文档库 最新最全的文档下载
当前位置:文档库 › 13制动系统设计规范

13制动系统设计规范

13制动系统设计规范
13制动系统设计规范

制动系统设计规范

1.范围:

本规范介绍了制动器的设计计算、各种制动阀类的功能和匹配、以及制动管路的布置。

本规范适用于天龙系列车型制动系统的设计。

2.引用标准:

本规范主要是在满足下列标准的规定(或强制)范围之内对制动系统的零、部件进行设计和整车布置。

GB 12676-1999 汽车制动系统结构、性能和试验方法

GB/T 13594 机动车和挂车防抱制动性能和试验方法

GB 7258-1997机动车运行安全技术条件

3.概述:

在设计制动系统时,应首先考虑满足零部件的系列化、通用化和零件设计的标准化。先从《产品开发项目设计定义书》上猎取新车型在设计制动系统所必须的下列信息。再设计制动器、匹配各种制动阀,以满足整车制动力和制动法规的要求。确定了制动器的规格和各种制动阀之后,再完成制动器在前、后桥上的安装,各种制动阀在整车上的布置,以及制动管路的连接走向。

车辆类型:载货汽车、工程车、牵引车

驱动形式:4×2、6×4、8×4

主要技术及性能参数:长×宽×高、轴距、空/满载整车重心高坐标、轮距、整备质量、额定载质量、总质量、前/后桥承载吨位、(前/后)桥空载轴荷、(前/后)桥满载轴荷、最高车速、最大爬坡度等。

制动系统的配置:双回路气/液压制动、弹簧制动、鼓/盘式制动器、防抱制动系统、手动/自动调整臂、无石棉摩擦衬片、感载阀调节后桥制动力、缓速器、排气制动。

4.制动器:

本规范仅对鼓式制动器的各主要元件和设计计算加以阐述,盘式制动器的选型和计算将暂不列入本规范的讨论范围之内。

鼓式制动器主要元件:

4.1.1制动鼓:

由于铸铁耐磨,易于加工,且单位体积的热容量大,所以,重型货车制动鼓的材料多用灰铸铁。不少轻型货车和轿车的制动鼓为组合式,其圆柱部分用铸铁,腹板则用钢压制件。

制动鼓在工作载荷下将变形,使蹄、鼓间单位压力不均,带来少许踏板行程损失。制动鼓变形后的不圆柱度过大,容易引起制动时的自锁或踏板振动。所以,在制动鼓上增加肋条,以提高刚度和散热性能。中型以上货车,一般铸造的制动鼓壁厚为13~18㎜。

4.1.2制动蹄和摩擦片:

重型货车的制动蹄多用铸铁或铸钢铸成,制动蹄的断面形状和尺寸

应保证其刚度。

重型货车用无石棉摩擦片(GB12676-1999第4.1.3制动衬片应不含有石棉。)的前片厚度为15㎜左右,后片厚度为18㎜左右。摩擦片材料的性能应具有:高而稳定的摩擦系数,热衰退较缓和;耐磨性好;吸水率和吸油率低;较高的耐挤压强度和冲击强度;制动时没有噪声和有毒气体发出。

制动蹄和摩擦片可以铆接,也可以粘接。粘接的优点在于衬片更换之前的使用厚度较大,但工艺复杂且不易更换衬片。铆接衬片的工艺简单、噪声较小且易于更换。东风汽车公司的制动衬片多采用铆接方式。

4.1.3制动底板:

制动底板将承受全部制动反力矩,故应有足够的刚度。刚度不足,将导致制动力矩减小,踏板行程加大,制动衬片磨损不均。重型车多用铸造底板代替压制的制动底板。

4.1.4制动器间隙自动调整装置:

制动鼓在不制动时应能自由运转,故制动鼓和制动衬片之间必须有一定的间隙。鼓式制动器的设定间隙一般为~㎜。

采用自动调整装置(GB12676-1999第4.2.11.1行车制动器的磨损应能自动调整。但是,对于

N和3N类非公路车辆的制动器以及1M和1N类

2

车辆的后制动器,可不强行要求安装自动调整装置。……)时,制动器的间隙不需要人工精细调整,只需要进行多次全制动即可自动调整到设定间隙,并且在行车过程中能随时补偿过量间隙。

自动调整装置有间隙感应式和行程感应式两种,国内常用的是间隙

感应式。它感应制动器的间隙超过设定间隙值时,便自动加以调整到设定的间隙。

4.1.5制动气室:

前桥制动器一般用膜片式的普通制动气室,中、后桥制动器一般用弹簧式制动气室,它的膜片气室部分用作行车制动,弹簧气室部分用作驻车制动或紧急制动。膜片气室部分和弹簧气室部分的操纵气路完全独立,分别由脚制动和手制动控制。

膜片气室的优点在于结构简单,对气室壁的加工精度要求不高,但所容许的行程较小,膜片的使用寿命也较短。不过,膜片的价格较低,且易于更换。在工程车上很受欢迎。而活塞气室的使用寿命较高,但对气室壁的加工精度要求较高,且不易适应恶劣的路况。

对非平衡式渐开线凸轮张开装置的制动器,有:

)P (P 2Q 21+=h

a 式中 1P 、2P ——凸轮对两蹄的张开力 2

a ——张开力对凸轮中心的力臂

h ——调整臂的臂长

Q ——制动气室推杆的推力

设制动气室工作压力为p ,则气室的作用面积为: hp P P a p Q A 2)(21+== 对活塞式制动气室: 24D A π=

, D 为活塞直径 对膜片式制动气室: )(12

22d Dd D A ++=π

其中 D 为气室壳体在夹持膜片处的内径,d 为膜片夹盘直径。

气室的推杆行程为:δλa

h l 2= 式中 δ——制动器间隙

λ——安全系数, 取λ=~。

制动气室的工作容积为:

活塞式制动气室: l D Al V 24π

==

膜片式制动气室: l d Dd D l A V ?++=

?=)(6222π

制动器的设计计算:

4.2.1制动器效能因数: 效能因数是鼓式制动器的一个非常重要的参数,它是制动器的输出力矩与输入力矩的比值。设计制动器时,就是要在有限的制动器的空间里力争尽可能高的效能因数。

对于非平衡式凸轮张开装置的领、从蹄式制动器:

领蹄: 1sin cos cos 1-=γβρλζ

k K t

其中: R h /=ζ, R f k /=, R l /0=ρ, αβγλ-+=

从蹄: 1sin cos 'cos 2+=γ

βρλζk K t 其中: R h /=ζ, R f k /=, R l /0=ρ, αβγλ+-='

制动器效能因数: 2

1214t t t t K K K K K += 式中:θ-领、从蹄摩擦片包角

0θ-领从蹄摩擦片起始角

α-最大压力线与摩擦片平分线的夹角

γ-摩擦角

β-等效法向合力与摩擦片平分线的夹角

h -张开力对支点的力臂

f -支点与制动鼓中心的距离

0l -压力中心圆的直径

R -制动鼓半径

从上面的公式中可以看出:影响制动器效能因数的主要参数有摩擦片起始角0θ、摩擦片包角θ、制动蹄支承点与制动器中心的距离f 、制

动鼓半径R 、张开力作用线到制动蹄支承点的力臂h 及摩擦片的摩擦系数μ。

摩擦片的片宽较大,对制动器吸热越好,也可减少磨损。当输入力一定时,制动鼓的半径越大,则制动力矩就越大,且散热能力也越强。但制动鼓的半径和摩擦片的片宽都受到轮辋内径的限制。制动鼓与轮辋之间应保持一定的间隙,以改善制动器的散热条件。一般情况下,制动鼓与轮辋直径之比为D/Dr=~。制动鼓的半径R 和摩擦片的片宽b 是在轮辋内径的限制下确定的。

当摩擦片包角θ=90o ~100o 时,磨损最小,制动鼓温度最低,且制动效能最高。θ再减小虽有利于散热,但单位压力过高将加速磨损。而增大包角对减小单位压力的作用并不大,且将使制动作用不平顺,容易使制动器发生自锁。所以,包角θ一般不大于120o 。

常将摩擦片布置在制动蹄的中央,故摩擦片起始角的大小为2900θ

θ-?=。

张开力作用线到制动蹄支承点的力臂h 应尽可能大,以提高制动效能,h=左右。

在保证两蹄支承端毛面不干涉的条件下,两支承端之间的距离尽可能小,所以,制动蹄支承点与制动器中心的距离f=左右。

温度不同,摩擦片的摩擦系数也不同。当温度在250oC 以下时,摩擦系数可保持在μ=~。在计算制动器的制动力矩时,取μ=可使计算结果更接近实际情况。

4.2.2制动力矩的计算:

用效能因数法求制动蹄的制动力矩。设制动蹄的制动力矩和输入张开力分别为μM 和P ,则KPR M =μ 。

制动性能验算:

制动器的基本参数确定之后,制动器制动力矩的大小就已经确定了。但该制动器能否满足整车性能的要求,需按照GB12676-1999和GB7258-1997的要求作进一步的验算。

4.3.1同步附着系数计算: 2

11b b b F F F +=β g h L L 2

0-?=βψ

式中:1b F -前桥制动器制动力(N)

2b F -后桥制动器制动力(N)

β-制动力分配系数

0ψ-满载同步附着系数

L -轴距(m)

2L -汽车重心至后轴的纵向距离(m)

g h -汽车重心高度(m)

4.3.2满载时制动性能:

当0ψψ<时 )/(5)(2022max s m h L L g j g ≥-+?=

ψψψ 当0ψψ>时 )/(5)(2011max s m h L L g j g

≥-+?=ψψψ 式中:1L -汽车重心至前轴的纵向距离(m)

Ψ-附着系数

g -重力加速度(m/s2)

4.3.3剩余制动性能:

前失效时: )/(3.121s m h L gL j g ≥+=

?? 后失效时: )/(3.122s m h L gL j g

≥-=

?? 4.3.4应急制动性能:

)2.2(m/s 2max ≥=m F j B 弹

4.3.5驻车制动性能:

按GB12676-1999规定:驻车制动系必须使满载车辆停在18%坡道上(上坡或下坡);允许挂接挂车的车辆,牵引车的驻车制动系必须能使列车停在12%坡道上。 mg F B 弹

arcsin ≥α

4.3.6比能量耗散率:

前桥制动器: 2211/8.14mm W tA

mv e ≤=β 后桥制动器: 2212/8.14)1(mm W tA

mv e ≤-=β 式中:1v -制动初速度

A -单个制动器的摩擦片面积

t -制动时间

4.3.7比摩擦力: 2/48.0mm N RA M f ≤=μ

式中:μM -单个制动器的制动力矩

5.制动阀:

气制动管路系统中常用的制动阀类及总成有:空气压缩机、组合式空气干燥器(含卸载阀)、四回路保护阀、贮气筒、放水阀、取气阀、串联式双腔制动阀、快放阀、感载阀、弹簧制动气室、手控阀、差动式继动阀、挂车控制阀、分离开关及连接头、排气制动阀、缓速器、ABS 电磁阀、单向阀、继动阀等。

空气压缩机:

空压机用来向汽车气制动系统或其它辅助用气装置提供必要的能源,即一定的气压和空气量。空压机经皮带轮由发动机驱动。空气经滤清器到达空压机吸气口,由进气门进入气缸。气体被活塞压缩后,经排

气门到达空压机供气口,再经干燥器、四保阀等进入贮气筒。

组合式空气干燥器:

由于经空压机压缩后的气体温度很高(一般在220℃左右),因此空气中包含的水分和油污将随同空气一起进入了管路中。含有水蒸气的压缩空气,经过管道凝聚成水。这些水分会引起金属零件锈蚀,橡胶密封件龟裂、润滑油脂分解失效,管路堵塞等故障,严重影响行车安全性。特别在寒冷地区的冬季,滞留在管路中的水分容易冻结成冰,破坏阀的正常工作,甚至使制动操纵失效。组合式空气干燥器利用分子筛作为干燥剂,采用与卸载阀一体的整体式结构,利用卸载阀排气的动作,使再生贮气筒中的压缩空气反向通过干燥筒,将干燥剂表面吸收的水分和油污排入大气,实现分子筛的再生活化,更长期有效地清洁压缩空气中的水分及其它杂质。

空气干燥器的干燥剂需要经常拆洗或更换,所以,空气干燥器的安装位置应在维修时容易接近的地方。

四回路保护阀:

四回路保护阀是当整车双回路其中一条回路失效时,不仅能保护其它未失效回路制动性能不受损坏,而且还能保证空压机向未失效的回路中继续充气,使整车达到GB12676-1999中规定的失效后的剩余制动性能的要求。四回路保护阀装配在组合式空气干燥器的后面,从此把气体分成各自独立的几路(三或四路)引入贮气筒中。

贮气筒:

贮气筒作为制动系统的储能装置,其配置应相对独立。前桥和后桥

作为双回路的行车制动系统,需配置独立的前、后桥贮气筒;驻车制动系统、排气制动和离合器、变速箱等辅助用气需配置一个辅助贮气筒;有空气悬挂的汽车,还需配置一个空气悬挂贮气筒。贮气筒容积的大小应适当,容积太小将导致每次制动后贮气筒中压力降低过大,减小了有效的制动次数。同时,空压机需频繁地给贮气筒充气,降低了空压机的使用寿命。容积太大,将导致整车布置困难,同时也延长了起步时间。贮气筒的配置和容积的大小应以GB12676-1999的相关规定来确定。

放水阀:

放水阀是把积存在贮气筒中的水分用手动的方式排入大气中。放水阀应装配在每个贮气筒的最低位置。且应保证放水阀的操纵在驾驶员容易接近的地方。

取气阀:

取气阀直接连接在辅助贮气筒的外面,是给轮胎充气提供方便的一种装置。它也可用来测试贮气筒中的气压。

串联式双腔制动阀:

制动阀用来操纵汽车及其挂车的行车制动器,其制动效能的大小随操纵力的大小按比例地变化。且不管汽车的速度、载荷情况如何,均能保证安全、迅速和有效地把汽车制动住。东风汽车公司最常用的制动阀有两种结构:串联式双腔制动阀和并联式双腔制动阀。串联式常用于平头车,布置于驾驶室内;并联式则常用于长头车,布置于车架大梁上,通过连杆机构由驾驶员直接操纵。

快放阀:

快放阀能够迅速地将制动气室中的气压排入大气,以便迅速解除制动。快放阀常用来控制单前桥车辆的前桥制动器。通常布置于车架第一横梁上。

感载阀:

重型载货汽车,空、满载时整车质量分布变化较大,空载时后轴承载的载荷较小,而满载时后轴承载的载荷又较大。但传统的设计是根据满载时的轴荷分配来确定前、后轴的制动器的制动力,而前、后制动器的输入压力是基本相同的,因而空载时后轴制动力明显偏大,使得空载制动时往往在很小的输入压力下后轴车轮就会抱死,而此时前轴的制动能力还未充分发挥出来,而且还会导致制动跑偏甚至甩尾,是一种非常危险的工况。

感载阀能使后轴制动力随其轴荷的变化自动地调节,使前、后轴车轮尽量接近同时趋于抱死状态,以期获得较理想的利用附着系数。感载阀集继动阀和自动感载阀的功能于一体,对制动气室进行快速的充、放气,它布置方便,功能可靠,在气压制动中使用较多。双后桥的汽车,需用一套特殊的连接机构,把两后桥连接在一起,由感载阀控制。

弹簧制动气室:

弹簧制动气室由两部分组成,膜片气室部分用于行车制动,由脚制动阀操纵,属于充气制动;弹簧气室部分用于驻车制动或紧急制动,由手制动阀操纵,属于放气制动。弹簧制动气室膜片腔的规格应由GB12676-1999中的相关要求确定。弹簧制动气室弹簧腔的规格应由驻车坡度和紧急制动的要求确定。

手控阀:

手控阀是一个手操纵的制动阀,它用作驻车制动和紧急制动的操纵。制动的动作可以通过排气的方式达到。手控阀应布置在仪表板上或驾驶员座椅的左边及右边等驾驶员容易操纵的地方。

差动阀:

差动阀用在装有弹簧式制动气室的汽车上,以防止行车制动(膜片制动气室)和驻车制动或紧急制动(弹簧制动气室)同时操纵,在制动器上产生重叠的制动作用力,保护制动器不致超负荷。同时使弹簧制动气室快速地充、放气。

驾驶员只要踩下脚制动阀,使行车制动起作用时,弹簧制动气室即被解除。

挂车控制阀:

挂车控制阀装在牵引车上,用以操纵半挂车的制动。挂车控制口的信号来自于串联式双腔制动阀的上腔(后桥)和下腔(前桥)以及手控阀。它们中任一控制信号都可以完成对挂车的操纵。挂车阀三个控制口的符号(++-)是表示:“+”是输出气压随输入气压的增加而增加,用于挂车行车制动操纵;“–”是输出气压随输入气压的减少而增加,用于驻车制动或紧急制动操纵。

带有越前性装置的挂车操纵阀,越前量为0~100KPa之间。由于主车分离开关与挂车紧急继动阀之间的管路长达15m以上,且有相当大的节流损失。要达到制动时主车与挂车气室推杆同时开始运动,那么主车的感载阀与挂车的紧急继动阀的控制口气压应相同。因此,在主车上安

装这种使制动时主、挂车控制阀控制口气压接近的阀的功能叫越前。越前并非是让挂车先于主车制动,而是挂车控制阀控制口的气压稍高于主车控制阀控制口的气压,从而达到主、挂车同时制动。

排气制动阀和缓速器:

排气制动和缓速器主要是在下长坡时作为辅助制动,可减少制动器的负荷,缓解制动器的热衰退,延长摩擦片的使用寿命,降低驾驶员的劳动强度,增加制动器的使用寿命。

排气制动阀装在发动机的排气管上,关闭发动机排气口,使车辆减速或停止。缓速器可装在变速箱后面、传动轴或后桥上。

继动阀:

继动阀的功能是用来缩短操纵气路中的制动反应时间和解除制动时间,同时起加速阀和快放阀的作用。继动阀主要装在双前桥或未装感载阀的后桥上。

ABS电磁阀:

ABS电磁阀只能用于装有防抱制动系统的汽车上,它的作用是在制动过程中,根据来自ECU的控制信号,增加、减小或保持制动气室的压力。从而使车辆在不抱死的状态下制动。

6.制动管路:

在制动管路中,有钢管和尼龙管两种制动管路。由于从空压机出来的压缩空气的温度高达220℃,所以,从空压机到四保阀的制动管路一般用φ15㎜或φ19㎜的钢管。其余的 (若后桥制动管路离发动机排气

管较近,也需用钢管) 制动管路都使用尼龙11材料的尼龙管。

尼龙管:

尼龙管重量轻,比重为,约为钢管的1/;尼龙管柔性好,可适用较大的弯曲变形,一般不用定形就可直接装配,减少了设计人员大量的设计工作;尼龙管耐腐蚀,使用寿命长,耐油性能好;管接头不需要涂密封胶,密封性仍好。

尼龙管不耐高温(最高温度在110℃左右),热老化性较差。

钢管:

钢管的管口有两种形式:锥形管节式和扩口式。锥形管节式多用于客车、军车和EQ140车型,扩口式则主要用于EQ153及重型货车上。

两种形式的钢管都存在许多缺点。钢管的形状复杂、转弯较多,气体流动阻力较大;每车钢管的数量较多;钢管的内外必须镀锌,但管内仍有生锈的可能;钢管接头需涂密封胶,但密封性仍不很好;钢管的加工尺寸必须非常准确,否则,稍长稍短都无法装配。

钢管的优点是耐高温。其价格比尼龙管稍贵。

制动管路的布置:

在布置制动管路时,由于刚从空压机出来的压缩空气的温度较高,为保证到干燥器的气体温度为60℃左右,有利于干燥器去除空气中的水分和油污,所以,从空压机到干燥器的制动钢管应至少大于5m。若因整车布置,无法满足5m的距离,可把制动钢管做成螺旋形状以增加其长度和散热面积。

发动机上的第一空气钢管和车架上的第二空气钢管用高温软管连

接,以防止发动机的跳动震断钢管。连接钢管的连管接头的两端需用管夹固定。钢管不能与尼龙管、电线束捆绑在一起。

尼龙管的布置走向,应尽量避开尖锐和高温物体。最好用支架引伸出来固定,每500m用一支架固定,每200m用扎带捆绑。保证尼龙管布置的可靠和美观。

7.制动管路系统原理图:

在重型货车上最常用到的制动管路系统原理图,大致有下面几种。但具体到某车型的制动管路系统原理图,需根据该车型的配置来确定。在原理图上没体现装配ABS系统的功能。

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

汽车电控制动系统新技术简介

电控制动系统简介 一、电控制动系统的发展 1.概况 在汽车发展初期,制动器的作用较小,因为驱动系的摩擦系数很高以致车辆不制动也足以减速下来。随着功率和速度的不断提高,以及交通密度的不断加大,在20世纪20年代人们便开始考虑如何制造出相应的制动系统以符合更高的驱动和驾驶性能的需要。汽车技术进步的一个主要任务就是提高主动安全性以避免发生事 故,并充分发挥车辆的动力性能。随着电子学和微电 子学的不断发展,开发能够对紧急情况做出足够快速 反应的系统成为可能。电控制动系统的“鼻祖”是ABS, 该系统自从在1978年开始大量投入生产后,一直在不 断地改进并增加新的功能,这些功能可以主动参与到 行车过程中,以提高行车稳定性。目前,这类系统已 经发展为各种辅助驾驶员驾驶的系统,如驱动防滑系 统、牵引力控制系统、制动辅助系统等。制动辅助系 统(如图1所示)在紧急情况下对驾驶员的制动进行 加强,在保持车辆操纵性的前提下,达到最短的制动 行程。 ABS发展历史: 1950年飞机着陆装置中开始开发并使用。 1954年美国福特林肯轿车最先使用法国飞机用 ABS。 1970年林肯、凯迪拉克等高级轿车开始使用(后轮控制式)ABS。 1978年奔驰450SEL和宝马7泵列使用博世公司的4轮控制式ABS。 1984年日本车开始使用ABS。 1990年韩国车辆开始使用ABS(选装)。 至今ABS已成为轿车上的常用装备。 2.现代电控制动系统种类 现代轿车电控制动系统种类繁多,不同车型安装的制动系统的种类与作用也不相同,给维修人员带来了比较大的麻烦。 现将较常见的几种电控制动系统作简单介绍,图2为电控制动作用示意图,各系统的具体内容在第一篇各章详细讲解。 ABS防抱死制动系统 ASC+ (T) 自动平衡防滑/循迹(加速防滑及轮胎抓地控制系)(宝马) ASD防滑差速器控制系统(奔驰) ASR加速防滑控制系统/驱动防滑控制系统(奔驰、大众、奥迪) BAS辅助制动系统(奔驰/宝马) CBC弯道制动控制系统(宝马) DBC动态制动控制系统(宝马) DSC动态行车稳定系统(宝马)

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

————————————————————————————————作者:————————————————————————————————日期:

气压制动系统的主要构造元件 和工作原理 气压制动以压缩空气为制动源,制动踏板控制压缩空气进入车轮制动器,所以气压制动最大的优势是操纵轻便,提供大的制动力矩;气压制动的另一个优势是对长轴距、多轴和拖带半挂车、挂车等,实现异步分配制动有独特的优越性。 但是气压制动的缺点也很明显: 相对于液压制动,气压制动结构要复杂的多;且制动不如液压式柔和、行驶舒适性差;所以气压制动因而一般只用于中、重型汽车上。

下面主要以斯太尔8X4载重汽车为例介绍气压制动传动装置主要部件的结构组成。 1.空气压缩机 空气压缩机是全车制动系气路的气源,斯太尔6X4载重汽车空气压缩机为单缸混合冷却式,气缸体为风冷,气缸盖通过发动机冷却系统水冷。它固定在发动机前端左侧的支架上,它的传动齿轮与其曲轴为高扭矩自锁连接,在正时齿轮室中悬臂安装,由发动机曲轴通过中间齿轮、喷油泵齿轮、空气压缩机传动轴驱动转动,其构造如图18. 5所示,与汽车发动机机构相似,它主要由空气压缩机壳体1、活塞2、曲轴3、单向阀4等组成。 壳体由气缸体、气缸盖组成,壳体是铸铁的,外面带有用于空气冷却的散热筋片,里面是用于产生压缩空气的气缸。进、排气阀门采用舌簧结构,进气口经气管通向空气滤清器;出气口则经气管通向空气干燥器。润滑油由发动机主油道经油管、滚珠轴承,进入曲轴箱,然后经正时齿轮室回到油底壳。 活塞通过连杆与曲轴相连,连杆轴承合金直接浇注在连杆大头和连杆瓦盖上,活塞通过活塞环与气缸密封。 曲轴两端通过滚珠轴承支承在曲轴箱内,?前后有轴承盖,前端伸出盖外用半圆键及螺母固装传动齿轮,前端孔内分另1J装有防止漏油的油封。 发动机运转时,空气压缩机随之转动,当活塞下行时,进气阀门被打开,外界空气经空气滤清器、进气道进人气缸。当活塞上行时,?进气阀门被关闭,气缸内空气被压缩,出气阀门在压缩空气的作用下被打开,压缩空气由空气压缩机出气口经管路、空气干燥器进人储气筒和四管路保护阀。

Santana2000轿车制动系统设计

摘要 国内汽车市场迅速发展,而轿车是汽车发展的方向。然而随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。 本说明书主要介绍了santana2000轿车制动系统的设计。首先介绍了汽车制动系统的发展、结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定方案采用液压双回路前盘后鼓式制动器。除此之外,它还介绍了前后制动器、制动主缸的设计计算,主要部件的参数选择及制动管路布置形式等的设计过程。 关键字:制动;鼓式制动器;盘式制动器;液压

Abstract The rapid development of the domestic vehicle market, saloon car is an important tendency of vehicle. However, with increasing of vehicle, security issues are arising from increasingly attracting attention, the braking system is one of important system of active safety. Therefore, how to design a high-performance braking system, to provide protection for safe driving is the main problem we must solve. In addition, with increasing competition of vehicle market, how to shorten the product development cycle, to improve design efficiency and to lower costs, to improve the market competitiveness of products, and has become a key to success of enterprises. This paper mainly introduces the design of braking system of the santana2000 type of car. Fist of all, braking system’s development, structure and category are shown, and according to the structures, virtues and weakness of drum brake and disc brake, analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear drum. Besides, this paper also introduces the designing process of front brake and rear brake, braking cylinder, parameter’s choice of main components braking and channel settings. Key words: braking; brake drum; brake disc; hydroid pressure

新能源汽车电气技术教案47-48-新能源汽车制动系统认知

教学设计

教学过程 教学环节教师讲授、指导(主导)内容 学生学习、 操作(主体)活动 时间 分配 一、二、三、组织教学: 组织学生起立,师生问好。 导课部分: 作为一名新能源汽车售后服务人员,你知道纯电动汽车、混 合动力汽车制动系统于传涛的汽车制动系统有什么区别吗? 新授部分: 1.混动汽车制动系统的工作原理 电源开关打开后,蓄电池想控制器供电,控制器开始工作, 此时Emb信号灯显示系统应正常工作。驾驶员进行制动操作 时,首先由电子制动踏板行程传感器弹指驾驶员的制动意图, 把这一信息传给ECU。ECU汇集轮转速传感器、制动踏板行 程传感器等各路信号。根据车辆行驶状态计算出每个车轮的 最大值动力,在发出指令给执行器,让其执行哥车轮的制动, 电动机械制动器能快速而精确的提供车轮所需制动力,从而 保证最佳的整车减速和车辆的制动效果 2.制动能量回收系统 制动能量回收是电动汽车与混合动力汽车重要技术之一, 也 是它们的重要特点。在普通内燃机汽车上,当车辆减速、制动 时,车辆的运动能量通过制动系统而转变为热能,并向大气中 释放。而在电动汽车与混.合动力汽车上,这种被浪费掉的运动 能量已可通过制动能量回收。 3.制动能量回收系统的原理 一般情况下,在车辆非紧急制动的普通制动场合,约1/5的能量 可以通过制动回收。制动能量回收按照混合动力的工作方式 不同而有所不同。在发动机气门不停止工作场合,减速时能够 回收的能量约是车辆运动能的1/3。通过智能气门正时与升程 控制系统使气门停止工作,发动机本身的机械摩擦(含泵气损 失)能够减少约70%。回收能量增加到车辆运动能量的2/3。 班长报告出勤人数、 事由 学生进行回答 多媒体课件、动画演 示,制冷系统各部件 的作用。 2分 5分 15分 15分 15分 15分

制动系统设计指南

五、制动系统的设计 1.前言 1.1适用范围 1.2引用标准 1.3轿车制动规范对制动系统制动性的总体要求 1.4制动系统的设计方法 1.5整车参数 1.6设计期望值 2 行车制动系统的设计 2.1制动器总成的设计 2.2人力制动系和伺服制动系 2.3踏板总成的设计 2.4传感器设计 2.5 ABS的设计 3 应急制动及驻车制动的设计

五、制动系统的设计 1.前言 1.1适用范围: 本设计指南适用于在道路上行驶的汽车的制动系统 1.2引用标准 GB 7258—1997 ****** 1.3轿车制动规范对制动系统制动性的总体要求 汽车应设置足以使其减速、停车和驻车的制动系统。设置对前、后轮分别操纵的行车制动装置。应具有行车制动系。汽车应具有应急制动功能和应具有驻车制动功能。汽车行车制动、应急制动和驻车制动的各系统以某种方式相联,它们应保证当其中一个或两个系统的操纵机构的任何部件失效时(行车制动的操纵踏板、操纵连接杆件或制动阀的失效除外)仍具有应急制动功能。制动系应经久耐用,不能因振动或冲击而损坏。

1.4制动系统的设计方法1.4.2制动系统方案的确定

1.4.3制动系统方案确定的顺序 1.5整车参数 1.5.1整车制动系统布置方案

参数项目空载满载前轴负荷(kg) 后轴负荷(kg) 总质量G(kg) 重心高度hg(mm) 轴距L(mm) 车轮滚动半径(mm) 最大车速(km/h) 重心距前轴距离a(mm) 重心距后轴距离b(mm) 1.6设计期望值 1.6.1制动能力 汽车制动时,地面作用于车轮的切线力称为地面制动力F xb ,它是使汽车制动 而减速行驶的外力。在轮胎周缘克服制动器摩擦力矩M u 所需的力称为制动器制 动力F u 。 地面制动力是滑动摩擦约束反力,其最大值受附着力的限制。附着力F Φ 与 F xbmax 的关系为F xbmax =F Φ =F z ·Φ。F z 为地面垂直反作用力,Φ为轮胎—道路附着 系数,其值受各种因素影响。若不考虑制动过程中Φ值的变化,即设为一常值,则当制动踏板力或制动系压力上升到某一值,而地面制动力达最大值即等于附着力时,车轮将抱死不动而拖滑。踏板力或制动系压力再增加,制动器制动力F u 由于制动器摩擦力矩的增长,仍按直线关系继续上升,但是地面制动力达到附着力的值后就不再增加了。制动过程中,这三种力的关系,如图1所示。 汽车的地面制动力首先取决于制动器制动力,但同时又受轮胎。道路附着条件的限制。所以只有当汽车具有足够的制动器摩擦力矩,同时轮胎与道路又能提供高的附着力时,汽车才有足够的地面制动力而获得良好的制动性。 图2是汽车在水平路面上制动时的受力情形 (忽略了汽车的滚动阻力偶矩、空气阻力以及旋转质量减速时产生的惯性力偶矩) 。此外,下面的分析中还忽略制动时车轮边滚边滑的过程,附着系数只取一个定值Φ,惯性阻力为:

ABS防抱死制动系统原理及组成图文讲解

● ABS简介 ABS是 Anti_lock Braking System 的缩写,是在制动期间控制和监视车辆速度的电子系统。 它通过常规制动系统起作用,可提高车辆的主动安全性。ABS失效时,常规制动系统仍然起作用。 优点:在紧急制动时保持了车辆方向的可操纵性;缩短和优化了制动距离。在低附着路面上,制动距离缩短10%以上;在正常路面上,保持了最优的路面附着系数利用率-即最佳的制动距离。减少了交通事故的同时减轻了司机精神负担及轮胎磨损和维修费用等。 系统部件

ABS组成部件:ECU;4~6个电磁阀;4~6个齿圈;4~6个传感器;驾驶室线束、底盘线束;ABS指示灯、 ASR灯;挂车ABS指示灯;开关、ASR开关;差动阀;双通单向阀; ISO7638电源线;电源螺旋线等。 ● ABS控制原理

卡车 ABS/ASR ABS控制原理可以简单描述为: 在车轮接近抱死的情况下,相应车轮的制动压力将被释放并在要求或测得车轮重新加速期间保持恒定,在重新加速之后逐步增加制动压力。 ABS齿圈 ABS齿圈能够随车轮转动切割传感器磁场,由铁磁性材料组成,表面采用镀锌或镀铬,齿数一般有80齿、100齿或120齿。 齿圈安装:将齿圈装入在轮毂上加工的平台,采用H8/s7过盈配合,轴向综合公差<0.2mm。装配方式有加热装配和压力装配两种方式。加热装配的方法是加热至2000°C,保温10分 钟左右装入;压力装配即用工具沿齿圈周边用力装入。 ABS 传感器

ABS传感器的作用是车轮转动时与齿圈相对运动产生交流电信号。其阻值在1100欧姆和1250欧姆之间,与环境温度有关。感应电压约110mV,与齿圈的间隙为0.7mm时的工作频率为100HZ,工作电压与传感器和齿圈之间的间隙成反比,与齿圈直径成正比,与轮速成正比。

汽车制动系统的结构设计说明

课题名称:汽车制动系统的结构设计与计算 第一章:制动器结构型式即选择 一、汽车已知参数: 汽车轴距(mm):3800 车轮滚动半径(mm ):407.5 汽车空载时的总质量(kg ):3330 汽车满载时的总质量(kg )6330 空载时,前轴负荷G=mg=12348.24N 后轴负荷为38624.52N 满载时,前轴负荷G=mg=9963.53N 后轴负荷为43157.62N 空载时质心高度为750mm 满载时为930mm 质心距离前轴距离空载时为2.36m 满载时为2.62m 汽车设计课程设计

质心距离后轴距离满载时为1.44m 满载时为1.18m 二、鼓式制动器工作原理 鼓式制动器的工作原理与盘式制动器的工作原理基本相同:制动蹄压住旋转表面。这个表面被称作鼓。 许多车的后车轮上装有鼓式制动器,而前车轮上装有盘式制动器。鼓式制动器具有的元件比盘式制动器的多,而且维修难度更大,但是鼓式制动器的制造成本低,并且易于与紧急制动系统结合。 我们将了解鼓式制动器的工作原理、检查紧急制动器的安装情况并找出鼓式制动器所需的维修类别。 我们将鼓式制动器进行分解,并分别说明各个元件的作用。 图1 鼓式制动器的各个元件 与盘式制动器一样,鼓式制动器也带有两个制动蹄和一个活塞。但是鼓式制动器还带有一个调节器机构、一个紧急制动机构和大量弹簧。 图2仅显示了提供制动力的元件。

图2. 运行中的鼓式制动器 当您踩下制动踏板时,活塞会推动制动蹄靠紧鼓。这一点很容易理解,但是为什么需要这些弹簧呢? 这就是鼓式制动器比较复杂的地方。许多鼓式制动器都是自作用的。图5中显示,当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压入鼓中。 楔入动作提供的额外制动力,可让鼓式制动器使用比盘式制动器所用的更小的活塞。但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。这就是需要一些弹簧的原因。其他弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。 为了让鼓式制动器正常工作,制动蹄必须与鼓靠近,但又不能接触鼓。如果制动蹄与鼓相隔太远(例如,由于制动蹄已磨损),那么活塞需要更多的制动液才能完成这段距离的行程,并且当您使用制动器时,制动踏板会下沉得更靠近地板。这就是大多数鼓式制动器都带有一个自动调节器的原因。 当衬块磨损时,制动蹄和鼓之间将产生更多的空间。汽车在倒车过程中停止时,会推动制动蹄,使它与鼓靠紧。当间隙变得足够大时,调节杆会摇动足够的幅度,使调节器齿轮前进一个齿。调节器上带有像螺栓一样的螺纹,因此它可以在转动时松开一点,并延伸以填充间隙。每当制动蹄磨损一点时,调节器就会再前进一点,因 此它总是使制动蹄与鼓保持靠近。 一些汽车的调节器在使用紧急制动器时会启动。如果紧急制动器有很长一段时间没有使用了,则调节器可能无法再进行调整。因此,如果您的汽车装有这类调节器,一周应至少使用紧急制动器一次。 汽车上的紧急制动器必须使用主制动系统之外的动力源来启动。鼓式制动器的设计允许简单的线缆启动机构。 鼓式制动器最常见的维修是更换制动蹄。一些鼓式制动器的背面提供了一个检查孔,可以通过这个孔查看制动蹄上还剩下多少材料。当摩擦材料已磨损到铆钉只剩下0.8毫米长时,应更换制动蹄。如果摩擦材料是与后底板粘合在一起的(不是用铆钉),则当剩余的摩擦材料仅为1.6毫米厚时,应更换制动蹄。

汽车制动系统专题之二新技术汇总

本期引言: 随万安科技即将登陆 A 股市场,汽车制动系统相关的上市公司阵营进一步扩大。截至目前,A 股上市公司中汽车制动系统相关的主要公司已经达到 6 家以上,包括亚太股份、东风科技、万向钱潮、华域汽车、隆基机械、特尔佳等。 在上一期的“车闻天下”中,我们简单介绍了传统制动系统的类型、基本结构和工作原理,本期我们为您介绍制动系统领域的新技术,包括ABS、EBD、BAS、TCS、ESP、EHB、EMB、IBS、EHC 等融合了电子控制的技术,并对这些令人目眩的缩写分类介绍,做出尽量清晰的梳理。由于上述上市公司部分涉及 ABS、ESP 甚至更新的制动技术,希望下文的介绍对您理解和分析行业和相关公司有所帮助。 汽车制动领域的新技术汇总介绍 由于传统简单制动系统在实际使用中存在很多问题,包括全力制动时车轮抱死、高速状态紧急变线导致车辆失控、传统液压制动系统从踩下制动踏板到油压完全建立有短暂的时间延迟、车辆起步时大马力汽车全油门加速会导致驱动轮打滑影响车辆加速性能和安全性等,因此从汽车诞生至今,工程师们对制动系统的改进和新技术研究一直没有停止过。ABS、ESP 等技术应运而生,EMB等技术也快速发展。 实际上ABS、TCS、ESP等技术已经不能称为真正意义的“新技术”,这些技术,尤其是ABS,已经在几十年前就在发达国家的汽车上大量装备。而EHB、EMB和IBS等技术,才是近 年来工程师们重点研究的方向,这些技术往往采用了线控技术(BBW,brake-by-wire),系 统反应更快,安全性更高,制动效果更好,但是还没有大规模使用。 表1:汽车制动领域主要新技术汇总 类似系统缩 分类英文全称中文作用 (或同种系统不同写 称谓) A B S Antilock Brake System 防抱死制动系统防止车轮制动时抱死 基于传统制EB D Electric Brake force Distribution 电子制动力分配制动力分配,缩短制动距离CBC、EBV 动 系统的辅助BA S Brake Assist System 制动辅助系统 检测紧急情况并使制动距离 更短 EBA、BA 系统 ES Electronical Stability Program 电子稳定程序防止汽车偏航DSC、VSC、CST P TC S Traction Control System 牵引力控制系统 防止汽车起步和加速时驱动 轮的滑转 ASR、TRC、ATC、 PTM

机械设计制造及自动化专业毕业设计_轿车盘式制动器结构设计

机械设计制造及自动化专业毕业论文(设计) 题目:轿车盘式制动器结构设计

摘要 汽车的设计与生产涉及到许多的领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的行驶速度和路面情况复杂程度的提高,更加需要高性能,长寿命的制动系统。 鉴于制动系统的重要性,本次设计的主要内容是轿车制动器结构设计。本文从制动系的功用及设计的要求出发,依据给定的设计参数,进行了方案论证,对各种形式制动器的优缺点进行了比较后,在前盘后鼓的基础上改为前后均为盘式制动器。在此基础上选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置,采用比例阀作为制动力的调节装置。仿真结果表明,轿车制动器结构的设计保持了制动力分配系数的稳定,改善了汽车的制动稳定性,简化了汽车的制动装置,减轻了整车质量,从而提高了汽车在行驶过程中的安全性与稳定性。 关键词:制动钳,制动盘,制动轮缸,制动衬片

ABSTRACT Automobile design and production are involved in many fields, its unique safety, economy, comfort and so many indicators, also raised taller requirement to the design. Automobile braking system is an important vehicle active safety system, and its performance depends on car has an important influence on road safety. As the vehicle of the speed and pavement situation was complex degree rise, more require high-performance, long life of brake system. In view of the importance of brake system, the design of the main content is a transport vehicles, the brake from brake system function and design, according to the requirement of design parameters, given the scheme comparison. On all forms of brake their advantages and disadvantages are discussed, based on HouGu have in QianPan instead of before and after are disc brakes, maintain braking force distribution coefficient, improves the stability of the braking stability and simplify the automobile braking device, reduce the vehicle quality, thereby improving the car while driving in the process of security and stability. Choose a simple hydraulic driving mechanism and double pipeline system, chose clearance automatic adjusting device, proportional valve as brake force adjusting device Keywords: brake disc, Brake wheel cylinder, Brake caliper, Braking facings formulations

制动系统设计手册(NEW)

王工: 总体上写得不错,需要进一步改进的建议如下: 1.主要零部件的典型结构图。 2.分泵、总泵、吊挂助力器和阀等试验验证与试制验证的方法与标准(结合参考上次L 项目验证计划)细化与补充。 3. 分泵、总泵、吊挂助力器和阀的DFMEA分析的主要内容。 3.做到图文并茂,无经验的年轻的设计人员(《设计手册》主要读者)一看就明白。 4.附一典型车型(如L3360奥铃)的制动系统计算书。 储成高 2003.8.23 制动系统的开发和设计 1.系统概述 一般情况下汽车应具备三个最基本的机能,即:行驶机能、转弯机能和停车机能,而其停车机能则是由整车的制动装置来完成的。作为汽车重要组成部分的制动系统,其性能的好坏将直接影响汽车的行驶安全性,也就是说我们希望在轻轻地踩下制动踏板时汽车能很平稳地停止在所要停车的地方,为了达到这一目的,我们必须充分考虑制动系统的控制机构和执行机构的各种性能。 制动系统一般可分为四种,即行车制动系、应急制动系(也称第二制动系)、驻车制动系和辅助制动系统(一般用于山区、矿山下长坡时)。 各种制动系统一般有执行机构和控制机构两个部分组成。其执行机构是产生阻碍车辆的运动或运动趋势的力(制动力)的部件,通常包括制动鼓、制动蹄、制动盘、制动钳和制动轮缸等;其控制机构是为适应所需制动力而进行操纵控制、供能、调节制动力、传递制动能量的部件,一般包括助力器、踏板、制动主缸、储油杯、真空泵、真空罐、比例阀、ABS、制动管路和报警装置等,有的还包括具有压力保护和故障诊断功能的部件。在其控制机构中如果按其制动能量的传输方式制动系统又可分为:机械式、液压式、气压式和电磁式(同时采用两种以上传能方式的制动系统可称为组合式制动系统,如气顶油等)。 制动系统是影响汽车行驶安全性的重要部分,通常其应具备以下功能:可以降低行驶汽

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

J009制动系统设计规范

Q/XRF xxx公司 Q/XRF-J009-2015 xxxx 制动系统设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 2015-03-15发布 2015-03-15实施 xxx公司发布

目录 一概述 (2) 1.1 制动系统基本介绍 (2) 1.2 制动系统的结构简图 (2) 二法规要求 (3) 2.1 GB12676-1999法规要求 (3) 2.2 GB 7258-2012法规要求 (4) 三制动动力学 (4) 3.1 稳定状态下的加速和制动 (4) 3.2 制动系统设计与匹配的总布置设计硬点或输入参数 (5) 3.3、理想的前、后制动器制动力分配曲线 (6) 3.3.1 基本理论 (6) 四计算算例与分析改进方法 (7) 4.1 前、后轮制动器制动力矩的确定 (8) 4.1.1制动器的制动力矩计算 (8) 4.1.2确定车型的制动器制动力矩 (11) 4.2 比例阀的设计 (12) 4.2.1 举例基本参数 (13) 4.2.2 GMZ1的校核 (13) 4.2.3 GZM2的校核 (14) 4.2.4设计优化曲线 (15) 4.3 总泵的校核 (17) 4.3.1基本参数 (17) 4.3.2基本理论 (18) 4.3.3校核结果 (18)

一概述 制动系是汽车的一个重要的组成部分。它直接影响汽车的行驶安全性。为了保证汽车有良好的制动效能,本规范指导汽车的制动性能及制动系结构的设计。 1.1 制动系统基本介绍 微型电动货车的行车制动系统采用液压制动系统。前、后制动器分别为盘式制动器和鼓式制动器,前制动盘为空心通风盘,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS以防止车辆在紧急制动情况下发生车轮抱死。驻车制动系统为机械式手动后轮鼓式制动,采用远距离棘轮拉索操纵机构。 1.2 制动系统的结构简图 图1 制动系统的结构简 1. 真空助力器带制动主缸总成 2.制动踏板 3.车轮 4.轮速传感器 5. 制动管路 6. 制动轮缸 7.ABS控制器

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

汽车新技术 (新)

汽车新技术题库 1、汽车的动力性、经济性、安全性、排放性及舒适性都有了很大的提高。 2、ABS最重要的功能并不是为了缩短制动距离,而是为了能够尽量保持制动时汽车的方向稳定性。 3、EBD根据汽车的载荷情况平衡前后轴之间的制动力,通过四个车轮的速度与车速作比较,实现车辆平稳行驶。 4、EBD实际上是ABS的辅助功能,它可以改善提高ABS的功效。 5、行驶史上重要的汽车三大发明:ABS、安全带、安全气囊。 6、当紧急刹车车轮抱死的情况下,EBD在ABS动作之前就已经平衡了每一个车轮的有效地面抓地力,可以防止出现甩尾和侧移,并缩短汽车的制动距离。 7、现代汽车电器元件:14V系统输出功率极限3000W 42V系统输出功率可达到8000W 8、ABC-车身主动控制系统ACC-自适应巡航系统ABS-防抱死制动系统 ADS-可调避震系统ASL-排档锁定装置ASPS-防潜滑保护系统 ALS-自动车身水平系统ASR-加速防滑系统EGR-废气循环再利用 ASS-全功能座椅系统BA- 机械制动辅助系统BBW-全电路制动系统 CATS-连续调整循迹系统DATC-数位式防盗控制系统DSTC-动态稳定循迹系统 DLS-差速器锁定系统EBA-电子控制刹车辅助DSC-动态稳定制动系统 DSS-半主动悬吊系ETS-电子循迹支援系统EDS- 电子差速锁 EBD-电子制动力分配系统EDL- 电子差速锁ESP-电子稳定控制系统 FSI- 直喷式汽油发动机GPS- 车载卫星定位导航系统HAC-坡道起车控制系统 HDC- 坡道控制系统ESP-电子稳定程序系统 9、BBW是一种全新的制动模式。是一种新型的智能化制动系统,它采用嵌入式总线技术,可用于防抱死系统 (ABS),牵引力控制系统(TCS),电子稳定性控制程序(ESP),制动防撞系统(ACC)等汽车主动安全系统更加方便的协同工作,通过优化微处理器中的控制算法、可精确地调整制动系统的工作过程,提高车辆的制动效果,加强汽车的制动安全性能。BBW以电能作为能量来源,通过电机或电磁铁驱动制动器。因此,BBW的结构简洁,更趋向于模块化,安全和维修简单方便。 10、如图(1)左侧所示,车辆前轮侧滑,车辆出现转向不足。此时VSC系统通过制动器对内后轮施加一定制动 力,因此产生一个逆时针的力矩,改进车辆转向能力。 11、碰撞系统是什么?有什么作用? 答:碰撞预警系统是为了减少碰撞、伤害行人和后车追撞对乘客的安全装置。 作用:对于碰撞事故防范具有重要的意义。 12、E PS主要由部分组成:电子控制单元(简称ECU)、扭矩传感器、电动机以及带有离合器的减速机构。其基本 工作原理是:不转向时,电动机不工作;当转向时,扭矩传感器将检测到的作用于转向盘上的扭矩信号传送给ECU, ECU同时接收车速传感器传来的车速信号,ECU对输入信号进行处理后,向电动机发出指令,电动机据此输出相应大小及方向的扭矩以产生助力,从而实现助力转向的实时控制。 13、G DI同FSI的异同及运用 相同点:GDI 与FSI两种发动机技术,都遵循了缸内直喷分层燃烧的设计理念。 不同点:GDI作为最早的缸内直喷汽油发动机,该技术在燃油经济性及动力输出方面,都要优于FSI 技术。GDI采用的是真正的直接喷射,其喷油嘴布置在气缸顶部离火花塞和进气门都很近的地方,在发动机进气行程中,它也会喷油,但是喷油量较少,在活塞向下运动到底部再向上进行压缩时,气缸内的空气已经得到完全混合,这就如同缸外喷射的道理。但这时的混合气是不能被点燃的,因为浓度实在是太低了,预先达到这种浓度,只是为第二次喷油点燃缸内气体,并充分燃烧做准备。当活塞即将到达上顶点,喷油嘴开始第二次喷油,因为喷出的燃油是漏斗形,越是靠近喷油嘴的地方,浓度就越高,而火花塞离喷油嘴很近。此时在火花塞附近的燃油浓度是很高的,比其他部位的混合气要高,从而实现了不同区域出现不同浓度的混合气,也就是所谓分层。火花塞附近的混合气较浓,很容易被点燃,这部分点燃的气体会继续引

相关文档