) 2.1.3 数据存储器的扩展 (7) 3、控制系统软件的组成及结构 (9) 3.1 监控程序 (10) 3.1.1 系统初始化 (10) 3.1.2 命令处理循环 (10) 3.1.3 零件加工程序(或作业程序)的输入和编辑 (10) 3.1.4 指令分析执行 (10) 3.1.5 系统自检 (11) 3.2 数控机床控制系统软件的结构 (11) 3.2.1 子程序结构 (12) 3.2.2 主程序加中断程序结构 (12) 3.2.3 中断程序结构 (12) 4 、心会得体 (13) 5 、参考文献 (14)

1 、前言 数控车床又称数字控制(Numbercal control,简称NC)机床。它是基于数字控制的,采用了数控技术,是一个装有程序控制系统的机床。它是由主机,CNC,驱动装置,数控机床的辅助装置,编程机及其他一些附属设备所组成。数控机床控制系统的作用是使数控机床机械系统在程序的控制下自动完成预定的工作,是数控机床的主要组成部分。 2、控制系统硬件的基本组成 数控机床控制系统由硬件系统和软件系统两大部分组成。控制系统在使用中的控制对象各不相同,但其硬件的基本组成是一致的。控制系统的硬件基本组成框图如图1所示。 图1 控制系统硬件基本组成框图 在图1中,如果控制系统是开环控制系统,则没有反馈回路,不带检测装置。 以单片机为核心的控制系统大多采用MCS-51系列单片机中的8031芯片单片机,经过扩展存储器、接口和面板操作开关等,组成功能较完善、抗干扰性能较强的控制系统。 2.1系统扩展 以8031单片机为核心的控制系统必须扩展程序存储器,用以存放程序。同时,单片机内部的数据存储器容量较小,不能满足实际需要,还要扩展数据存储

数控车床主轴箱的优化设计和开发

数控车床主轴箱的优化设计和开发,以尽量减少热变形 森精机--Nagoya--日本 数字技术实验室--Sacramento--美国 关键词:热误差,设计方法,精度,主轴箱 本文是以调查的方法来减少和弥补精度数控车床中较大的热位移误差。为此,在这里我们提出了一个高效的设计和优化方法——主轴箱结构设计方法,来尽量减少主轴中心位置的热位移。和现有的那些经验方法相比较,这种方法可以更好的节省开发时间和成本。为了确定最佳的主轴箱结构,我们提出了Taguchi方法和有限元分析方法,这两种方法主要是用来验证和评估主轴中心过渡的主轴箱优化结果。 一:介绍 精度数控车床的精度越高,在加工精度要求方面的需求也越高。而热变形对于加工效果有非常显著的影响。关于这一个问题已经进行了的许多的研究。然而,并没有在实践中取得很多良好的效果。 热变形的主要研究归纳如下,Moriwaki和Shamoto建议使用温度传感器的热位移估计补偿方法,Brecher和Hirsche在延长这项工作的基础上控制部数据,刺激等等,这些主要是用于非金属材料(如碳纤维增强塑料),以抑 页脚.

制热位移。应用轴承的有限元方法(FEM)来分析预紧问题和铸件的形状优化问题,可以尽量减少热位移,Jedrzejewski通过进行补偿,再加上热执行器控制的应变是基于热失真反馈,清水等的原理。开发了一种新的算法,这种算法可以估计装修总机热变形的变形模式,并从涡流型位移传感器处获得所需要的数据。 一些机床制造商通过使用从传感器或部的NC控制器获得温度信息的方法,来估计热位移并进行补偿。对于数控车床来说,热位移通常是受机器的结构,环境的温度,热源的状态(伺服电机或加工热),气流和冷却剂的使用情况等的影响,虽然说理论上是可以进行准确的补偿,但是估计位移要涉及以上这些复杂的相互作用、参数和需要大量的组合实验。比如说,沿每个轴的线性热变形补偿问题,它的变形是伴随着精度显着下降,扭曲或翘曲的。 一种新数控车床的开发涉及到修改现有机器的结构和运行实验,而且,这通常要耗费大量的时间,而且费用也比较昂贵。所以在这里,提出一种新的方法——设计一个主轴箱,数控车床自身随机引起的热变形温度偏差。通过Taguchi方法,CAE分析等,确定数控车床主轴结构和热变形评估,以此证明上面说的方法是一个非常有效率的方法。 二:主轴结构和热位移测量 图1显示了数控车床主轴的部结构、零件以及环境变量的参数。热位移的目标是设计一个主轴箱,让热集中页脚.

车床尾架设计说明书

C0630车床尾架设计说明书

一、车床尾架的设计背景及意义 制造业中的车床是主要用车刀对旋转工件进行车削加工的机床。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。其结构主要分为:主轴箱、尾架、光杠、丝杠、溜板箱、床身、进给箱、刀架。 尾架是车床的重要部件之一,它在车床加工中起到了重要的作用。尾架体安装在车床的右导轨上,尾架套筒可以安装顶尖,以支撑较长的工件的右端、安装钻头、铰刀,进行加工。也可以安装丝锥攻螺纹工具、圆柱牙套螺纹工具加工内、外螺纹。尾架体可以沿尾座导轨作纵向调整移动,然后压下尾座紧固手轮,将尾座夹紧在所需位置,摇动尾座手轮可以实现对工件的顶紧、松开或对工件进行切削的纵向进给。 C0630车床是一种经济型轻型车床,具有加工范围大、主轴变速范围广,具备普通车床的基本功能,消耗功率小等特点。在该机床上,除可完成车削外圆、端面、切槽、镗孔等工艺工作外,还可进行钻孔、铰孔、车削公英制内外螺纹及攻丝、套丝等工作。因此,本机床适用于仪器、仪表制造,医疗卫生器械制造,适用于单件小批量生产。 二、车床尾架的工作原理 顶针(4)以1:20的圆锥体装在轴套(6)的锥孔内,螺母(9)用两外螺钉M12x20(10)与轴套固定,螺钉M15x30(8)用其圆柱端限制轴套只能作轴向移动。当转动手轮(14)时,通过键A8x14(15)使螺杆(11)旋转(不能轴向移动),再通过螺母(9)的作用,使轴套带着顶针作轴向移动。当顶针移动到所需要的位置时,转动手柄(7)和螺杆(19),使夹紧套(18、20)将轴套锁紧。整个尾架是靠定位键(25)嵌入床身的T型槽内作横向定位,但可沿槽作纵向滑动来改变尾架与主轴端面的位置,以适应加工不同长度的工件。顶紧工件后,可旋紧螺母M24(22)和双头螺柱M24x75(23),带动螺柱头(24)将尾架锁紧在床身上。(注:零件编号详情见配套A0图纸) 三、车床尾座的设计 尾座是卧式车床的重要附属部件,其主要作用是在加工特别是轴类零件时,

变速车床主轴箱设计及实物制作(8级)

8级变速车床主轴箱设计及实物制作 机械设计制造及其自动化 【摘要】作为主要的车削加工机床,普通车床被广泛的应用于机械加工行业中。本文主要针对8级变速车床主轴箱的设计进行说明,共包括运动设计、动力设计和结构设计三个部分。设计的主要内容有机床主要参数的确定,传动方案和传动系统图的拟定,最后通过对车床主轴箱零件进行计算、校核从而完成此机床主轴箱的设计。在结构设计中主要是主轴箱的传动设计,根据已给定的条件,即主轴转速来设计主传动系统。实际工作时,操纵变速手柄,通过拨叉拨动主轴箱中的滑移齿轮在轴上移动,实现变速。 【关键词】8级变速;主轴箱;设计 Design of the 8-Level Speed Spindle Box & the Model Making Mechanical Design, Manufacturing and Automation Major Abstract:As major turning machines, universal lathe is used widely in mechanical processing industry. In this paper, it focuses on the design of 8-level speed spindle box, and it includes three parts that motion design, dynamic design and structure design. The main contents of this design is to determine the main parameters, transmission scheme and drive system drawing of the machine tool, and finally complete the design of the spindle box by calculating and checking the parts of the spindle box. The main structure design is the design of transmission , under the given conditions, that is, according to spindle speed design the main drive system. Practically working, it control variable speed handles to achieve different speed through the fork that bring along the sliding gear moving on the axis[1]. Key words:8-level speed; spindle box; design

车床主轴箱设计_说明书[1]概论

蚌埠学院 课程设计任务书 学院:机械工程与自动化学院 专业:机械设计制造及其自动化 学生姓名:孟清泉学号:51201012025 课程设计题目:金属切削机床课程设计 ——车床主轴箱设计 起迄日期:2015.12.7——2015.12.20 课程设计地点: 指导教师: 系主任:

蚌埠学院机械制造装备设计课程设计任务书 层次:本科专业:2012级机械设计制造与自动化 学生姓名孟清泉学号51201012025 指导教师甘瑞霞 课题类别车床主传动系统设计设计时间2015年12月7日至2015年12月20日月20日课题名称最大加工直径为400mm的普通车床的主轴箱部件设计 一、机械制造装备设计课程设计的主要内容与要求 机械制造专业学生的机械制造装备设计课程设计是其在校学习阶段的一个重要教学环节。通过课程设计的实践,综合地运用装备设计课程和其他先修课程的理论和实际知识,进一步培养与提高学生分析和解决工程实际问题的机械设计能力,使学生掌握机床主轴箱设计的一般方法和步骤,也能够培养学生的计算能力、绘图能力、文字表述能力、文献检索能力以及综合分析能力,能够使学生的工程意识和技术素质得到显著提高。 (一)原始数据: 主电动机功率3kW,最高转速,最低转速,公比 工件材料:钢铁材料;刀具材料:硬质合金 (二)设计内容 1、运动设计:根据给定的转速范围及公比确定变速级数,绘制结构网、转速图、传动系统图、计算齿轮齿数等参数。 2、动力计算:根据电机功率及转速,确定各传动件的计算转速,对主要零件(如带、齿轮、主轴、传动轴、轴承等)进行计算(初算和验算)。 3、绘制下列图纸: (1)机床主传动系统图(画在说明书上) (2)主轴箱部件展开图及主要剖面图(A0) (3)主轴零件图(A1或A0) 4、编写设计说明书一份(不少于20页)。 二、应收集的资料及主要参考文献 关慧贞,徐文骥编著.机械制造装备设计课程设计指导书.机械工业出版社.2013 陈立德主编.机械制造装备设计课程设计指导书.机械工业出版社.2007 三、进度计划及指导安排 第1周:熟悉课题,收集资料,运动设计、动力设计、绘制主轴箱部件图草图 第2周:主要零件验算、绘制主轴箱部件图、绘制主轴零件图 整理资料,编写设计说明书,准备答辩 任务书审定日期年月日指导教师(签字) 任务书下达日期年月日学生(签字)

机床夹具设计课程设计

机床夹具设计课程设计 说明书 设计题目:钻床夹具设计 系别:机械与电子工程学院 专业:机械设计制造及其自动化

前言 夹具是机械加工不可缺少的部件,在机床技术向高速、高效、精密、智能、复合、 环保方向发展的带动下,夹具技术正朝着高精、高效、模块、组合、通用、经济方向发展。 本次的设计任务是加工零件(板件)上的两个孔。零件属于大批量生产,钻孔要 求精度高,所以需要设计一个专用夹具,保证零件加工质量。由于夹具的利用率高, 经济性好,使用元件的功能强而且数量少,配套费用低,降低生产成本;采用夹紧装 置,缩短停机时间,提高生产效率。 设计钻床夹具,首先要分析加工零件的技术要求,运用夹具设计的基本原理和方 法,拟定夹具设计方案;在满足加工精度的条件下,合理的进行安装、定位、夹紧; 完成草图后考虑零件间的连接关系和螺钉、螺母、定位销等的固定方式,设计合理结 构实现零部件间的相对运动,根据零件要求选择材料。 完成钻床夹具的所有设计后,用 AutoCAD进行二维图的绘制,首先画好零件图,最 后进行装配,标注相关尺寸及技术要求,并用 Pro/ENGINEER绘制最终三维效果图,最 终进行说明书,任务书的撰写、整理、修改完成设计任务。

目录 第一章对加工零件的工艺分析 .......................................................错误!未定义书签。 1.1夹具设计 ...........................................................................错误!未定义书签。 1.2零件分析 ...........................................................................错误!未定义书签。 1.2.1零件图 (1) 1.2.2加工零件图分析 (2) 第二章定位方案及误差分析 ...........................................................错误!未定义书签。 2.1拟定定位方案 .....................................................................错误!未定义书签。 2.1.1定位方案拟定 (2) 2.1.2定位方案选定 (2) 2.2定位误差分析 .....................................................................错误!未定义书签。 2.2.1相关概念 (3) 2.2.2定位误差分析 (4) 第三章对刀导向方案 .......................................................................错误!未定义书签。 3.1对刀导向方案 .....................................................................错误!未定义书签。 3.2对刀导向元件详细参数 .....................................................错误!未定义书签。 第四章夹紧方案及夹紧力分析 (5) 4.1 夹紧方案分析 .............................................................................错误!未定义书签。 4.2夹紧力分析 .........................................................................错误!未定义书签。 4.2.1夹紧力估算 .....................................................................错误!未定义书签。 第五章夹具体设计及连接元件选型 ...............................................错误!未定义书签。 5.1夹具体设计 ..........................................................................错误!未定义书签。 5.2连接元件选型 ......................................................................错误!未定义书签。 5.2.1标准件 .............................................................................错误!未定义书签。 5.2.2非标准件 .........................................................................错误!未定义书签。 第六章夹具零件图和装配图及标注 ...............................................错误!未定义书签。 6.1零件图 (8) 6.2钻模板零件图 ...................................................................................................... 1 1 6.3装配图 .................................................................................................................. 2 1第七章三维效果图...........................................................................错误!未定义书签。 14 总结 .................................................................. 14 参考文献 ..............................................................

数控车床主轴箱设计

数控车床主轴箱设计 一、设计题目 Φ400 毫米数控车床主轴箱设计。主轴最高转速4000r/min ,最低转速30r/min ,计算转速150r/min ,最大切削功率5.5kw 。采用交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min 。 二、主轴箱的结构及作用 主轴箱是机床的重要的部件,是用于布置机床工作主轴及其传动零件和相应的附加机构的。 主轴箱采用多级齿轮传动,通过一定的传动系统,经主轴箱内各个位置上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 三、主传动系设计 机床主传动系因机床的类型,性能,规格尺寸等基本因素的不同,应满足的要求也不一样。再设计时结合具体机床进行具体分析,一般应满足下属基本要求: 1)满足机床使用性能要求。首先应满足机床的运动性能能,如机床的主轴有足够的转速范围和转速级数。传动系设计合理,操纵方便灵活、迅速、安全可靠等。 2)满足机床传递动力要求。主电动机和传动机构能提供和传递足够的功率和转矩,具有较高的传动效率。 3)满足机床工作性能要求。主传动中所有零部件要有足够的刚度、精度、和抗振性,热变形特性稳定。 4)满足产品设计经济性的要求。传动链尽可能简短,零件数目要少,以节省材料,降低成本。 5)调整维修方便,结构简单、合理、便于加工和装配。防护性能好,使用寿命长。 四、主传动系传动方式 由题目知,我们设计的主轴箱传动方式为交流电动机驱动、机械传动装置的无级变速传动。再者,本题目中对精度要求一般,因此选用集中传动方式。另外主轴箱结构设计只需达到结构紧凑,便于集中操作,安装调整方便即可。 五、电动机的选择 按驱动主传动的电动机类型可分为交流电动机驱动和直流电动机驱动。交流电动机驱动中又可分单速交流电动机或调速交流电动机驱动。调速交流电动机又有多速交流电动机和无级调速交流电动机驱动。无级调速交流电动机通常采用变频调速的原理。 根据设计要求采用交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min 。选用FANUC-S 系列8s 型交流主轴电动机。 六、 计算过程 主轴最高转速4000r/min ,最低转速30r/min ,计算转速150r/min ,最大切削功率5.5kw ; 交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min ; 主轴要求的恒功率调速范围max 400026.7150 nN i n R n === 电动机的调速范围450031500dN R == 在设计数控机床主传动时,必须要考虑电动机与机床主轴功率特性匹配问题。由于主轴要求的恒功率变速范围远大于电动机恒功率变速范围,所以在电动机与主轴之间串联一个分级变速箱,以扩大其功率变速范围,满足低速大功率切削时对电动机的输出功率的要求。 根据以上分析,选择交流电动机的型号为: 若取3f dN R ?==,则可得到变速箱的变速级数 99 .2lg /lg ==f nN R Z ψ 所以,Z 可近似取为3,此处我们分别对Z=2、3、4三种情况进行研究,比较。 1) Z=3 根据f nN R Z ψlg /lg =可以得出99.2=f ψ,查表2-5取f ψ的标准值为3.0,dN f R =ψ,即主传动系功率特

相关文档
相关文档 最新文档