文档库 最新最全的文档下载
当前位置:文档库 › 甲醇-水乙醇-水相平衡方程

甲醇-水乙醇-水相平衡方程

甲醇-水乙醇-水相平衡方程

甲醇-水相平衡方程

x = 0.7192 y 2 + 0.9750y - 0.6940 y=[0.729,1) R2 = 1.0000

x = 2.8934 y 3 - 2.7200 y 2 + 1.1640 y - 0.1235 R2 = 1.0000 y=[0.304,0.729]

x = 0.3069y2 + 0.1023y + 0.0002

R2 = 0.9993 y=[0,0.304]

乙醇-水相平衡方程

y x 10760.0= (0≤y ≤0.1868) ●

4325361.243194.2956030.1358997.2191908.0y y y y x +-+-= R 2=0.99974 (0.1868≤y ≤0.5955) ●

3259208.535181.1526594.1547867.4y y y x +-+-= R 2=0.99993 (0.5955≤y ≤0.8941)

水在不同温度下的饱和蒸气压

饱和蒸气压(saturated vapor pressure) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 Saturated Water Vapor Pressures at Different Temperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:ln p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方

甲醇-水精馏课程设计—化工原理课程设计

甲醇-水分离过程板式精馏塔的设计 1.设计方案的确定 本设计任务为分离甲醇和水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.8倍。塔釜采用间接蒸汽加热①。 2.精馏塔的物料衡算 2.1.原料液及塔顶、塔顶产品的摩尔分率 甲醇的摩尔质量M A=32.04kg/kmol 水的摩尔质量M B=18.02 kg/kmol x F= 0.46/32.04 0.324 0.46/32.040.54/18.02 = + x D= 0.95/32.04 0.914 0.95/32.040.05/18.02 = + x W= 0.03/32.04 0.0171 0.03/32.040.97/18.02 = + 2.2.原料液及塔顶、塔底产品的平均摩尔质量 M F=0.324*32.04(10.324)*18.0222.56 +-=kg/kmol M D=0.914*32.04(10.914)*18.0230.83 -=kg/kmol M W=0.0171*32.04(10.0171)*18.0218.26 +-=kg/kmol 2.3.物料衡算 原料处理量F= 30000*1000 184.7 24*300*22.56 =kmol/h 总物料衡算184.7=D+W 甲醇物料衡算184.7*0.324=0.914D+0.0171W 联立解得D=63.21 kmol/h W=121.49 kmol/h 3.塔板数的确定 3.1.理论塔板层数N T的求取 3.1.1.由手册查的甲醇-水物系的气液平衡数据

水的相图2

典型相图举例分析 (一)水的相图 众所周知,水有三种不同的聚集状态。在指定的温度、压力下可以互成平衡,即 在特定条件下还可以建立其的三相平衡体系。表5-1的实验数据表明了水在各种平衡条件下,温度和压力的对应关系。 水的相图(图5-2)就是根据这些数据描绘而成的。 表5-1 水的压力~温度平衡关系 1.两相线:图中三条曲线分别代表上述三种两相平衡状态,线上的点代表两相平衡的必要条件,即平衡时体系温度与压力的对应关系。在相图中表示体系(包含有各相)的总组成点称为"物质点",表示某一相的组成的点称为"相点",但两者常通称为"状态点"。 OA 线是冰与水气两相平衡共存的曲线,它表示冰的饱和蒸气压与温度的对应各相,称为"升华曲线",由图可见,冰的饱和蒸气压是随温度的下降 而下降。 OC 线是(蒸)气与液(水)两相平衡线,它代表气~液平衡时,温度与蒸气压的对应关系,称为"蒸气压曲线"或"蒸发曲线"。显然,水的饱和 蒸 气压是随温度的增高而增大,F 点表示水的正常沸点,即在敞开容器中发水加热到 100℃ 时,水的蒸气压恰好等于外界的压力(),它就 开始沸腾。在压力下液体开始沸腾的温度称其为"正常沸点"。 OB 线是固(冰)与液(水)两相平衡线,它表示冰的熔点随外压变化关系,故称之为冰的"熔化曲线"。熔化的逆过程就是凝固,因此它又表示水 的凝固点随外压变化关系,故也可称为水的"凝固点曲线"。该线甚陡,略向左倾,斜率呈负值,意味着外压剧增,冰的熔点仅略有降低,大约是每 增加1个,下降 0.0075℃ 。水的这种行为是反常的,因为大多数物质的熔点随压力增加而稍有升高。

在单组分体系中,当体系状态点落在某曲线上,则意味体系处于两相共存状态,即Ф =2,f = 1。这说明温度和压力,只有一个可以自由变动,另一个随前一个而定。关于两相线的分析以及斜率的定量计算将在"克拉贝龙方程式"讨论。 必须指出,OC线不能向上无限延伸,只能到水的临界点即374℃ 与22.3×103kPa 为止,因为在临界温度以上,气、液处于连续状态。如果特别小心,OC线能向下延伸如虚线OD所示,它代表未结冰的过冷水与水蒸气共存,是一种不稳定的状态,称为"亚稳状态"。OD线在OA线之上,表示过冷水的蒸气压比同温度下处于稳定状态的冰蒸气压大,其稳定性较低,稍受扰动或投入晶种将有冰析出。OA线在理论上可向左下方延伸到绝 对零点附近,但向右上方不得越过交点O,因为事实上不存在升温时该熔化而不熔化的过热冰。OB线向左上方延伸可达二千个压力左右,若再向上,会出现多种晶型的冰,称为"同制多晶现象",情况较复杂,后面将简单提及。 2.单相面:自图5-2,三条两相线将坐标分成三个区域;每个区域代表一个单相区,其中AOC为气相区,AOB为固相区,BOC为液相区。它们都满足Ф =1,f = 2,说明这些区域内T、p均可在一定范围内自由变动而不会引起新相形成或旧相消失。换句话说要同时指定T、p两个变量才能确定体系的一个状态。另外从图中亦可推断,由一个相变为另一相未必非得穿过平衡线;如蒸气处于状态点M经等温压缩到N点,再等压降温至h,最后等温降压到P点,就能成功地使蒸气不穿过平衡线而转变到液体水。 3.三相点:①:三条两相线的交点O是水蒸气、水、冰三相平衡共存的点,称为"三相点"。在三相点上Ф =3,f =0,故体系的稳定、压力皆恒定,不能变动。否则会破坏三相平衡。三相点的压力p = 0.61kPa ,温度T= 0.00989℃,这一温度已被规定为 273.16K,而且作为国际绝对温标的参考点。值得强调,三相点温度不同于通常所说的水的冰点,后者是指敞露于空气中的冰~水两相平衡时的温度,在这种情况下,冰~水已被空气中的组分(CO2、N2、O2等)所饱和,已变成多组分体系。正由于其它组分溶入致使原来单组分体系水的冰点下降约0.00242℃;其次,因压力从 0.61kPa 增大到 101.325kPa,根据克拉贝龙方程式计算其相应冰点温度又将降低0.00747℃,这两种效应之和即0.00989℃ ≈ 0.01℃(或273.16K )就使得水的冰点从原来的三相点处即0.00989℃ 下降到通常的0℃(或 273.15K)。 图5-2 为低压下相图,有一个三相点,而在高压下水可能出现同质多晶现象,因此在水的相图上就不止存在一个三相点(图5-3),不过这些三相点不出现蒸气相罢了。水在高压下共有六种不同结晶形式的冰,即Ⅰ、Ⅱ、Ⅲ、Ⅴ、Ⅵ、Ⅶ(普通冰以Ⅰ表示,冰Ⅳ不稳定),表5-2列出高压下水各三相点的温度和压力。 图5-3 水在高压下的相图 图5-2 水的相图 至此我们已明了相图中点、线、面之意义,于是可借助相图(图5-2)来分析指定物系当外界条件改变时相变化的情况。例如,101.325kPa,-40℃ 的冰(即Q点),当恒压升温,最终达到250℃(即J点)。其中物系点先沿着QJ线移动,此时先在单一固相区内,由相律可知f * = 1,故

不同温度下空气中饱和水分含量及饱和蒸汽压..

不同温度下空气中饱和水分含量及饱和蒸汽压兰州真空设备有限责任公司

《真空设计手册》 粘滞流—分子流下管道流导 U n.f.20℃=) (3161)(4790)(27111.122 3P d P d P d l d +++? d :管道直径 m l :管道长度 m P :管道中平均压力 P =(P 1+P 2)/2

《真空设计手册》 符号:U——流导(L/s) a 和b——椭圆长半轴、短半轴l——管长(cm)A——面积(cm2) d——管道直径(cm)

材料物理性能

GB 5832.2-86 气体中微量水分的测定-露点法 1 适用范围 本标准适用于氧、氮、氢、氦、氖、氩、氪、氙、二氧化碳等气体中微量水分露点的测定。其测量范围0℃~-70℃。 2 原理 2.1术语说明 水分露点——在恒定的压力下,气体中的水蒸气达到饱和时的温度。 2.2方法原理 本法用露点仪进行测定。 使被测气体在恒定压力下,以一定的流量流经露点仪溅定室中的抛光金属镜面。该镜面的温度可人为地降低并可精确地测量。当气体中的水蒸气随着镜面温度的逐渐降低而达到饱和时,镜面上开始出现露,此时所测量到的镜面温度即为露点。(由露点和气体中水分含量的换算式或查表,即可得到气体中微量水分含量。) 3 仪器 3.1概述 仪器可以用不同的方法设计,主要的不同在于金属镜面的性质、用于冷却镜面的方法、如何控制镜面的温度、测定温度的方法以及检测出露的方法。镜子和它的附件通常安放在气体样品流经的测定室中。 3.2仪器的一般要求 提供下述装置、满足基本要求的任何露点仪都可以使用。 3.2.1当仪器温度高于气体中水分露点至少2℃时,可以控制气体进出仪器的流量。 3.2.2把流动的样品气冷到足够低的温度,使得水蒸气能凝结,冷却的速度可调。 3.2.3能观察露的出现和准确地测量露点。 3.2.4气路系统死体积小且气密性好,露点室内气压应接近大气压力。 3.2.5用标准样衡量仪器是否符合要求,按GB 4471-84《化工产品试验方法精密度室间试验重复性和再现性的确定》第 4.3条进行。 3.3目视和光电露点仪 简单的露点仪以手动调节冷量,控制镜面降温速度,用目视法观察露的生成。该法凭经验操作,人为误差较大。采用光电系统确定露生成的光电露点仪有相当高的准确度和精密度;用户按需要和可能进行选择。 3.4露的观察 目视露点仪用肉眼观察露的出现。光电露点仪是采用装在测定室的光源照射镜面,光源和光电池能以各种方式排列,当镜面未结露时,无散射发生,硅光电池上没有光照,镜面上结露后,入射光在镜面发生散射,一部分光照射到硅光电池上从而产生光生电压,给出出露信号。 3.5镜面制冷方法 用下述方法来降低和调节镜子温度,其中3.5.1和3.5.2所介绍的方法要求操作人员注意观察而不适用于自动装置。对自动装置,使用两种方法制冷:3.5.3和3.5.4所介绍的液化气体制冷及热电效应制冷。 3.5.1溶剂蒸发制冷

甲醇—水汽液平衡

ropt 1.01670 1.01772 1.02178 1.02687 1.03195 1.03703 1.04212 R/Rmi n 1.000 1.001 1.005 1.01 1.015 1.02 1.025 年总费 用1344560.331329387. 81 131848 2.113143781314188 131444 6 1314831 .5 % 2.37% 1.22%0.39%0.07%0.06%0.08%0.11% ropt 1.04720 1.05228 1.05533 1.05737 1.06754 1.07770 1.08787 R/Rmi n 1.03 1.035 1.038 1.04 1.05 1.06 1.07 年总费 用13166691318084131892 613194461323555 132714 91331896 %0.25%0.36%0.42%0.46%0.77% 1.05% 1.41% ropt 1.09804 1.10820 1.11837 1.22004 1.32171 1.42338 1.52505 R/Rmi n 1.08 1.09 1.1 1.2 1.3 1.4 1.5 年总费 用13360731340516134841 913997381453550 150966 71566271 % 1.73% 2.06% 2.67% 6.57%10.67%14.94%19.25% ropt 1.62672 1.72839 1.83006 1.93173 2.033400 R/Rmi n 1.6 1.7 1.8 1.9200 年总费 用16234851680658174132 217983651856501 155793 6.5 1607201 .2 %36.56%41.37%46.48%51.27%56.16%31.05%35.19%

【清华】实验2_双液系的气液平衡相图_2006011835

`` 实验2 双液系的气液平衡相图 唐盛昌2006011835 分6 同组实验者:徐培 实验日期:2008-10-9,提交报告日期:2008-10-23 带实验助教:尚培华 1 引言(简明的实验目的/原理) 实验目的: 1.用沸点仪测定在常压下环已烷—乙醇的气液平衡相图。 2.掌握阿贝折射仪的使用方法。 实验原理: 将两种挥发性液体混合,若该二组分的蒸气压不同,则溶液的组成与其平衡气相的组成不同。在压力保持一定,二组分系统气液达到平衡时,表示液态混合物的沸点与平衡时组成关系的相图,称为沸点和组成(T-x)图。沸点和组成(T-x)的关系有下列三种:(1)理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间见图5—1(a);(2)各组分蒸气压对拉乌尔定律产生很大的负偏差,其溶液有最高恒沸点见图5—1(b);(3)各组分蒸气压对拉乌尔定律产生很大的正偏差,其溶液有最低恒沸点见图5—1(c)。第(2)、(3)两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点,相应的组成称恒沸组成。第一类混合物可用一般精馏法分离出这两种纯物质,第(2)、(3)类混合物用一般精馏方法只能分离出一种纯物质和另一种恒沸混合物。 图1 沸点组成图 为了测定二元液系的T-x图,需在气液达到平衡后,同时测定溶液的沸点、气相和液相组成。 本实验是测定具有最低恒沸点的环己烷—乙醇双液系的T-x图。方法是用沸点仪(图2)直接测定一系列不同组成之溶液的气液平衡温度(即沸点),并收集少量馏出液(即气相冷凝液)及吸取少量溶液(即液相),分别用阿贝折射仅测定其折射率。为了求出相应的组成,必须先测定已知组成的溶液的折射率,

乙醇沸点与真空度的对应关系修订稿

乙醇沸点与真空度的对 应关系 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

乙醇沸点与真空度的对应关系 2010-12-10 09:44:28|?分类: |标签: |字号大中小订阅 一.关于溶媒乙醇的浓度 含水乙醇浓度有体积百分浓度、质量百分浓度及摩尔百分浓度等。在具体采用时,这三种浓度之间根据工艺计算的需要常常要相互换算,其换算方法用计算实例演示其后。而一般厂家所指的浓度通常为体积百分浓度: 1.体积百分浓度 体积百分浓度=溶液中纯乙醇所占体积/溶液的总体积 其中,溶液的总体积=溶液中纯乙醇所占体积+溶液中水的体积 2.质量百分浓度 质量百分浓度=溶液单位体积纯乙醇的质量/溶液的比重 其中,溶液单位体积乙醇的质量=体积百分浓度×纯乙醇的比重 而溶液的比重=溶液单位体积中纯乙醇的质量+溶液单位体积中水的质量 3.摩尔百分浓度 摩尔百分浓度=单位质量溶液中乙醇的摩尔数/单位质量溶液中乙醇摩尔数与水的摩尔数之和 其中,单位质量溶液中乙醇的摩尔数=溶液乙醇的质量分数/乙醇的分子量 而单位质量溶液中水的摩尔数=溶液水的质量分数/水的分子量 而溶液中水的质量分数=100%-溶液乙醇的质量分数 下面进一步用实例来说明换算的具体方法: 例:将72%体积浓度乙醇(水溶液)换算成质量百分浓度和摩尔百分浓度 解:由《溶剂手册》【5】查得100%乙醇比重为 乙醇分子式为C2H5OH,分子量为46 水的分子式为H2O,分子量为18 换算如下: 质量百分浓度=72%×(72%×+28%×1)=67% 摩尔百分浓度=67%/46/(67%/46+33%/18)=% 用上面的方法同样可以计算出80%、92%体积百分浓度乙醇所对应的重量百分浓度和摩尔百分浓度,兹将计算结果列表如下: 乙醇的三种浓度表示方法互相对应数值表

水在不同温度下的饱和蒸气压

饱和蒸气压(s a t u r a t e d v a p o r p r e s s u r e) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C)

式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在1.333~199.98kPa范围内误差小。 编辑本段附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2)2508.76 氯化银AgCl1255~1442公式(2)185.58.179 三氯化铝AlCl370~190公式(2)11516.24 氧化铝Al2O31840~2200公式(2)54014.22 砷As440~815公式(2)13310.800 砷As800~860公式(2)47.16.692 三氧化二砷As2O3100~310公式(2)111.3512.127 三氧化二砷As2O3315~490公式(2)52.126.513 氩Ar-207.62~-189.19公式(2)7.81457.5741 金Au2315~2500公式(2)3859.853 三氯化硼BCl3……6.18811756.89214.0 钡Ba930~1130公式(2)35015.765 铋Bi1210~1420公式(2)2008.876 溴Br2……6.83298113.0228.0 碳C3880~4430公式(2)5409.596 二氧化碳CO2……9.641771284.07268.432 二硫化碳CS2-10~+1606.851451122.50236.46 一氧化碳CO-210~-1606.24020230.274260.0 四氯化碳CCl4……6.933901242.43230.0 钙Ca500~700公式(2)1959.697 钙960~1100公式(2)37016.240 镉Cd150~320.9公式(2)1098.564 镉500~840公式(2)99.97.897 氯Cl2……6.86773821.107240 二氧化氯ClO2-59~+11公式(2)27.267.893 钴Co2374公式(2)3097.571 铯Cs200~230公式(2)73.46.949 铜Cu2100~2310公式(2)46812.344 氯化亚铜Cu2Cl2878~1369公式(2)80.705.454 铁Fe2220~2450公式(2)3097.482

二元汽液平衡数据

一、实验目的 1.测定甲醇—乙醇二元体系在常压下的气液平衡数据,绘制相图。 2.通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能。 3.掌握气相色谱仪的操作。 4.应用Wilson方程关联实验数据。 二、实验原理 气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要 基础数据之一。化工生产中的蒸馏和吸收等分离过程设备的设计、改造以及对最佳工 艺条件的选择,都需要精确可靠的气液平衡数据。化工生产过程均涉及相间物质传递,故气液平衡数据的重要性是显而易见的。随着化工生产的不断发展,现有气液平衡数 据远不能满足需要。许多物系的平衡数据,很难由理论直接计算得到,必须由实验测定。相平衡研究的经典方法是首先测定少量的实验数据,然后选择合适的模型关联, 进而计算平衡曲线;这其中,最常用到的是状态方程法和活度系数法。 气液平衡数据实验测定方法有两类,即间接法和直接法。直接法中有静态法、流动法 和循环法等。其中以循环法应用最为广泛。若要测得准确的气液平衡数据,平衡釜的 选择是关键。现已采用的平衡釜形式有多种,且各有特点,应根据待测物系的特征, 选择适当的釜型。平衡釜的选择原则是易于建立平衡、样品用量少、平衡温度测定准确、气相中不夹带液滴、液相不返混及不易爆沸等。用常规的平衡釜测定平衡数据, 需样品量多,测定时间长。本实验用的小型平衡釜主要特点是釜外有真空夹套保温, 釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平 衡速度快。 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。当体 系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即 可得到一组平衡数据。

甲醇_甲缩醛_甲醛_水四元系的汽液平衡

第17卷第3期1998年9月 南昌水专学报 Journal of Nanchang College of Water Conservancy and Hydroelectric Pow er Vol.17No.3 S ep.1998 甲醇)甲缩醛)甲醛)水四元系的汽液平衡* 邱祖民(南昌大学南昌330029) 柳雪芳(上饶地区工业学校上饶334000) 倪柳芳(上饶地区技术监督局上饶334000) 屈芸(南昌大学南昌330029) 摘要检验了文献[1]热力学模型的准确性,并用该模型推算了难于测定的甲醇)甲醛、甲缩醛)甲醛及甲醇)甲缩醛)甲醛的汽液平衡. 关键词汽液平衡;热力学模型;甲醇;甲醛;甲缩醛 中图分类号O642.4 0引言 针对含甲醛多元系汽液平衡数据难于测准,相应的热力学模型难建且求解困难的特点,笔者采用泵式沸点计建立起来的一套测试装置能较准确地用于含甲醛多元系汽液平衡数据的测定[2].采用甲醛虚拟饱和蒸汽压[3]的方法能方便地建立起含甲醛多元系汽液平衡的热力学模型,且该模型易解,适合于工程计算.文献[1]研究了甲醇)甲缩醛)甲醛)水四元系的汽液平衡行为,使用泵式沸点计测试,甲醛虚拟饱和蒸汽压法处理,建立了该四元系的热力学模型,本文旨在进一步验证该模型的准确性,预测一些不易获取的甲醛多元系汽液平衡数据. 1热力学模型[1] 相平衡方程:P S i f S i X i exp[V L mi(P-P S i)/R/T]r i=P Y i f^i P S F c f S F X F exp[V L mF(P-P S F c)/R/T]r F=P Y F f^F 式中P S F c=P C F exp[4.5+4.5/T r-11.91/T2r][2] 甲醇)甲缩醛)甲醛)水四元系所含二元系的Wilson模型参数如表1所示. 表1二元系的W ilson模型参数表 系统水)))甲醇甲缩醛)))水水)))甲醛甲醇)))甲缩醛甲醇)))甲醛甲醛)))甲缩醛参数225.3144.1629.12271.70.5875-65.9903.8-3450.23050715 *江西省自然科学基金资助项目 收稿日期:1998-04-30

乙醇和水的饱和蒸汽压

乙醇在101.3KPa下的饱和蒸气压:温度蒸气压(KPa) -31.5 , 0.13 -12.0 , 0.67 8.0 , 2.67 19.0 , 5.333 26.0 , 8.00 34.9 , 13.33 48.4 , 26.66 63.5 , 53.93 78.3 , 101.33 水的饱和蒸汽压表 温度( ℃ ) 绝对压强蒸汽的 密度 (kg/m 3 ) 焓汽化热 (kgf/cm 2 ) (kPa) 液体蒸汽 (kcal/kg) (kJ/kg) (kcal/kg) (kJ/kg) (kcal/kg) (kJ/kg ) 0 5 10 15 20 25 30 0.0062 0.0089 0.0125 0.0174 0.0238 0.0323 0.0433 0.6082 0.8731 1.2262 1.7068 2.3346 3.1684 4.2474 0.00484 0.00680 0.00940 0.01283 0.01719 0.02304 0.03036 5.0 10.0 15.0 20.0 25.0 30.0 20.94 41.87 62.80 83.74 104.67 125.60 595 597.3 599.6 602.0 604.3 606.6 608.9 2491.1 2500.8 2510.4 2520.5 2530.1 2539.7 2549.3 595 592.3 598.6 587.0 584.3 581.6 578.9 2491.1 2479.86 2468.53 2457.7 2446.3 2435.0 2423.7

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 0.0573 0.0752 0.0977 0.1258 0.1605 0.2031 0.2550 0.3177 0.393 0.483 0.590 0.715 0.862 1.033 1.232 1.461 1.724 2.025 2.367 2.755 3.192 3.685 4.238 5.6207 7.3766 9.5837 12.340 15.743 19.923 25.014 31.164 38.551 47.379 57.875 70.136 84.556 101.33 120.85 143.31 169.11 198.64 232.19 270.25 313.11 361.47 415.72 0.03960 0.05114 0.06543 0.0830 0.1043 0.1301 0.1611 0.1979 0.2416 0.2929 0.3531 0.4229 0.5039 0.5970 0.7036 0.8254 0.9635 1.1199 1.296 1.494 1.715 1.962 2.238 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.1 110.1 115.2 120.3 125.4 130.5 135.6 140.7 145.9 146.54 167.47 188.41 209.34 230.27 251.21 272.14. 293.08 314.01 334.94 355.88 376.81 397.75 418.68 440.03 460.97 482.32 503.67 525.02 546.38 567.73 589.08 610.85 611.2 613.5 615.7 618.0 620.2 622.5 624.7 626.8 629.0 631.1 633.2 635.3 637.4 639.4 641.3 643.3 645.2 647.0 648.8 650.6 652.3 653.9 655.5 2559.0 2568.6 2577.8 2587.4 2596.7 2606.3 2615.5 2624.3 2633.5 2642.3 2651.1 2659.9 2668.7 2677.0 2685.0 2693.4 2701.3 2708.9 2716.4 2723.9 2731.0 2737.7 2744.4 576.2 573.5 570.7 568.0 565.2 562.5 559.7 556.8 554.0 551.2 548.2 545.3 542.4 539.4 536.3 533.1 530.0 526.7 523.5 520.1 516.7 513.2 509.7 2412.4 2401.1 2389.4 2378.1 2366.4 2355.1 2343.4 2331.2 2319.5 2307.8 2295.2 2283.1 2270.9 2258.4 2245.4 2232.0 2219.0 2205.2 2291.8 2177.6 2163.3 2148.7 2134.0

物理化学-第四章-相平衡习题解

第四章 相平衡 一、 基本内容 本章运用热力学方法推导相平衡系统共同遵守的规律—相律;介绍单组分或多组分系统内达平衡时的状态图—相图的绘制、相图的分析和相图的应用。通过本章的学习,可以应用相律判断各类相平衡系统中的相数、组分数和自由度数;了解各类相图的绘制方法,正确分析相图中各点、线、面的意义,解释外界条件变化时系统经历的相变,并能根据所给条件粗略画出相图;能应用杠杆规则计算相平衡系统中各相的相对数量,明确蒸馏、精馏、结晶、萃取等工业过程分离、提纯物质的基本原理和最佳途径。 (一)相变 在聚集态内部能与其它物质区分的“均匀系”称为“相”,描述“相”的特征是:宏观 物理性质与化学性质均匀一致;其物质的数量可以任意改变(量变);相与相之间不强求明显的物理界面。例如水池中插板、冰被破碎,并不改变原有相数的平衡状态。相变则标志质(物理性质和化学性质)的飞跃,根据物性的不同有一级相变和二级相变之分,一级相变广为存在,其特征是物质在两相平衡时化学势的一级偏微商不相等,?V ≠0,?H ≠0,?S ≠0,曲线变化呈现明显折点(有二条切线)。这类相变符合克拉贝龙方程: V T H dT dp ??= 。二级相变的特征是物质在二相平衡时化学势的一级偏微商相等,曲线变化呈现圆滑过渡(只有一条切线)。而二级偏微商不等,C p 、α(等压热膨胀系数)、β(等温压缩系数)在相变温度时曲线的变化不连续。二级相变因?H =0,不适用克拉贝龙方程而适用埃伦菲斯方程α ??=TV C dT dp p 。某些金属的铁磁→顺磁转变,低温下超导性能的转变等属于此类。 (二)相律 系统达热力学平衡时,若有C 种组分,Φ个相,通常仅将温度与压力2个强度性质考虑进去,组成一个全部是独立变量的以自由度数f 表达的函数关系式: f =C -Φ+2。此即为吉布斯相律公式。如有磁场、重力场以及有渗透压等其它因素影响,则应将常数2改为n 。 (三)相图 相图是一些描述相平衡规律的图形。将吉布斯相律与相图相结 合,可以了解多相平衡系统在不同T 、p 、x 条件下的相态变化。系 统的组分数不同,相图的绘制方法及相图的形貌也不尽相同。 1.单组分系统,重点研究p -T 图 参考图4-1,单组分系统C =1,f =C -Φ+2单相(面积区)时, Φ=1,f =2,温度和压力均可变,称为双变量系统;在汽化、凝固和

双液系的气液平衡相图

双液系的气-液平衡相图 1. 简述由实验绘制环己烷-乙醇气-液平衡T-x相图的基本原理。 答:通过测定不同沸点下组分的气、液相的折射率,在标准的工作曲线上找出该折射率对应的浓度,结合其沸点画出平衡相图。 2. 在双液系的气-液平衡相图实验中,作环己烷-乙醇的标准折光率-组成曲线的目的是什么? 答:作标准曲线的目的是通过测气、液相相得折射率从而在标准工作曲线上找出对应的浓度。 3. 用精馏的方法是否可把乙醇和环己烷混合液完全分离,为什么? 答:不能完全分离。因为环己烷-乙醇二组分具有最低恒沸点。 4. 测定纯环己烷和纯乙醇的沸点时,沸点仪中有水或其它物质行吗? 答:有水和其他物质都是不行的。因为有水和其他物质会使所测沸点改变。 5. 为什么工业上常生产95%酒精?只用精馏含水酒精的方法是否可能获得无水酒精? 答:因为水-乙醇二组分具有最低恒沸点,所以工业上常生产95%的酒精。用精馏的方法无法获得无水酒精,只能获得95%的酒精。 6. 在双液系的气-液平衡相图实验中,如何判断气-液相达平衡状态?

答:观察贝克曼温度计的读数,如果读数稳定3-5分钟,说明已达平衡状态。 7. 在双液系的气-液平衡相图实验中,每次加入沸点仪中的环己烷或乙醇是否应按记录表所规定的体积精确计量?为什么? 答:不需要按记录表的加。因为组分的浓度不是按所加物质的量计算得来的,而是通过测折射率间接得到的。 8. 在双液系的气-液平衡相图实验中,在测定沸点时,溶液出现分馏现象,将使绘出的相图图形发生什么变化? 答:出现馏分将使测得的沸点偏高,使相图向上移动。 9. 在双液系的气-液平衡相图实验中,蒸馏器中收集气相冷凝的小球大小对结果有何影响? 答:小球太小难以收集气相,小球太大,小球内的组分更新太慢,产生馏分,导致实验误差。 10. 在双液系的气-液平衡相图实验中,通过测定什么参数来测定双液系气-液平衡时气相和液相的组成? 答:通过测定组分的折射率来测定双液系气-液平衡时气相和液相的组成。 11. 在双液系的气-液平衡相图中,如何通过测定溶液的折光率来求得溶液的组成? 答:通过测得的折射率在标准曲线上找出对应的浓度,根据气、液相平衡浓度与测得的沸点作出平衡相图。

乙醇的饱和蒸汽压

Antoine Vapor Pressure EQN: lnP=A-B/(T+C) SI单位: Kp, K CH 3CH 2 OH A B C 16.67583 3674.491 -46.702 Temp/℃Temp/K lnP P/Kp V EtOH /V Loop 0 273.0 0.44 1.55 0.0151 0.1 273.1 0.45 1.56 0.0152 0.2 273.2 0.45 1.57 0.0153 0.3 273.3 0.46 1.58 0.0154 0.4 273.4 0.47 1.60 0.0155 0.5 273.5 0.47 1.61 0.0156 0.6 273.6 0.48 1.62 0.0157 0.7 273.7 0.49 1.63 0.0158 0.8 273.8 0.50 1.64 0.0159 0.9 273.9 0.50 1.65 0.0161 1.0 274.0 0.51 1.67 0.0162 1.1 274.1 0.52 1.68 0.0163 1.2 274.2 0.52 1.69 0.0164 1.3 274.3 0.53 1.70 0.0165 1.4 274.4 0.54 1.71 0.0166 1.5 274.5 0.55 1.73 0.0167 1.6 274.6 0.55 1.74 0.0169 1.7 274.7 0.56 1.75 0.0170 1.8 274.8 0.57 1.76 0.0171 1.9 274.9 0.57 1.77 0.0172 2.0 275.0 0.58 1.79 0.0173 2.1 275.1 0.59 1.80 0.0175 2.2 275.2 0.59 1.81 0.0176 2.3 275.3 0.60 1.83 0.0177 2.4 275.4 0.61 1.84 0.0178 2.5 275.5 0.62 1.85 0.0179 2.6 275.6 0.62 1.86 0.0181 2.7 275.7 0.63 1.88 0.0182 2.8 275.8 0.64 1.89 0.0183 2.9 275.9 0.64 1.90 0.0184 3.0 276.0 0.65 1.92 0.0186 3.1 276.1 0.66 1.93 0.0187 3.2 276.2 0.66 1.94 0.0188 3.3 276.3 0.67 1.96 0.0190 3.4 276.4 0.68 1.97 0.0191 3.5 276.5 0.69 1.99 0.0192 3.6 276.6 0.69 2.00 0.0193 3.7 276.7 0.70 2.01 0.0195

乙醇的饱和蒸汽压

实验数据记录与处理】 实验相关物理量数据的处理 温度( o C ) 压力示数均值 (kP a) 温度 (K) 液体饱和蒸汽压 (kP a)ln P1/T 20.3 -95.25 293.45 6.95 8.84650 0.00341 25.4 -93.71 298.55 8.50 9.04723 0.00335 30.5 -91.42 303.65 10.78 9.28545 0.00329 35.6 -87.80 308.75 14.40 9.57498 0.00324 40.5 -83.84 313.65 18.36 9.81793 0.00319 ①作ln p-1/T的函数关系图,求外压为102.02Kpa条件下乙醇的沸点 ∵标准大气压为102020Pa,则ln p=11.5329 代入y = -4487.33435x + 24.10257 得:11.5347=-4487.33435x + 24.10257 解得:1/T=x =2.8001×10-3 K-1 ∴乙醇的正常沸点为:T=357.130K. (t=83.980℃) ②根据l n p-1/T直线的斜率,求乙醇在实验温度区内的平均摩尔汽化热Δvap H m Δvap H m=-Rm=-8.314×(-37307.69)=37.30769 kJ/mol ③数据误差分析: a.通过查阅附录,得到乙醇的平均摩尔汽化热参考值vap H m = 42.59kJ g mol-1 实验所得乙醇的平 均摩尔汽化热相对误差 = 37.30769 - 42.590= 0.124027 42.59 b.通过查阅附录,得到乙醇在1atm 下的沸点t = 78.30o C 实验所得乙醇的T 的相对误差:1= (83.980 - 78.30)= 0.0725

甲醇与水

南京工业大学 《化工原理》专业课程设计 设计题目 甲醇-水体系浮阀精馏塔的设计 学生姓名 高辰珏 班级、学号 化工081004 指导教师姓名 冯晖 课程设计时间2010年 12月 14日-2010年12月 30日 课程设计成绩 指导教师签字

化学化工学院 课程名称:化工原理课程设计 设计题目:甲醇-水体系浮法精馏塔的设计学生姓名:高辰珏专业:化学工程与工艺班级学号:化工081004 设计日期:2010-12-14至2010-12-30 设计任务:乙醇-水体系 设计条件及任务: 进料流量:F=210kmol/h 进料组成:X f=0.20(摩尔分率) 进料热状态:泡点进料 要求塔顶产品浓度X D=0.99 易挥发组分回收率η≥0.99

目录 概述 (7) 第一章总体操作方案的确定 ◆1.1操作压强的选择 (9) ◆1.2物料的进料热状态 (9) ◆1.3回流比的确定 (10) ◆1.4塔釜的加热方式 (10) ◆1.5回流的方式方法 (10) 第二章精馏的工艺流程图的确定 (11) 第三章理论板数的确定 ◆3.1物料衡算 (12) ◆3.2物系相平衡数据 (12) ◆3.3确定回流比 (13) ◆3.4理论板数N T的计算以及实际板数的确定 (13) 第四章塔体主要工艺尺寸的确定 ◆4.1各设计参数 (16) ◆4.2精馏段塔径塔板的实际计算 (22) 4.2.1精馏段汽、液相体积流率 4.2.2塔径塔板的计算 4.2.3塔板流体力学的验算 4.2.4塔板负荷性能图及操作弹性

◆4.3提馏段塔径塔板的实际计算 (35) 4.3.1精馏段汽、液相体积流率 4.3.2塔径塔板的计算 4.3.3塔板流体力学的验算 4.3.4塔板负荷性能图及操作弹性 第五章浮阀塔板工艺设计计算结果 (47) 第六章辅助设备及零件设计 ◆5.1塔顶全凝器的计算及选型 (49) ◆5.2塔底再沸器面积的计算及选型 (53) ◆5.3其他辅助设备计算及选型 (54) 第七章设计感想 (60) 第八章致谢 (61) 第九章参考文献 (61)

乙醇饱和蒸汽压的测定

液体饱和蒸气压的测定 1. 实验目的(要求) (1) 掌握等压管测定液体饱和蒸气压的原理和方法。 (2) 了解蒸气压的概念和影响因素。 (3) 学会应用克-克方程,求得乙醇的摩尔气化热。 (4) 学会温度计露出校正方法。 2. 实验原理(概要) 在一定温度下,纯液体与其蒸气达到相平衡状态时的压力,称为该液体在此温度下的饱和蒸气压。液体的饱和蒸气压与液体的本性及温度等因素有关,纯液体饱和蒸气压随温度上升而增加。根据热力学理论可以导出饱和蒸气压与温度的关系式,此式称克拉贝龙-克劳修斯方程,简称克-克方程。其微分式如下: 2 m vap d ln d RT H T p ?= (S20-1) 式中p 为纯液体饱和蒸气压,T 为绝对温度,△vap H m 为液体的摩尔气化热,R 为通用气体常数。 当上述各物理量用SI 制单位时,R = 8.314 J ?mol - 1?K - 1。 在一定外压下,纯液体与其蒸气达到气液平衡时的温度称为沸点。因此,克-克方程也表示纯液体的外压p 与沸点T 的关系。在101325 Pa 的外压下,纯液体的沸点称为正常沸点。 纯液体的气化热随温度上升而降低。通常温度下,气化热随温度变化较小,在临界温度附近,气化热急剧下降。在临界温度时,纯物质气化热为零。 当远离临界温度,而且温度变化较小时,气化热△vap H m 可视为常数。对式(S20-1)不定积分,得: C T R H p +??-=1ln m vap (S20-2) 式中,C 为不定积分常数。由此式可知,ln p 与1/T 成直线关系。以1n p 与1/T 的实验值作图,应得直线,若直线斜率为m ,则: △vap H m = - mR (S20-3)

相关文档