文档库 最新最全的文档下载
当前位置:文档库 › 长大公路隧道通风问题

长大公路隧道通风问题

长大公路隧道通风问题
长大公路隧道通风问题

我国长大公路隧道通风中的几个问题

夏永旭

(长安大学公路学院,710064)

摘要:论述了我国长大公路隧道通风中目前存在的几个技术问题,提出了解决这些问题的主要思路。

关键词:长大公路隧道,通风,问题。

1.前言

随着公路建设的快速发展和道路等级的逐渐提高,近年来,我国的公路隧道越修越多,越修越长。特别是我国西部山区的公路建设,将有许多长大或特长公路隧道要修建,正在施工的秦岭终南山公路隧道,设计长度更是长达18.004km。在整个隧道的建设中,通风方案的优劣及通风运营效果的好坏,将直接关系到隧道的工程造价、运营环境、救灾功能及运营效益。20多年来,国内在公路隧道通风方面积累了许多成功的经验,但也存在许多问题。随着人们对公路隧道通风理念的转变[1],特别是许多长大或特长公路隧道的建设和规划,通风已经成为影响和制约长大公路隧道建设的关键。本文在总结经验的基础上,探讨了我国目前长大公路隧道通风中所存在的一些问题,提出了解决这些问题的基本思路。

2.长大公路隧道通风中的几个问题

2.1 汽车排污量的计算

公路隧道的通风原理,是通过向隧道内注入新鲜空气,稀释洞内由汽车排出的废气(CO、、HC)和烟雾,使得隧道内的空气质量和烟雾透过率,能保证司乘人员的身体健康和行NO

2

车安全。然而,隧道内的废气总量和烟雾浓度,与汽车的排污强度以及隧洞内的车流密度成正比。

关于汽车的排污强度,我国已经制定了一系列强制性的政策法规。但是,我们现在的排污限制标准,仅相当于欧洲的1号标准。新颁布的《公路隧道通风照明设计规范》[2],所给出的各类汽车基本排放量也是1995年的测试结果。规范中虽然也给出了co年度折减系数为1%-2%,但是,汽车排污折减系数的取值不仅取决于汽车的发动机性能,而且与汽车燃油的质量以及道路的坡度都有关。图1是针对某隧道取co允许浓度为200ppm时不同折减系数的新风量。可以看到,折减系数影响较大,因此在具体计算中究竟取多少很值得研究。而关于柴油车的烟雾排放,现行规范中根本没有提及折减,但随着汽车性能的逐渐改进,烟雾排放量也当然应该折减。另外,当柴油车车速为80km/h或者70km/h,隧道纵坡大于1%或者

,也应该予以研究,因为这两种情况显然是存在的。

大于2%时的烟雾车况系数f

a(VI)

另一方面,隧道内的车流密度和道路的交通量成正比,车流密度高,洞内烟雾排放量大,

而交通量一般又呈逐年增长趋势,所以,如何处理汽车排污量逐年下降和交通量逐年增长二者之间的关系,是计算隧道排污量的关键,也是一个难题。但是,目前在许多工程的工可阶段,出现了为提高公路的等级,人为扩大交通增长速率的现象,这势必也加大了隧道的污染量,应该引起注意。

2.2长大公路隧道的卫生标准及需风量

有了隧道污染量,则隧道的卫生标准和烟雾允许透过率直接决定隧道需风量的大小。卫生标准主要是指是co的允许浓度,计算时不仅要考虑汽车行驶速度,而且要考虑司乘人员在隧道中停留的时间。规范[2]对于小于3.0km的隧道,给出co允许浓度为250ppm,堵塞时为300ppm,烟雾允许透过率为0.0070m-1。又根据已有的研究,提出c=co×t=600ppm﹒min。但是,对于大于3.0km的特长公路隧道,co允许浓度究竟如何取,规范中没有说明。所以,对于长大公路隧道的卫生标准,必须深入细致研究。毫无疑问,卫生标准高,隧道内的环境好,但是通风设备的投资肯定很大,而且将来的运营费用也会很高。因此,在确定卫生标准时,应当同时兼顾国家的环境卫生法规和业主的承受能力。图2给出了某特长公路隧道取不同卫生标准时的新风量需求曲线,从图中可以看到,co允许浓度取200ppm和150ppm 相差35.11%,这是一个相当大的数字。

隧道通风需风量的计算,除了要满足正常交通外,还必须考虑阻塞情况和灾害情况。规范[2]根据PIARC的建议,取阻塞工况车速10.0km/h,长度为1.0km,完全可以。但是,阻塞区外的车速肯定是距离阻塞中心越远车速越高。然而,沿隧道长度车流如何分布,车速到底取多少;相邻车道的车流、车速又如何,都需要认真研究。另外,由于长大公路隧道设有监控中心,所以在计算需风量时,20.0km/h工况是否还要考虑,值得商榷。根据目前的发展趋势可以预计,随着汽车排污量的逐年降低,烟雾允许透过率将成为控制隧道风量的决定因素,这在坡度较大隧道中业已得到验证[3]。

公路隧道的灾害主要是指火灾。尽管正常运营时的隧道风速,肯定满足防止火灾时烟雾回流的最低风速要求,但是,在计算隧道需风量时,必须认真详细地研究隧道发生火灾时灭火排烟的需风量以及逃生道和避难洞的风量需求。

2.3通风方式的选择及通风方案的初选

公路隧道的机械通风方式,一般分为全横向、半横向和纵向。上述三种通风方案各有利弊。如全横向和半横向通风,隧道内的卫生状况和防火排烟效果好(全横向最好)。但是,初期的土建费用、设备费用以及后期的通风运营费用很大;纵向通风土建工程量小,设备运营费用相对较低,且方式灵活多样,但洞内的环境状况和防火排烟效果稍差。根据2000年底的统计,全世界已建3.0km以上的公路隧道400多座,20世纪80年代以前建成的多为全横向式和半横向式通风,以瑞士、奥地利和意大利为代表。而20世纪80年代以后,关于公路隧道通风方式基本分为两大派。欧洲仍然以半横向、全横向居多,而亚洲以日本为代表,全为分段纵向。日本甚至认为,加静电除尘器的分段纵向通方式,适合任何交通形式和任何长度的公路隧道。近几年,欧洲各国的通风理念也有所改变,双洞单向交通,分段纵向通风方式,逐渐成为主流。奥地利巴拉斯基隧道和陶恩隧道的二期工程就是典型的例子[4]。

国内的通风方式,也经历了由最初的全横向、半横向向分段纵向逐渐过渡的过程。如上海的打浦路隧道(2.761km)、延安东路隧道右洞(2.261km)采用的是全横向。深圳的梧桐山隧道左线(2.238km)为半横向。1989年建成的七道梁隧道(1.56km),在国内首次采用全射流纵向通风。而1995年建成的中梁山隧道(左洞3.165km,右洞3.103km)和缙云山隧道(左洞2.528km、右洞2.478km),变原来的横向通风方式为下坡隧道全射流纵向通风,上坡隧道竖井分段纵向通风,在国内首次将纵向通风技术运用于3.0km以上的公路隧道。随后,铁坪山隧道(2.801km)、延安东路隧道左洞(2.30km)、谭峪沟隧道(3.47km)、木鱼槽隧道(3.61km)、梧桐山隧道右洞(2.27km)、大溪岭隧道(4.1km)、二郎山隧道(4.61km),

均采用了纵向或分段纵向通风方式。

尽管分段纵向通风方式,已经成为大家普遍的共识,但也遇到了许多问题和挑战。如分段的长度最大不能超过多少,国外4.0km的长度能否在国内适用;对于地形险峻,埋深太大的特长隧道,如何解决中间段的通风;火灾和救援逃生时风机如何控制;静电除尘器的技术和经济效果到底如何;怎样减少通风阻力;大角度长斜井和盲竖井的技术经济比较;地下风机房和地面风机房的优缺点,等等。对于上述这些问题,虽然国外已有各种处理方法,但效果不一。随着研究的深入和认识的不断提高,有些问题已经有了新的解决办法。如采用隧道顶端的大直径轴流风机可以大大降低通风阻力[5];火灾发生时的人员逃生可以事先通过现场和数值模拟研究[6],制定出救灾预案。无法设置竖井的中间段可以设法采用混合通风方式[7,8,9]。当然,国外的经验只能借鉴,决不能照搬。真正解决问题,还是要靠我们自己做扎实细致的研究工作。

在具体进行通风方案的选择时,可以分三个层次展开。首先是确定通风方式,是采用横向、半横向,还是纵向、混合式;其次是在所确定的一种或者两种通风方式中,再进行多方案的比选,选取较好的2~3种;最后对所初选的通风方案进行比较分析,给出推荐方案和比较方案,提供专家评审。然而,不管在哪一个阶段,都必须从功能、技术、经济三方面考虑,逐步深入,认真研究,科学论证。

2.4防火救灾时的通风

公路隧道通风方案的设计,除了要满足交通运营通风外,还必须详细研究火灾发生时的通风需求,即把正常运营通风和火灾时的通风看作是整个通风系统的两种重要的工况。由于隧道火灾的随机性,通常很难提前预防。加之隧道环境封闭,灭火救灾困难,一旦发生火灾,损失巨大。1999年3、4月间,意大利勃朗峰隧道和奥地利陶恩隧道的先后发生大火,造成40多人死亡。2001年10月24日,瑞士圣哥达隧道又有两辆大卡车碰撞引起大火,14人丧生。可以肯定地说,防火救灾是目前公路隧道通风的难点,而且是今后很长时间内需要研究的课题。因而,在研究通风方案时,对于隧道防火区段的划分、横通道的设置、横通道的开启与关闭、烟流排出的路径与速度、逃生通道的空气补给、避难洞的新风需求、隔温安全段的长度和降温措施、排风口的间隔和面积、火灾时的风机控制、部分风机损坏时的风机调配等,都要逐一详细研究。而在研究这些问题时,又必须和隧道的正常通风以及安全等级、防灾救灾预案的制定综合考虑,并在通风方案的选择阶段和优化阶段,分层次进行。研究的方法可以通过物理实验的方法和数值模拟的方法同时进行[6]。

2.5通风方案的优化

优化研究是对通风方案深化和完善的重要过程。因为,除了在通风方式的选择和通风方案的初选阶段,许多问题根本无法解决外,一些隐藏的深层次的问题,只能是随着研究的深入和设计的展开逐步显现。国外对长大公路隧道的通风研究历来十分重视,如意大利的勃郎峰隧道,从最初的设计草图到最后建成通车,历时三十一年,通风方案先后多次修改。今年又结合防灾救灾,对整个通风系统进行大的改造。

通风方案的优化研究,可通过数值模拟和物理实验两种方法实现。数值模拟可首先根据一元流理论,研究不同防火区段划分、不同斜(竖)井断面、不同车流工况、不同风机配置时,隧道内的风流方向、风速变化、风压分布,给出该通风方式的定性及定量描述[10]。然后,再应用CFD技术,进一步详细研究上述相关问题以及细部结构对通风效果的影响,诸如斜(竖)井断面、射流风机效应、分流和汇流局部损失系数[6、11]、连通道和过渡端的阻力、轴流风机进出口段最佳长度和角度、火灾时的烟雾分布规律、连通道在灭火排烟中的作用、两洞口及送排风塔相互影响、隧道污染物的扩散等。

物理实验研究是借助物理模型,模拟所拟定的通风方案在不同细部结构、不同通风工况、不同风机配置时的通风效果,观测各个细部的流场分布,实测模型内不同断面的风流、风压、

风速;实测壁面阻力系数和不同细部损失系数、研究各个细部的最佳几何形状;观测火灾发生时的烟流分布,风机的排烟效果,确定轴流风机和射流风机的最佳配置;研究不同风机参数(轴流风机的叶片角度、进出口形状、风量控制方式;射流风机类型)对风场的影响等[6,12]。

数值模拟和物理模拟目前也最存在一些问题,如建立更符合实际的计算模型、瞬态非线性以及紊流的计算方法、非相似物理实验模型、足尺实验等。但是无论怎样,物理实验是优化研究的基础,它不仅是对通风方案的验证,而且更为重要的是通过实测为数值模拟提供计算参数,修正和完善数值研究模型。因此,对于长大及特长公路隧道的通风优化,物理实验是最重要的必须手段,也是最直接和最基础性的工作,决不能流于形式和沦落为对通风方式单纯的验正。

2.6通风效果的检测

通风效果的检测,是对竣工运营后的隧道通风状况进行实地检测,内容包括隧道内的 CO 浓度、NO2浓度、HC浓度、烟雾透过率、风压、风速、噪音;隧道区域环境污染浓度、污染范围;风机性能、风机功率、风机组合功能、风机控制效果甚至于检测器件的灵敏度等。通风效果检测的最大困难在于设计交通工况的组织以及灭火排烟时效果的检验。但是,成功的通风效果检测,不仅仅是对通风方案有一个实际的考察和评估,而且会为通风控制方案的完善提供有用的帮助。所以,对于长大和特长公路隧道必须认真做好通风效果的检测工作。

3.结语

隧道通风是长大公路隧道建设中必须认真研究和解决的重要问题,而防灾救灾的研究更是长远的课题。无论是基础理论还是研究的技术和手段,特别是实际经验,我们和国外都有很大的差距。所以,虚心学习国外的先进经验,加强公路隧道通风基础理论和应用技术的研究,结合工程实际,开拓思路,努力工作,将是我国今后长大公路隧道通风研究的长期任务。

参考文献

1.夏永旭、戴国平.现代公路隧道的发展,2001’中国公路隧道学术交流论文集,2001.9

2.中华人民共和国行业标准:《公路隧道通风照明设计规范》,北京:人民交通出版社,

2000.6

3.夏永旭、王永东、赵峰.雁门关公路隧道通风技术研究报告,2001.6

4.夏永旭.欧洲四国隧道通风考察报告,2000.5

5.John Day ,Ian Sweetland.REDUCING PORTAL EMISSIONS FROM TUNNELS ECONOMICALLY,

Ventilatoren Sirocco Howden,2001

6.杨冠雄.公路隧道营运时防灾系统设计分析,台湾中山大学研究报告,2001.7

7.夏永旭.秦岭终南山公路隧道通风方案讨论,长安大学学报,2001.10,待发表

8.夏永旭、赵峰.纵向-半横向混合通风方式研究,长安大学学报,2001.10,待发表

9.夏永旭、赵峰.纵向-全横向混合通风方式研究,长安大学学报,2001.10,待发表

10.王永东、夏永旭:长大公路隧道纵向通风数值模拟研究,中国公路学报,2002.1

11.王永东、夏永旭:公路隧道纵向通风局部数值模拟研究,西安公路交通大学学报,

Vol.21(2001).4

12. A D Martegani、G Pavesi.An experimental study on longitudinal ventilation

system,CICC,1993

夏永旭,长安大学公路学院教授,电话:029-8498307(H)

地址:西安市南二环中段长安大学330信箱,710064 , E-mail:yongxuxia@https://www.wendangku.net/doc/b815898250.html,

隧道通风专项方案

目录 一、编制依据和原则............................................................... 1... 1 、通风设计依据 ............................................................ 1... 2 、编制原则................................................................ 1... 二、工程概况..................................................................... 1... 1 、工程概况............................................................... 1... 2 、地形、地貌 ............................................................. 1... 3 、地层岩性................................................................ 2... 4 、水文地质条件 ............................................................ 2... 三、通风设计标准................................................................. 2... 四、通风设计的原则............................................................... 3... 1 、通风系统................................................................. 3... 2 、通风设备................................................................. 4... 五、通风方案..................................................................... 4... 5.1 风量和风压计算 ........................................................... 4... 5.2 风机选型 ................................................................. 6... 六、施工通风检测................................................................. 6... 1 、风速测定.................................................................................. 7.. . 2 、风速测定要求.................................................................................. 7.. . 3 、用机械式风表测量隧道平均风速步骤 ........................................ 8.. 4 、隧道通风量计算 ......................................................... 1..0

隧道通风方案通风计算

隧道通风方案通风 计算

蒙河铁路屏边隧道斜井 通风方案 1、工程概况 屏边隧道全长10381m,进口里程DⅡK60+875,出口里程DIK71+256,为单线隧道,设计为单面下坡,坡度分别为-20.2‰(坡长9025m)、-10‰(坡长650m)及-1‰(坡长706m),最大埋深660m。 屏边斜井位于隧道线路右侧,斜井与正洞隧道中心线交汇点里程为DⅡK66+300,斜井与线路中线蒙自方向夹角80°,井口里程为XDK1+218,水平长度1218m,综合坡度为85‰。本斜井采用无轨单车道运输,断面净空尺寸 5.6m(宽)×6.0m(高)。斜井施工任务为斜井1218m(XDK0+000~XDK1+218),平导1735.29m(PDK66+294.71~PDK68+030),辅助正洞4165m(DⅡK63+835~DⅡK68+000),其中出口方向为1700m(DⅡK66+300~DⅡK68+000),进口方向2465m(DⅡK63+835~DⅡK66+300)。 2、通风控制条件 隧道在整个施工过程中,作业环境应符合下列卫生及安全标准: 隧道内氧气含量:按体积计不得小于20%。 粉尘允许浓度:每立方米空气中含有10%以上游离二氧化硅的粉尘为2mg;含有10%以下游离二氧化硅的水泥粉尘为6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘为10mg。 有害气体浓度:一氧化碳不大于30mg/m3,当施工人员进入开挖面

检查时,浓度为100mg/m3,但必须在30min内降至30mg/m3;二氧化碳按体积计不超过0.5%;氮氧化物(换算为NO2)5mg/m3以下。洞内温度:隧道内气温不超过28℃,洞内噪声不大于90dB。 洞内风量要求:隧道施工时供给每人的新鲜空气量不应低于 4m3/min,采用内燃机械作业时供风量不应低于4m3/(min.kw)。 洞内风速要求:全断面开挖时不小于0.15m/s,在分部开挖的坑道中不小于0.25m/s。 3、施工通风方案 根据确定的施工方案和任务划分情况,施工通风采用管道压入式通风,与风机相接的风管选用φ1800mm负压管(长度10m),在洞内转弯处加设负压通风管。洞外风机进风口至斜井井口距离不小于20m,风管出风口至掌子面距离L=60m。 斜井长度1218m,与正洞交汇后承担进口方向2245m、出口方向1700m的开挖任务,独头掘进长达3683m,通风难度最大,因此考虑采取分阶段通风形式。 采用独管路压入式通风,在交叉口往进口方向16m处设置风室作为二级接力通风风室,体积为270m3。风室旁另架设两台55x2KW风机分别给进出口方向通风,风机与风室采用φ1500mm钢管连接。为了加快污风风速,采用射流风机通风技术。 由于通风距离长,洞内回流风阻大,射流风机安装位置在风流需要导向处,如斜井口与正洞交汇处,横通道处,其它在洞内间隔600m安装一台。洞内风室及通风管布设见图。

长大隧道独头掘进施工通风技术

长大隧道独头掘进施工通风技术 发表时间:2018-03-20T10:17:34.723Z 来源:《基层建设》2017年第34期作者:刘军辉[导读] 摘要:随着隧道施工技术的不断发展,长大隧道在工程实践中日益增多,如何确保施工过程中的通风效果,对于加快施工速度,确保施工安全具有重大意义。 中建二局西南分公司重庆 400000 摘要:随着隧道施工技术的不断发展,长大隧道在工程实践中日益增多,如何确保施工过程中的通风效果,对于加快施工速度,确保施工安全具有重大意义。文章对长大隧道施工通风技术作简单论述,对类似工程提供参考。 关键词:长大隧道;通风;技术 1前言 针对大长公路隧道需设置通风竖井或者斜井以保障隧道内通风良好,经查阅国内外相关文献可知竖井施工存在诸多难点:其一为风机房施工中断面类型多,平面交叉及立体交叉导致多洞门施工,受力复杂是施工难点。其二为通风竖井井口位于山脊,场地小,不具备机械施工条件。竖井开挖深度大,施工难度大,且因施工场地受限,渣土运输困难,竖井施工是难点。长大隧道斜井主要作用为施工期间增加作业面,加快施工进度,运营期间可作为通风通道和紧急救援通道。 2通风设计原则 2.1通风系统 掘进工作立面都应该按照独立通风标准进行设计,不要将任一2个工作立面之间连接进行通风。隧道所实际需要的风量大小,应该依据爆破排烟、同时进行施工的最大人员数量和有毒气体最大排出量分别予以测算,并按允许风速进行检验,采用其中的最大值。隧道施工中,对集聚的空间和衬砌模板台车附近区域,可采用空气引射器气动风机等设备,实施局部通风的办法。隧道在施工期向,应实施连续通风。 2.2通风设备 (1)压入式通风机应该装置于洞内外新风流中,抑制污风循环。通风机要事先准备好两路电源,且装置风电闭锁系统,当一路电源发生故障,可以将另一路电源在短时间内迅速接入,以避免风机长时间停运。(2)应该准备一套与常用通风机性能一致的备用机,并时长进行通电检查,确保能够在应急情况下正常使用。(3)隧道掘进工作立面周围的局部通风机,都要采用专有变压器、专有开关设备、专专有线路及专有风电闭锁、瓦电闭锁进行供电。(4)隧道应采用抗静电、阻燃的风管。风管口到开挖面的距离应控制在≤20m范围内。风管每100m漏风率应控制在≤2%范围内。 3当前长大隧道施工技术存在的问题 3.1技术装备落后,滞约施工进度,影响施工效率 由于长大隧道在工程项目建设中绝大多数会是一个项目的工期控制点,长大隧道的建设工期直接影响项目完工工期,在长大隧道施工中引进先进的开挖、支护设备有利于提高工作效率,保证工程质量。现在应用较成熟的先进施工设备有水平超前钻机、多臂台车、湿喷机械手等。这些设备在施工速度、作业环境、安全性、施工质量等方面均优与常规的人工开挖机械。 3.2工人技术水平有限,施工工作开展难度大 长大隧道施工是一项极为艰苦的工作,参与到一线施工的主要是外来务工人员和农民工,他们的文化水平有限,对于长大隧道的认识也较为浅显,在施工的时候对于一些需要注意的施工事项一知半解,技术水平有限。鉴于此施工单位应该加强对一线技术工人的业务培训,尤其是对新工艺、新设备、新材料方面的应用培训,使工人业务水平的提高与技术水平的提高同步。 3.3地形条件复杂,制约隧道施工工作的开展 随着道路设计标准和施工技术水平的提高,为了保证线路的横纵平顺性,引入隧道工程可以从路线选择上大大节约线路长度,同时隧道工程可以少占用土地,能提高环境效益。长大隧道一般处于交通极度阻塞的崇山峻岭,人员、机械、材料进出,通信通讯要考虑,往往便道施工也是需要大力投入,修建难度远在一般地区之上,便道施工也会占据很多工期。大长隧道一般也是深埋隧道,岩爆的风险也较大,大大增加施工难度。 4长大隧道工程主要施工技术 4.1具体有效的施工方案的制定 具体有效的施工方案是合理利用资源、保证工期等的纲领性文件,长大隧道施工方案需要考虑现场地形条件、周围道路通行情况、弃渣场布置情况、工期要求等方面合理制定。因为很多长大隧道施工往往通过设置多个斜井或横洞工区同步实施的方案,根据现场实际情况合理制定的施工方案能最大化的利用现有资源,达到保证工程进度的目的。合理的施工方案制定后需要根据方案制定组织机构配备方案、现场资源配备计划、工程设备及劳动力配备计划。组织、技术、资源、劳动力的配备是工程能顺利推动的保障。 4.2通风技术的应用 首先应当设计好通风方案,在施工的时候,可以借助一些机械设备辅助通风,如说可以在施工场地布置轴流风机和射流风机,在施工时向洞内引进新鲜的空气,保证施工场所的空气质量,营造更好的施工环境。若为双洞施工,可以把轴流安装在左洞,左洞引入新鲜空气,轴流风机通过软式风管压入新鲜空气,左洞掌子面经过横向通道流向右掌子面后,从右洞排出;对于单洞长隧道,可以在轴流风机软管送风至掌子面的同时,在距离掌子面处增设射流风机,加速洞内空气的外排,保证洞内空气的新鲜,风机布置位置随着隧道开挖进尺加深其向洞内移动,可以根据具有情况适当的增加射流风机数量。 4.3实施预防及调整措施 长大隧道的施工是一项极为复杂的工作,比如说在挖掘隧道之前可以先要做好爆破工作,而要做好爆破工作也有较多的工序需要准备,如爆破点的选取,炸药的数量,施工人员的安全等,这些问题都需要在事先做好准备和预防,才有可能真正的解决好这些问题。此外,在施工的过程中,加强应急预案措施,施工环境较为复杂,所需要注意的问题也比较多,一旦遇到了突发情况,必须要及时的采取调整措施,才能做好这些施工工作,做好长大隧道的施工。 5施工通风

(完整版)隧道通风专项方案

隧道通风专项方案 一、编制依据和原则 隧道施工通风是隧道施工的重要工序之一,是隧道安全施工的关键。合理的通风系统、理想的通风效果是实现隧道快速施工、保障施工安全和施工人员身心健康的重要保证。根据设计图纸、以往类似隧道通风经验及对当前通风设备技术性能的调研结果,按照自成体系的原则,综合考虑施工过程中可能出现的情况,制定隧道通风方案。 1.1 通风设计依据 ⑴《蒙华铁路MHSS-4标设计施工图》; ⑵《铁路隧道技术规范》(TB10003-2005); ⑶《铁路隧道工程施工技术指南》(TZTZ204-2008); ⑷《铁路隧道工程施工安全技术规程》(TB10304-2009); 1.2 编制原则 (1)严格遵守招标文件明确的设计规范,施工规范和质量评定验收标准。 (2)坚持技术先进性,科学合理性,适用性,安全可靠性与实事求是相结合。 (3)对现场坚持全员、全方位、全过程严密监控,动态控制,科学管理的原则。 二、工程概况 2.1 工程简介 MHSS-4标段起讫里程DK691+361.53~DK716+850.00,全长25.488km,包括城烟隧道1座,崤山隧道1座、渡槽1座、框架涵1座,路基土石方21975.95施工方,无碴道床50.921km。 崤山隧道位于河南省三门峡市下辖灵宝市寺河乡及卢氏县官道口镇境内,进口位于灵宝市寺河乡城烟村附近,右侧有 G209国道通过;出口位于卢氏县官道口镇车家岭附近,位于S323省道边。部分山区有乡间水泥路通过,仅局部地段交通较为便利,其余地方通行仍较困难。本隧道起止里程为DK694+053 (YDK694+045)~DK716+804(YDK716+816),为两条单线隧道,左线隧道全长

隧道通风方案

轨道交通XX号线XX标 技术方案 隧道通风方案 编制: 审核: 批准: 中铁隧道集团有限公司 二00九年七月一日

目录 §1编制依据 (2) §2工程概况 (2) §3工程难点 (2) §4总体施工方案 (2) §5通风方案 (3) 5.1 通风方案的选择标准 (3) 5.2 隧道通风量计算 (3) 5.3 风机选择 (4) §6通风质量保证措施 (4)

隧道通风方案 §1 编制依据 (1)《地下铁道工程施工及验收规范》GB50299-1999; (2)XX 轨道交通1号线一期工程土建03标施工设计图纸; (3)我单位在地铁与长大隧道的施工经验。 §2 工程概况 XX 轨道交通XX 号线土建施工XX 标段,位于XX 中心城区、起始于中原东路与大学路路口,穿越京广铁路、郑州火车站,经过XX ,沿人民路向东北方向延伸到达紫荆山站。(详见见工程地理位置图)XX 站为地下两层岛式车站,车站总长度为273.8米,市体育馆站为地下三层岛式车站,车站总长度为138米;围护结构采用围护桩与混凝支撑、钢支撑相结合支护体系;XX 站主体工程采用明挖和局部盖挖顺筑施工,附属工程均采用明挖顺筑法,体育馆站主体和附属工程均采用明挖顺筑法。区间隧道从中原东路站~郑州火车站站~XX 站~市体育馆站~紫荆山站,共四个区间,最短区间692.6m ,最长区间1010.9m,单线全长3535.14m 。 §3 程难点 现按照集团公司的统一部署,计划使用两台盾构机从中间XX 站始发,向西通过郑州火车站站,掘进到中原东路站;向东通市体育馆站,掘进到紫荆山站。两个方向掘进长度均达到了独头2000米左右,这个施工运输和施工通风造成了很大的困难。 §4 体施工方案 根据我集团公司在地铁以及长大山岭隧道的隧道通风的施工经验,本工程采用轴流式 中原东路站 郑州火车站站 二七广场站 市体育馆站 紫荆山站 图1 工程地理位置示意图

特长隧道施工通风技术

特长隧道施工通风技术 湖南金路工程咨询监理有限公司:邓如彪、谭娟摘要如何选择特长隧道施工通风的最佳方案,既要将隧道施工中产生的烟雾、粉尘及有害气体排出洞外,确保隧道施工安全、卫生,又不影响后续工序的作业,是隧道施工组织不容忽视的重要问题。本文结合龙潭隧道施工通风方案的确定,阐述根据隧道的长度、掘进隧道的断面大小、施工方法和设备条件等因素来确定隧道施工通风的方式、方法。 关键词特长隧道施工通风技术 一、工程慨况 龙潭隧道是一座上下行分离式隧道,两隧道中心线相距50m。隧道进口位于湖北长阳县贺家坪镇堡镇村头道河北侧一小山脊的端部,出口位于长阳县榔坪镇长丰村青岩沟与龙潭沟交汇口处。左线起止桩号为ZK65+516~ZK74+209,全长8693m,右线起止桩号为YK65+515~YK74+114,全长8599m,属特长隧道。中铁十四局集团有限公司承建的龙潭隧道出口段,左线长4349m,右线长4254m。左线距洞口3079m处、右线距洞口2989m处分别设置Φ7.0m、深335m和Φ5.3m、深349m通风竖井各一座。隧道出口位于直缓线上,纵向坡度为-1.50%~-2.10%。 隧道设计净宽9.75m,净高5.0m。开挖最大断面积98.5m2,衬砌后最大断面积83.6m2。 本隧道采用无轨运输出碴方式施工,独头掘进长度4300m。独头通风3000m。该隧道合同工期33个月,月进尺260m左右,工期较为紧张。 二、隧道施工烟尘现状: 目前隧道施工环境中有害气体主要来源于:爆破、内燃机尾气、围岩被扰动释放的有害气体等;有害粉尘主要来源于:凿岩、爆破、装渣、车辆对已沉积粉尘的扰动等。在无轨运输作业条件下,施工通风的技术难度远大于有轨运输作业,原因主要是内燃机设备废气排放量大,污染源分散在隧道沿程,稀释比较困难。目前公路隧道独头通风超过3000m的甚少。 三、通风方案选择 隧道施工通风方案,主要考虑隧道掘进1~3000m通风竖井未贯通前的方案选择;当隧道掘进大于3000m,通风竖井贯通后,将按左、右线施工互不干扰的原则,采用独立通风系统,选择正洞压风、竖井抽风的压、抽混合式通风方式。

隧道通风方案设计,通风计算

蒙河铁路屏边隧道斜井 通风方案 1、工程概况 屏边隧道全长10381m,进口里程DⅡK60+875,出口里程DIK71+256,为单线隧道,设计为单面下坡,坡度分别为-20.2‰(坡长9025m)、-10‰(坡长650m)及-1‰(坡长706m),最大埋深660m。 屏边斜井位于隧道线路右侧,斜井与正洞隧道中心线交汇点里程为D ⅡK66+300,斜井与线路中线蒙自方向夹角80°,井口里程为XDK1+218,水平长度1218m,综合坡度为85‰。本斜井采用无轨单车道运输,断面净空尺寸5.6m(宽)×6.0m(高)。斜井施工任务为斜井1218m(XDK0+000~XDK1+218),平导1735.29m(PDK66+294.71~PDK68+030),辅助正洞4165m (DⅡK63+835~DⅡK68+000),其中出口方向为1700m(DⅡK66+300~DⅡK68+000),进口方向2465m(DⅡK63+835~DⅡK66+300)。 2、通风控制条件 隧道在整个施工过程中,作业环境应符合下列卫生及安全标准: 隧道内氧气含量:按体积计不得小于20%。 粉尘允许浓度:每立方米空气中含有10%以上游离二氧化硅的粉尘为2mg;含有10%以下游离二氧化硅的水泥粉尘为6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘为10mg。 有害气体浓度:一氧化碳不大于30mg/m3,当施工人员进入开挖面检查时,浓度为100mg/m3,但必须在30min内降至30mg/m3;二氧化碳按体积计不超过0.5%;氮氧化物(换算为NO2)5mg/m3以下。洞内温度:隧道内气温不超过28℃,洞内噪声不大于90dB。

长大隧道施工通风技术要点分析

长大隧道施工通风技术要点分析 发表时间:2019-09-17T15:29:33.273Z 来源:《城镇建设》2019年第15期作者:王建堰 [导读] 以南龙铁路乾山隧道通风系统为例,从施工通风方式、通风技术途径及通风过程注意事项进行长大隧道施工通风技术要点分析。中国水利水电第十四工程局有限公司云南省昆明市650000 摘要:以南龙铁路乾山隧道通风系统为例,从施工通风方式、通风技术途径及通风过程注意事项进行长大隧道施工通风技术要点分析。 关键词:长大隧道;通风;要点分析 引言 本文以南龙铁路乾山隧道通风系统为例,从施工通风方式、通风技术途径及通风过程注意事项进行长大隧道施工通风技术要点分析。 南龙铁路乾山隧道位于福建省南平市延平区至三明市沙县,隧道起讫里程DK18+495.26~DK29+238,隧道全长10742.74m,最大埋深515m,隧道洞门采用帽檐斜切式洞门。 在长大隧道工程中,通风是工程中的重点、难点之一,能否达到良好的通风效果与隧道施工各个岗位人员的生理健康、施工质量、施工进度等息息相关。为了能有良好的通风效果,对于通风方案的抉择与实施至关重要[1]。对弈隧道的施工,一般短隧道洞内通风可以采用自然通风来改善空气质量,但对于长大隧道施工工程,尤其看重通风技术的方案及实施,这关系着方方面面。 1、施工通风方式 长大隧道施工工程的通风方式主要是有四种,分别是排风式、压入式、送排混合式、辅助坑道通风式,可选择单一或多个通风方式用于实际施工中。 1.1 排风式(或称吸出式)通风。这种方式的操作原理为:将吸风口放置在工程操作面的旁边,利用风机排出洞内的尘土、废气等有害物质,同时可以将洞外的新鲜气体引入进隧道中。这种排风式的优势在于可以及时交换气体,不留存有害物质,不会造成洞内污染。有利也有弊,弊端在于如果隧道过长,新鲜空气需要长时间才能进入到洞内,而施工人员却不可以及时的到达工作面,那么会影响工程的施工进度。 1.2 送风式(或称压入式)通风。此方式的原理是:在洞外放置风机,一般要与洞口有一定的距离,风机可以把新鲜空气通过管道压入隧道内,与此同时利用压力,也可以将洞内的有害物质压出洞外。这种排风式的优势在于可以使得隧道内能迅速获得新鲜空气,有助于施工人员能及时顺利开展工作,避免影响工程施工进度,可提高整体的效益。但弊端在于,有害物质是从洞内开挖断面排出,必然会对洞内造成污染,影响后续的锚杆、喷混凝土、防水层等各工序施作。 1.3 送排混合通风方式。采用排风和送风两种通风方式相结合,一边可以快速的将新鲜空气送入到隧道开挖面,另一边同时还能及时排出有害物质,具有通风迅速、减少洞内尘土的优点。但不足的是,这种混合式的通风方式,必须要在隧道内同时放置两条风管,一来是对于本身就空间窄小的隧道而言,会影响到隧道工程的施工;再有,每条管路间的相互连接与人力的维护工作量都会有相应的增加。所以,从整体情况考虑,对于长大隧道施工,要求施工周期短同时对通风有极大的要求等各种较为困难的工程,才会考虑采取此混合式的通风方式。 1.4 辅助坑道通风。在隧道相连接的坑道处,布置合适的洞、平行导坑、斜井或竖井,可以起到保持隧道内良好通风、保证隧道内运输通畅等作用。 以南龙铁路为例,在工程初期采用压入方式进行通风处理,在工程的中后期,考虑到隧道的延长,在施工地段,采用送排混合式的方式,来增加通风量,保证隧道内的工作环境。同时,在乾山隧道2#斜井洞口处增添进口压入式风机来配合主洞段自然排风体系。 考虑不同位置的竖井、斜井,规范整体的隧道工程施工的操作区域,根据区域的不同选择合适的通风方案,可以合理调整隧道通风的长距,分段的配备单独的通风体系,保证隧道工程整体的内在环境[2]。 2、改善隧道施工通风的技术途径 2.1 合理布局。在洞外三十米以外的位置安置通风机,可以有效的避免排除的废尘废气再次被吸回到洞内,进行再次循环;将通风的管道设立在洞壁拱腰或拱顶处,可以避免影响其他程序的施工操作;将风管口设置在距离施工面的一定范围内,在能达到良好效果的同时,也避免施工操作对风管的破坏。 2.2优化匹配。使用的风管和通风机必须相互配套,才能保证能达到高效率的运行。 2.3防漏降阻。对于风管的选择,可以选用长丝涤纶纤维的布料所制成的风管,或是用PV塑料复合做制成塑胶布风管,这两种风管的外表光滑,可以减小因流动产生的摩擦力,同时还能防水防火防静电,可使用周期长,可以达到百米漏风率和通风阻力系数的系统要求。 2.4改进风管加工工艺。对于处于工作面的风管部分,采用手工方法用强力胶链接混织胶布,在洞口处的风管部分,则采用电热塑机热融增强塑胶布,因此就可以保证风管上没有针眼,降低风管的漏风的可能性。 2.5改进风管联接形式。对于风管间的连接,在连接时先将两个管口套在接头上,用软铁丝捆合,在采用薄钢板材质的钢圈搭配 φ10mm的钢筋在风管的连接处进行加工处理。这样的接头不易变形、破坏,也能保证连接紧密,保持通风顺畅。 2.6提高风管安装质量。在安置吊挂的风管时,要保证将缆索拉平拉紧,锚筋直立、牢固,每0.3~0.4米之间的吊环不能被破坏,保证完整性。 2.7加强通风系统的维护管理。为了能保证持续良好的通风效果,必须设有专人对通风系统进行日常维护管理。特别是长大隧道中的通风系统,负责人要每日定时进行检查和维护保养,并做好相应的维护保养记录。 南龙铁路乾山隧道出口段通风管采用长丝涤纶纤维布料,2#斜井段通风管采用PV塑料复合做制成塑胶布风管,经过工程实际,隧道通风效果良好。 3、通风过程注意事项 隧道内通风方案的考虑范畴包括:通风的方式选择是否合适,整体通风体系的设置是否合理,风管和通风机是否配套。不能从片面考虑理想的效果,用风量大的通风机,就不能配套管径小的风管,否则会造成增加阻力而增大漏风的情况;同样也不能用管径大的风管配套

隧道施工机械通风技术

隧道施工机械通风技术 使用通风机和管道的机械通风是隧道施工中最普遍的通风方法,在掘进距离较长的隧道施工中都采用机械通风。 一基本布置形式 通风机通风系统的基本布置形式有压入式、抽出式(或压出式)及混合式三种。 1.压入式 l 图1 压入式 如上图1所示,通风机或局部扇风机把新鲜空气经风筒压入工作面,污浊空沿隧道流出。 从风筒口到风流反向点的距离称为有效射程(l)。有效射程以外的炮烟及废气,呈涡流状态,不能迅速排除。 有效射程按下式计算: l1=(4~5)A 式中:l1—有效射程,m; A —隧道的断面积,m2。 在应用压入式通时须注意以下两点: (1)通风机安装位置应与洞口保持一定距离,一般应大于30m; (2)风筒出口应与工作面保持一定距离,对于小断面、小风量、小直径风管,该距离应控制在15m以内;对于大断面、大风量、大直径风管,该距离应控制在45~60m以内。 2.抽出式(或压出式) (a)抽出式(b)压出式 图2抽出式和压出式 如上图2所示,通风机或局部扇风机经风筒把工作面的污浊空气抽出,新鲜风流沿隧道流出。抽出式通风只有采用硬质风管,若采用柔性风管,则系统布置应如上图2所示如上图2(b)所示的压出式通风。

风流的有效作用范围成为有效吸程(l )。有效吸程以外的炮烟及废气呈涡流状态,排出困难。 有效吸程按下式计算: l=1.5A 式中:l 1—有效吸程,m ; A — 隧道的断面积,m 2 。 抽出式通风的回风流不经过隧道,故排烟时间或排烟需的风量与隧道长度无关,只与炮烟抛掷区的体积有关。 炮烟抛掷区是指放炮后炮眼弥漫的区域。炮烟抛掷区的长度用下式计算: l 0=15+ 5 G 式中:l 0—炮烟抛掷区的长度,m ; G — 同时爆破的炸药量,kg 。 3.混合式 图3 混合式 混合式通风如上图3所示。抽出式(在柔性风管系统中作压出式布置)风机的功率较大,是主风机。压入式风机是辅助风机,它的作用是利用有效射程长的特点,把炮烟搅混均匀并排离工作面,然后由抽出式(压出式)风机吸走。这种方式综合了前两种方式的优点,适合于大断面长距离隧道通风,在机械化作业时更为有利。采用喷锚支护的隧道,喷浆地点的粉尘浓度很高,采用混合式通风,降尘效果十分明。 为了避免循环风,混合式通风系统中压入式风机进风口距抽出式风筒吸风口(或压出式风机吸风口)的重合距离不得小于10m 。两风筒重合段内隧道平均风速不得小于该隧道的最低允许风速。吸风口距工作面的距离应大于炮烟抛掷长度,一般为30~50m 以上。压入式风筒口距工作面的距离应不大于风流的有效射程。 二 施工通风的风量计算 进行风量计算的目的是为正确选择通风设备和设计通风系统提供依据。通风系统的供风能力应能满足工作面对风量的最大需求。 掘进工作面所需风量可分别按下列方法计算,取其最大者作为供风标准。 (一) 按排除炮烟计算风量 1. 压入式通风的风量计算 Q=t 25.2?32 2)(P b AL G 式中:Q —工作面风量,m 3 /min ; t —通风时间,min;

xx隧道通风方案

米仓山隧道施工通风方案 一、工程简介 米仓山隧道位于甘肃省陇南境内,隧道左线全长8688米,右线全长8694米,属于特长隧道。我项目部承建的米仓山隧道出口工程,左线长4350米,桩号为:ZK55+930~ZK60+280,右线长4322米,桩号为:YK55+930~YK60+252。隧道最大断面107.81m2,最大开挖宽度为12.48米,最大开挖高度为10.25米,坡道坡度为-2.98%和-0.5%。施工采用钻爆法开挖,独头掘进,挖掘机配合装载机装碴,无轨运输出碴。施工通风需解决的问题:一是毒害气体,主要来源于爆破炮烟,无轨运输车辆柴油机废气,二是粉尘,主要来源于岩尘、炮烟、水泥尘、烟尘等。 二、通风计算 由于米仓山隧道属于长大隧道,前期(2000米之前)采用 压入式通风,后期采用巷道式通风。为了做到通风一次成功,我们根据施工组织设计,对风量、风压进行科学论证,合理选用通风设备,并认真进行测定,加强风机、风管的安装和维修管理。 (一)隧道掘进至2000米之前风量和风压的确定 1、基本计算参数 ①隧道断面(按Ⅳ类围岩计算); ②循环进尺; ③一次爆破炸药用量;

④洞内作业人数; 专业资料 ⑤内燃设备装机功率; ⑥通风时间; ⑦风管直径; ⑧风管平均百米漏风率,风管摩阻系数。 2、风量计算 在隧道施工通风的风量计算中,需计算排除炮烟所需的风量和排出粉尘所需风量,按施工隧道内的最多人数计算风量,按最低允许风速计算风量及按稀释和排除内燃机废气一氧化碳(CO)等计算风量,并取其中的最大值作为最终需风量进行通风系统的设计。 米仓山隧道采用压入式通风,计算过程全部按照压入式通风标准进行计算。 Q?q?m?k①按洞内最大工作人数计算风量 —每人每分钟所需空气量,按每人3m/min计算q3—洞内同时工作最多人数,按165人计算(左线隧道开挖14m人,右线隧道开挖14人,二次衬砌48人(4组台车,1组12人),仰拱20人,水沟20人,喷锚7人×2(两个工作面同时作业),机械司机20人,管理人员15人) —风量备用系数1.1~1.15,此处取最大值1.15 k3in/3569.m m15165Q?3??1.?②按洞内最小风速计算风量v??s?Q60—隧道断面积90m(单洞)2s0.15m/s,但均不应大—允许最小风速,全断面开挖不应小于v专业资料

特长隧道通风设计方案

至高速公路 XXX特长隧道出口端通风专项方案 编制: 复核: 批准: XX有限责任公司 至高速公路xx项目部二0一三年九月二十二日

通风专项方案 一、编制依据 1.四川省XX至XX高速公路工程项目《招标文件》,XX标段图纸等。 2.《公路工程技术标准》(JTG B01—2003)。 3.公路隧道施工技术规范》(JTG F60—2009)。 二、工程概况 XX隧道出口端位于四川省XX境内,是XX至XX高速公路土建工程控制性工程,设计为双洞单向行驶两车道公路隧道,左线长7732米,右线长7726米,围岩以Ⅱ、Ⅲ级为主,Ⅳ、Ⅴ级围岩较少,隧道工程地质、水文地质十分复杂。隧道最大断面150.18m2。根据围岩级别不同,施工采用人工、机械开挖全断面法和台阶法开挖,主洞和斜井同时掘进,装载机装碴,无轨运输出碴。设计为无瓦斯隧道,为预防有害气体突出,避免灾害性事故发生,加强对有害气体的监测,用监测信息指导隧道施工,同时对有害气体进行综合治理。 三、编制目的 隧洞施工通风的过程是不断向洞内提供新鲜空气,用新鲜空气冲淡和排除各种有害气体、粉尘和烟尘,使其浓度降到规定的允许范围以内,给施工人员创造相对较好的气候条件,改善洞内的施工环境,特制定本方案。

四、隧洞施工通风方式 隧洞施工通风方式主要有管道式通风(即独头通风)和巷道式通风两大类,它们在长隧道施工的应用中都有新的发展,管道式通风一般用于单口掘进长度3km以内的隧洞,增加通风长度的途径是采用大风量风机和大直径管道,并且设法减少风管的漏风,在此条件下我国已经实现单管单机通风长度7.5km,国外管道通风长度已超过10km。超过3km的隧洞较多采用巷道式通风,凡长隧道用管道式通风比较困难的都可以采用巷道通风。这些方面国内外许多长隧道的施工通风可以借鉴。 本段施工通风采取前期管道式通风和后期巷道式通风相结合的通风方式。 五、施工通风 1.通风设计 1.1洞内施工所需风量根据洞内同时工作的最多人数所需要的空气量,或使同一时间爆破的最多炸药用量产生的有害气体降低到允许浓度所需要的空气量,或使同时在洞内作业的内燃机械产生的有害气体稀释到允许浓度所需要的空气量,或满足洞内允许最小风速要求等条件进行计算确定。以其中最大者选择通风设备。 1.2主要计算参数

几种隧道通风方案

几种隧道通风的通风方式比较 一、自然通风和机械通风。 1、双向交通隧道:L*N≥6*105时需机械通风。 2、单向交通隧道:L*N≥2*106时需机械通风。 其中L表示:隧道长度(m),N表示设计交通量(辆/h) 二、机械通风通风方式可分为纵向式、半横式、全横式以及这三种方式的组合。 选择机械通风方式应考虑以下因素: ①交通条件 ②地形、底物、地质条件 ③通风要求 ④环境保护要求 ⑤火灾时的通风控制 ⑥工程造价、运行费用、维护费用。 三、隧道通风要求: 1、单向交通的隧道设计风速不宜大于10m/s,特殊情况可取12m/s;双向交通的隧道设计风速不宜大于8m/s;人车混合通行的隧道设计风速不宜大于7m/s。 2、风机产生的噪声及隧道中废气的集中排放均应符合环保有关规定。 3、确定交通方式在交通条件发生变化时应具有较高的稳定性,并便于防灾时的气流组织。 4、隧道内通风的主流方向不应频繁变化。

四、机械通风的通风方式:射流风机通风方式、集中送入通风方式、竖井排除通风方式、竖井送排式纵向通风方式、竖井与射流风机组合通风方式、全横向和半横向通风方式、静电吸尘通风方式。 1、射流风机通风方式,其模式如下图所示。 适用于单向交通隧道,送风方向与车行方向相同。 2、集中送入通风方式,其模式如下图所示。 集中送入通风方式应符合下列规定: ①应充分比选送风机房结构形式和风道连接方式,减少压力损失;对送风口结 构形式也要做比选,确定经济、合理的风口形式。 ②应结合结构工程尽可能使送风口喷流方向与隧道轴向一致,并在弯曲部位设 置导流装置。 ③该通风方式可与其他通风方式组合采用,宜用于单向交通隧道。 ④3、竖井排除通风方式,其模式如下图所示.

隧道施工通风方案

xx工程建设项目 xx隧道施工通风方案编制: 审核: 审批: xx工程有限公司 xx隧道项目经理部 2017年10月

目录 一、编制说明 (1) 1.1 编制依据 (1) 1.2 编制原则 (1) 二、工程概况 (2) 2.1 项目概括 (2) 2.2 气象特征 (2) 2.3 水文特征 (3) 2.4 瓦斯情况 (4) 三、施工通风设计原则 (6) 3.1 施工通风的目的 (6) 3.2 设计原则 (6) 3.3 洞内有害气体与卫生指标要求 (7) 3.4 瓦斯隧道安全要求 (9) 四、通风参数计算 (12) 4.1 通风计算基础参数 (12)

4.2 施工范围及送风距离 (14) 4.3 开挖面需风量计算 (15) 4.4 隧道防瓦斯集聚风速验算 (23) 4.5 风机配置 (25) 五、隧道进口段与出口段施工通风方案设计 (26) 5.1 巷道式通风(轴流风机+射流风机) (26) 六、隧道一号斜井段施工通风方案设计............ 错误!未定义书签。 6.1 方案(风管+风仓+风管) (49) 6.2 一号斜井段风机配置 (87) 七、隧道二号斜井段施工通风方案设计 (88) 7.1 方案(风管+风仓+风管) (88) 7.2 二号斜井段风机配置 (127) 八总结 (128) 8.1 进出口段通风配置 (128) 8.2 一号斜井段通风配置 (129) 8.3 二号斜井段通风配置 (130)

一、编制说明 1.1 编制依据 (1)xx隧道标段施工方案; (2)《公路隧道工程施工技术规范》(JTG F60-2009); (3)《现代隧道施工通风技术》; (4)《工业企业设计暂行卫生标准》(GB J1-62); (5)《公路隧道工程设计规范》(JTG D70-2004); (6)《公路隧道通风设计细则》(JTG/T D70-2014); (7)《铁路瓦斯隧道技术规范》(TB10120-2002)。 1.2 编制原则 (1)贯彻执行国家的方针、政策及相关的工程施工规范、规定,当地政府的相关制度; (2)确保满足建设单位、监理单位、设计单位管理要求; (3)遵循合同条款,响应合同文件要求,确保实现业主要求的工期、质量、安全、环境保护、文明施工和造价等各方面的工程目标; (4)符合国家和地方关于环境保护、职业健康安全、水土资源及文物保护、节能减排的要求,尊重当地的民风民俗;

特长隧道施工通风技术方案

特长隧道施工通风技术 (中铁十四局集团二公司山东泰安 271000) 摘要结合龙潭隧道施工通风方案的确定,阐述根据隧道的长度、掘进坑道的断面大小、施工方法和设备条件等诸多因素来确定隧道施工通风的方式、方法。 关键词特长隧道施工通风 一. 工程概况 龙潭隧道是沪蓉国道主干线湖北宜昌至恩施高速公路的第一长隧,是一座上下行分离式隧道,两隧道中心线相距50m。隧道进口位于湖北省宜昌市长阳县贺家坪镇堡镇村头道河北侧一小山脊的端部,出口位于宜昌市长阳县榔坪镇长丰村青岩沟与龙潭沟交汇口处。左线起止桩号为ZK65+516~ZK74+209,全长8693m,右线起止桩号为YK65+515~YK74+114,全长8599m,属特长隧道,目前国内施工中的第二长隧。我单位承担的九合同段(出口段),左线长4349m,右线长4254m,在距洞口约3000m 处,左、右线分别设直径7m和5.3m、深332m 和355m通风竖井各一座。出口均位于曲线上,纵向坡度为-1.50%的单向坡。 该隧道岩性以页岩、灰岩为主,Ⅳ、Ⅴ围岩居多,有少部分Ⅱ、Ⅲ围岩。在ZK71+570(YK71+643)附近发育F1断层,在ZK72+750(YK721+800)附近发育F2断层,F1断层对洞身影响范围较小,F2断层对洞身影响范围较大。洞口段基岩裂隙水较丰富,隧道在K70~K72段穿越岩溶区,岩溶水较发育。 隧道设计净宽9.75m,净高5.0m。开挖最大断面积98.45m2,衬砌后最大断面积83.6m2。 本隧道采用无轨运输出碴方式施工,独头掘进长度4300m。独头通风3000m,该隧道工期33个月,较为紧张,月进尺达260m 左右。 二、国内外工程实例 在无轨运输作业条件下,施工通风的技术难度远大于有轨运输作业,原因主要是内燃机设备废气排放量大,污染源分散在隧道沿程,稀释比较困难。目前国内有轨运输钻爆法施工时独头通风最长达7500m,TBM施工最长超过10km。但在无轨运输钻爆法施工条件下,国内独头通风最长为3600m(塑黄铁路寺铺尖隧道,赣龙铁路金华山隧道),目前公路隧道独头通风超过3000m的还没有。 在国外,采用压入式通风独头通风最长

长大隧道最佳通风方案

长大隧道最佳通风方案 中铁隧道集团一处周正华 随着我国经济建设的发展和西部大开发力度的进一步加大,各项相关的基础设施建设与此同时得到了迅猛发展;而在各项基础设施建设中,作为公路建设和铁路建设很重要的一部分的隧道施工作业中,长大隧道的通风问题作为施工作业中很重要的一部分,通风效果的好坏直接会影响到整个隧道施工的空气质量,进而影响到各个作业面施工人员的人体健康,而通风方案的选择是影响通风效果好环的直接决定因素,在对具体通风方案的选择上,技术上存在的问题是长期以来需要攻克的的重点和难点,在长期的现场工作中经过对实际运用中的各种方案的比较和技术上的论证,我认为采用以下方案可以使通风效果达到最好,现将我的论证依据归纳如下: 一、存在的问题 从目前来看,现在大多数山岭隧道施工主要是采用新奥法进行施工,其主要特点是根据隧道围岩的变化,及时调整隧道施工工艺的一种动态施工管理方法,它主要是通过加强隧道开挖支护,使围岩稳定几乎不再变化后,才进行砼衬砌施工(除在Ⅰ、Ⅱ类围岩施工中,衬砌砼是要作为受力载体而进行砼施工外),根据这种施工工艺方法,在长大隧道施工中若没有一个好的隧道通风方案,必将存在着极大的施工质量隐患和安全隐患,处理不好的话很容易造成安全质量事故,同时还会加大动力机械设备的耗油量,造成内燃机机械燃烧不充分,产生大量有毒的一氧化碳气体,加大机械设备的磨损,降低机械设备的使用寿命。 这是因为若没有解决好长大隧道通风问题,必然导致在隧道施工中隧道中的空气浑浊,尤其是隧道开挖掌子面空气浑浊,光线不够明亮,造成隧道开挖施工中开挖工人和工程技术人员无法准确掌握隧道掌子面围岩的变化情况;一方面使

隧道通风作业指导书

新建衢州至宁德铁路浙江段站前工程 QNZJZQ-Ⅳ标隧道工程 编号:QNZJZQ4-Ⅲ-ZDS-2016003 隧道通风施工作业指导书 单位: 编制: 审核: 批准:

二〇一五年十一月一日发布二〇一五年十一月二十五日实施

衢宁铁路浙江段(Ⅳ标)三分部隧道工程 隧道通风施工作业指导书 1.适用范围 适用于衢宁铁路浙江段(Ⅳ标)三分部承建隧道通风施工。 2.作业准备 2.1内业技术准备 作业指导书编制后,应在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗技术培训,考核合格后持证上岗。 2.2外业技术准备 施工作业层中所涉及的各种外部技术数据收集。修建生活房屋,配齐生活、办公设施,满足主要管理、技术人员进场生活、办公需要。 3.技术要求 3.1空气中氧气含量,按体积计不得小于20%。 3.2粉尘容许浓度,每立方米空气中含有10%以上的游离二氧化硅的粉尘不得大于2mg。每立方米空气中含有10%以下的游离二氧化硅的矿物性粉尘不得大于4mg。 3.3有害气体最高容许浓度:

(1)一氧化碳最高容许浓度为30mg/m3;在特殊情况下,施工人员必须进入开挖工作面时,浓度可为100mg/m3,但工作时间不得大于30min; (2)二氧化碳按体积计不得大于0.5%; (3)氮氧化物(换算成NO2)为5mg/m3以下。 3.4隧道内气温不得高于28℃。 3.5隧道内噪声不得大于90dB。 3.6隧道内气温不得大于 28℃; 3.7压入开挖工作面的局部通风机的通风管路百米漏风率不大于0.02; 3.8隧道施工通风的风速,全断面开挖时不应小于 0.15m/s,分部开挖的坑道内不应小于0.25m/s,并均不应大于 6m/s。 3.9指导书中未详细说明处参见相关施工技术指南及验标规范。 4.施工程序与工艺流程 4.1工艺概述 隧道通风工作一般包括隧道通风系统设计、风机及风管选型、风机及风管安装、风机及风管维护、通风排烟、工程结束拆除通风系统。 4.2工艺流程 见图4-2-1隧道通风施工工艺流程图

相关文档