文档库 最新最全的文档下载
当前位置:文档库 › 聚氯乙烯pvc生产车间的工艺设计

聚氯乙烯pvc生产车间的工艺设计

聚氯乙烯pvc生产车间的工艺设计
聚氯乙烯pvc生产车间的工艺设计

年产5万吨PVC生产车间的工艺设计

目录

摘要................................................................ I 1.概述.. (2)

1.1生产方法简介及设计方法的确定 (2)

1.1.1 氯乙烯单体的制备方法的选取 (2)

1.1.2聚合方法选取 (2)

1.2产品的基本性能 (2)

1.3产品的应用状况 (3)

1.4有关设计参数 (4)

2.物料衡算 (5)

2.1聚合釜物料衡算 (5)

2.2出料槽物料衡算 (6)

2.3汽提塔物料衡算 (7)

2.4离心部分物料衡算 (8)

2.5气流干燥部分物料衡算 (9)

2.6沸腾干燥部分物料衡算 (9)

2.7筛分包装部分物料衡算 (9)

2.8物料衡算总平衡 (10)

3.热量衡算 (12)

4关键设备的选型 (13)

4.1聚合釜的选型 (13)

4.2 其他设备的选型 (13)

5.车间设备布置设计 (14)

5.1车间设备布置的原则 (14)

5.1.1车间设备布置的原则 (14)

5.1.2 车间设备平面布置的原则 (14)

5.1.3 车间设立面布置的原则 (14)

5.2车间设备布置 (15)

5.2.1车间设备平面布置 (15)

5.2.2车间设备立面布置 (15)

6. 公用工程 (16)

6.1供水 (16)

6.2供电 (16)

6.3供暖 (16)

6.4 通风 (16)

参考文献 (17)

致谢 (18)

年产5万吨PVC生产车间的工艺设计

摘要

本设计是年产5万吨聚氯乙烯(PVC)车间合成工段初步设计。本文对聚氯乙烯的研究,生产和应用进行了详细的概述,阐述了其在化学工业中的作用和地位。并介绍了氯乙烯的制备方法和确定了聚氯乙烯的生产工艺。在确定聚氯乙烯生产工艺的基础上进行了物料衡算,热量衡算,设备选型和车间设计等过程。文中还对供电、供水、采暖等方案进行了简单的阐述。

关键词:氯乙烯,乙烯氯氧化,聚氯乙烯,悬浮聚合,反应釜选型

1.概述

1.1生产方法简介及设计方法的确定

1.1.1 氯乙烯单体的制备方法的选取

氯乙烯单体可由电石乙炔法和乙烯氧氯化法制备,本工艺采用乙烯氧氯化法制备氯乙烯单体。此方法中氧氯化部分主要采用美国古德里奇技术,直接氧化和裂解是西德赫斯特公司的技术。全套装置由直接氧氯化单元、二氯乙烷精馏单元、二氯乙烷裂解单元、氯乙烯精馏单元、废水处理单元和残液焚烧单元组成。

1.1.2聚合方法选取

聚氯乙烯按聚合方法分四大类:悬浮法聚氯乙烯,乳液法聚氯乙烯、本体法聚氯乙烯、溶液法聚氯乙烯。本工艺设计采用悬浮发生产聚乙烯。悬浮法(主要是水相悬浮法)生产的氯化聚氯乙烯为非均质产品,溶解度相对于溶液法产品低,

但热稳定性高,主要用于制造管材、管件、板材等[5]悬浮聚合反应机理和动力学与本体聚合相同,需要研究的式成粒机理和颗粒控制。

氯乙烯悬浮聚合过程大致如下:

将水、分散剂、其他助剂、引发剂先后加入聚合釜中,抽真空和冲氮气牌氧气,然后加单体,升温至预定温度聚合。在聚合过程中温度压力保持恒定。后期压力下降0.1-0.2MPa,相当于80-85%转化率,结束聚合,如降压过多,将使树脂致密。聚合结束后,回收单体,出料,经后处理工序,即得聚氯乙烯树脂成品。

1.2产品的基本性能

聚氯乙烯是无定形的线型、非结晶的聚合物,基本无支链,链节排列规整。聚合度n的数目一般为500~20000。聚氯乙烯树脂为白色粉末,相对密度约1.4。聚氯乙烯塑料有较高的机械强度,良好的化学稳定性。

聚氯乙烯分子中含有大量的氯,使其具有较大的极性,同时具有很好的耐燃性。

聚氯乙烯塑料有优良的耐酸碱、耐磨、耐燃烧和绝缘性能。但是对光和热的稳定性差。在不加热稳定剂的情况下,聚氯乙烯100℃时开始分解,130℃以上分解更快。受热分解出氯化氢气体,使其变色,由白色→浅黄色→红色→褐色→黑色。阳光中的紧外线和氧会使聚氯乙烯发生光氧化分解,因而使聚氯乙烯的柔性下降,最后发脆。同时,上述良好的力学和化学性能迅速下降。解决的办法是在加工过程中加入稳定剂,如硬脂酸或其他脂肪酸的镉、钡、锌盐。

聚氯乙烯的抗冲击性能差,耐寒性不理想,硬质聚氯乙烯塑料的使用温度下

限为-15℃,软质聚氯乙烯塑料为-30℃。

聚氯乙烯的透水汽率很低。硬聚氯乙烯长期浸入水中的吸水率小于0.5%,浸24小时为0.05%,选用适当增塑剂的软聚氯乙烯吸水率不大于0.5%。聚氯乙烯室温下的耐磨性超过普通橡胶。聚氯乙烯的电性能取决于聚合物中残留物的数量和各种添加剂。聚氯乙烯的电性能还与受热情况有关,当聚氯乙烯受热分解时,由于氯离子的存在而降低其电绝缘性。

1.3产品的应用状况

PVC树脂可以采用多种方法加工成制品,悬浮聚合的PVC树脂可以挤出成型、压延成型、注塑成型、吹塑成型、粉末成型或压塑成型。分散型树脂或糊树脂通常只采用糊料涂布成型,用于织物的涂布和生产地板革。糊树脂也可以用于搪塑成型、滚塑成型、蘸塑成型和热喷成型。

发达国家PVC树脂的消费结构中主要是硬制品,美国和西欧硬质品占大约2/3的比例,日本占55%;硬质品中主要是管材和型材,占大约70~80%。PVC 软制品市场大约占全部PVC市场的30%,软制品主要包括织物的压延和涂层、电线电缆、薄膜片材、地面材料等。硬质品PVC树脂近年来增长比软制品快。

在全世界范围内一半以上的PVC树脂用于与建筑有关的市场,使PVC行业容易受到经济的波动影响。建筑领域是PVC树脂增长最快的市场,在其它市场中的增长率仅为1.4%/年。增长最快的用途是管材、板壁、和门窗等。

我国聚氯乙烯硬制品应用份额也呈增长趋势,管材、型材和瓶类所占份额由1996年25%增长到1998年的40%,但至今我国聚氯乙烯的应用还是软制品的份额较多。1998年软制品占PVC总用量的51%(其中薄膜为20%,塑料鞋10%,电缆料5%,革制品11%,泡沫和单板等5%),硬制品占40%(其中板材16%,管材9%,异型材8%,瓶3%,其它4%),地板墙纸等占9%。

聚氯乙烯塑料一般可分为硬质和软质两大类。硬制品加工中不添加增塑剂,而软制品则在加工时加入大量增塑剂。聚氯乙烯本来是一种硬性塑料,它的玻璃化温度为80~85℃。加入增塑剂以后,可使玻璃化温度降低,便于在较低的温度下加工,使分子链的柔性和可塑性增大,并可做成在常温下有弹性的软制品。常用的增塑剂有邻苯二甲酸二辛酯、邻酯。一般软质聚氯乙烯塑料所加增塑剂的量为聚氯乙烯的30%~70%。聚氯乙烯在加工时添加了增塑剂、稳定剂、润滑剂、着色剂、填料之后,可加工成各种型材和制品。

⑴一般软塑料制品。利用挤出机可以挤成软管、塑料线、电缆和电线的包皮。利用注射成型的方法并配合各种模具,可制成塑料凉鞋、鞋底、拖鞋等。

⑵薄膜。利用压延机可将聚氯乙烯制成规定厚度的透明或着色薄膜,用这种方法生产的薄膜称为压延薄膜。也可以将聚氯乙烯的粒状原料利用吹塑成型机吹

制成薄膜,用这种方法生产的薄膜称为吹塑薄膜。聚氯乙烯塑料薄膜上可以印花(如印制包装装潢图案和商标等)。薄膜的用途很大,可以通过剪裁、热合方法加工成包装袋、雨衣、桌布、窗帘、充气玩具等。宽幅的透明薄膜可以建造温室和塑料大棚,或者用作地膜。

⑶涂层制品。将聚氯乙烯糊状涂料涂敷在布或纸上,然后在100℃以上将它们塑化,就可制成有衬底的人造革。如果将聚氯乙烯软片用压延机直接压延成有一定厚度时,就制成无衬底的人造革,可压出各种花纹。人造革用于制造皮包、皮箱、沙发和汽车的座垫、地板革以及书的封面等。

⑷泡沫塑料。软质聚氯乙烯在混炼时加入适量的发泡剂,经发泡成型法可制成泡沫塑料,用做泡沫拖鞋、凉鞋、鞋垫、坐垫和防震缓冲的包装材料,也可以用挤出机制成低发泡硬质板材,可代替木材作为建筑材料。

⑸利用热成型法可将聚氯乙烯制成薄壁透明容器,或用于真空吸塑包装材料。这种方法制成的片材也是优良的装饰材料。

⑹糊状制品。将聚氯乙烯分散在液体增塑剂中,使其溶胀和塑化成增塑溶胶,再加入乳液(一种胶粘剂)、稳定剂、填料、着色剂,经过充分搅拌,脱气泡后,可配制成聚氯乙烯糊状制品,可用浸渍法、浇铸法、搪塑法涂敷在各种制品表面,起保护(防腐蚀)、美化作用。

⑺硬管和板材。聚氯乙烯中加入稳定剂、润滑剂和填料,经过混炼之后,可用挤出机挤成各种口径的硬管、异形管、波纹管,用做下水管、引水管、电线套管或楼梯扶手。用压延法制成的聚氯乙烯薄片经重叠热压,可制成各种厚度的硬质板材,它可以切割成所需形状,然后利用聚氯乙烯焊条用热空气流焊接成各种耐化学腐蚀的贮槽、通风管道和各种形状的容器、反应罐。

⑻门窗。它可用硬质聚氯乙烯异形材料组装而成,已经和木门窗、钢窗、铝合金门窗共同占领了建筑市场。

1.4有关设计参数

1.生产周期300天,7800-8000h/Y

2.反应温度55℃

3.反应时间9h

4.转化率92%

5.消耗定额VC 1.015-1.064t/T PVC

6.原辅材料: 去离子水,单体氯乙烯(VCM),分散剂KH-21(聚乙烯醇),PH调节

剂,反应调节剂(-巯基乙醇),引发剂(偶氮二异庚腈),防粘釜剂,终止剂(丙酮缩氨基巯脲),缓释阻垢剂(H-9),碱液(42%)等。

2.物料衡算.

本工艺的配方如下(以单体质量为参考标准):

去离子水150 单体100 引发剂0.04

分散剂0.08 PH缓冲剂0.06 终止剂0.02

反应调节剂0.0015 缓蚀阻垢剂0.002 消泡剂0.002

采用顺流程的计算顺序进行物料衡算,先求出VC单体的每批投料量。该工艺为年产5万吨,开工330天,计划每天生产2批。后处理损失为5%。

每批应生产聚合物的量=50000000/(330*2*0.95)=7.94*104 Kg/B

假设引发剂(0.04%单体质量)全部结合到聚合物中,并且单体92%转化为

聚合物。则VCM单体的投料量= Kg/B 物料流程图如下

2.1聚合釜物料衡算

进入聚合釜内VCM单体M1=8.664*104 Kg/B

去离子水的质量M2=1.5* M1=129970 kg/B

引发剂的质量M3=0.0004 M1=34.66 kg/B

终止剂的质量M4=0.002 M1=17.33 kg/B

分散剂的质量M5=0.0008M1=69.32 kg/B

PH缓冲剂用量M60.0006 M1=51.99 kg/B

调节剂的质量M7=0.000015M1=1.30 kg/B

防粘釜剂的质量M8=0.00002M1=1.73 kg/B

二次用水的质量M9=400 kg/B

M1+M2+M3+…+M8=53099.47 kg/B

所生成的聚合物质量:8.664*104×92%×99%=78920 kg/B

损失PVC的质量:M

=8.664*104×92%×1%=797.13 kg/B

对聚合釜作全物料衡算得:计算结果是正确的。

计算结果整理成表得:

表1

物料名称进料kg/B 出料kg/B

VCM 86640 6932

水129970 130370 引发剂34.66 34.66

终止剂17.33 17.33

分散剂69.32 69.32

PH缓冲剂51.99 51.99

反应调节剂 1.30 1.30

二次用水400 400

防粘釜剂 1.73 1.73

PVC 78920 损失PVC 797.13 合计217197.79 217197.79

2.2出料槽物料衡算

出料槽中损失的PVC量为M

=8.664*104×92%×1%=797.13 kg/B

因此出料槽中含PVC量为78920-797.13=78120 kg/B

由于出料槽中VCM含量为450ppm,过出料中VCM的量为:

78120×450×10-6=35.15 kg/B

=6932-35.15=6896.85 kg/B

因此回收的VCM量M

回1

此阶段需要加入碱液和通入蒸汽,按工艺条件加入42%NaOH溶液12升,其重量为1.45*12=17.4 kg,其中含有纯NaOH7.508 kg。有工艺计算可得需要加入水蒸气量为800kg

对出料槽做总物料衡算:可得物料衡算结果是正确的。

计算结果整理成表得:

物料名称进料kg/B 出料kg/B

VCM 6932 35.15

水130370 131180

蒸汽800

所有助剂178.49 178.49

碱液NaOH 7.31水10.09 NaOH 7.31

PVC 78920 78120 回收VCM 6896.85

损失PVC 797.13 合计217214.93 217214.93

2.3汽提塔物料衡算

从这一步开始到筛分包装为连续过程,因此,计算标准相应的转换为千克/小时。根据全年的生产任务和生产时间可以求出:

每小时生产的PVC量为:5×107/(330×24)=6313 kg/h

产品中的含水量为0.3%,折合绝干树脂含量为:

6313×0.997=6294 kg/h

考虑到聚合釜内PVC的损失,则进入汽提塔内绝干树脂量为:

6294/0.95×0.98=6493 kg/h

以6493 kg/h为基准求出汽提塔进料中其他各组分相应的量:

因此进入汽提塔内的水量为:131180×6493/78120=10900 kg/h

进入汽提塔内的分散剂等为:178.49×6493/78120=14.84 kg/h

进入汽提塔内的VC单体为:35.15×6493/78120=2.92 kg/h

损失的PVC的量为:6294/0.95×0.01=66.25 kg/h

故出料中含PVC量为:6493-66.25=6427kg/h

已知出料中VCM含量为20ppm,故出料中含PVC的量为:

6427×20×10-6=0.128kg/h

求蒸汽冷凝量

条件:进入汽提塔内的物料初始温度为60℃,汽提塔内压强为0.06MPa,在此压强下水的沸点为86℃,潜热为2293.9kj/kg,水蒸气的比热容Δ向蒸汽的扩散能由蒸汽的潜热和显热提供,而且单体的扩散能为71kj/mol,假定在塔内有35%蒸汽冷凝,其余在塔顶冷凝。

则物料升温所需热量衡算表如下:

重量kg/h t初t末Δt C P kj/(kg.℃吸热kj/h 水10900 60 80 20 4.2 915600 VC 2.92 60 80 20 0.848 49.52

PVC 6493 60 80 20 1.764 229073.1 又因为单体的扩散能为:(2.92-0.128)/62.5×10-3×71=3169.44 kj/h

故所需的总热量:

Q总=915600+49.52+229073.1+3169.44=1147892 kj/h

设汽的流量为V,则

Q总=2.31(142-86)V+0.35V×2293.9=1147892 kj/h

故得V=1219.26 kg/h

计算结果整理成表得:

表4

物料名称进料kg/h 出料kg/h

PVC 6493 6427

水10900 12100

蒸汽冷凝1219.26

分散剂和NaOH等22.15 22.15

VC 2.92 0.128

回收VC 2.79

损失PVC 66.25

合计18615.66 18615.66

2.4离心部分物料衡算

离心操作中PVC的损失量为:6294/0.95×0.005=33.13 kg/h

离心脱水后的湿物料中仍含有20%的水分,则含水量为:

(6427-33.13)×0.2/0.8=1598.47 kg/h

假设此阶段将所有助剂都离心脱除了。

计算结果整理成表得:

表5

物料名称进料kg/h 出料kg/h

PVC 6427 6393.87

湿物料含水1598.47

母液含水12100 10500

分散剂等14.87 14.87

PVC损失33.13

合计18549.15 18549.15 2.5气流干燥部分物料衡算

气流干燥损失的PVC量为:6294/0.95×0.005=33.13 kg/h

则出料PVC量为:6393.87-33.13=6360.74 kg/h

已只气流干燥后的含水量为5%,则含水量为:

16360.74×0.05/0.95=334.78 kg/h

整理计算结果得:

表6

物料名称进料kg/h 出料kg/h PVC 6393.87 6360.74 水1598.47 334.78

PVC损失33.13

脱走水分1263.69 合计7992.34 7992.34 2.6沸腾干燥部分物料衡算

PVC损失量为:6294/0.95×0.005=33.13 kg/h

所以出料的PVC量为:6360.74-33.13=6327.61 kg/h

假设出料中水分含量为0.3%,则所含水量为

6327.61×0.003/0.997=19.04 kg/h

整理计算结果得:

表7

物料名称进料kg/h 出料kg/h PVC 6360.74 6327.61 水334.78 19.04

PVC损失33.13

脱走水分315.74

合计6695.52 6695.52 2.7筛分包装部分物料衡算

绝干PVC损失量为:6294/0.95×0.005=33.13 kg/h

则包装入库的绝干PVC树脂量为:6327.61-33.13=6294.48 kg/h

随着PVC树脂损失的相应的水的量为:33.13×0.003/0.997=0.10kg/h

整理计算结果得:

表8

物料名称进料kg/h 出料kg/h

PVC 6327.61 6294.48

水19.04 19.03

PVC损失33.13

损失水分0.10

合计6346.65 6346.65

2.8物料衡算总平衡

(1)聚合釜及出料槽属于间歇操作,计算标准为kg/B,由前面计算结果可知:投入VCM单体的量为86640 kg/B,经过聚合釜及出料槽减压后的量为6392 kg/B,出料为35.15 kg/B,PVC的总损失为1594.26 kg/B.

由以上结果可得间歇部分物料总平衡表如下:

表9

物料名称进料kg/h 出料kg/h

VCM 86640 35.15

水129970 131180

二次进水400

分散剂等178.49 178.49

碱液水10.09 NaOH 7.31 NaOH 7.31

PVC 78120

损失PVC 1594.26

回收VCM 6896.85

合计218012.06 218012.06

(2)从气提开始一直到筛分包装都是连续操作,计算基准为kg/h。由前面的计算结果可知,进入气提塔的VC的量为2.92kg/h,进过气提后VC单体的量降为0.128kg/h,气提塔内冷凝的水的总量为10900+1219.26=12119.26kg/h,离心后母液含水总量为10500kg/h,PVC损失总量为198.75kg/h。

整理可得连续操作部分总物料平衡表如下:

表10

物料名称进料kg/h 出料kg/h

VCM 2.92 0.128

水10900

蒸汽冷凝水1219.26

分散剂等14.84 14.84 6493 17323.76 6294

回收VCM 2.79

最终物料中含水19.03

损失PVC 198.75 母液10500

损失水1583.44 合计18630.02 18630.02

3.热量衡算.

由于热量衡算较为繁琐,因此此处只选择聚合釜做热量衡算。

反应前的原料和釜的升温阶段是物料由25℃加热至55℃,升温时间是0.5小时此阶段加热介质为饱和蒸汽,压力为0.4MPa,温度为142℃。

此阶段升温所需总热量是壶体及壶内物料升温达到聚合条件所消耗的热量。

即Q1+Q2+Q3=Q4

其中Q1——水升温数所需的热量(由于分散剂等含量甚微,故并入水中一起计算);

Q2——VC单体升温所需的热量;Q3——釜体升温所需的热量;

Q4——蒸汽所提供的热量。

已知条件如下表:

表11

重量kg/h t初t 末△t Cp kj/(kg.℃) 水86640 25 55 30 4.2

VCM 129970 25 55 30 0.848

釜体51660 25 55 30 0.504

计算如下:

Q1:去离子水(分散剂等)升温消耗热量

Q1=q m1Cp1△t=86640×4.2×(55-25)=1.092×107kj/B

Q2:单体升温消耗的热量

Q2= q m2Cp2△t=12997×0.848×(55-25)=3.306×106kj/B

Q3:聚合壶升温消耗热量

Q3= q m3Cp3△t=51660×0.504×(55-25)=7.811×105kj/B

Q4:蒸汽所提供能量

Q4=Q1+Q2+Q3=1.50*107 kj/B

由于改聚合反应为恒温聚合,而反应为放热反应,因此需要通循环冷却水冷却,聚合反应的聚合热查文献可得为2.29*104千卡/kg,因此可求出每批的反应热为Q=86640*22900*4.18=8.293*109 kj/B。

假设进口处冷却水的温度为5,出口处水的温度为10,则循环冷却水用量为W=kg/B

4关键设备的选型

4.1聚合釜的选型

本工艺采用间歇氯乙烯悬浮聚合生产PVC,可采用如下方法计算聚合釜的体积。

间歇操作周期为;

日产量Wd=50000*103/330=1.51*105 kg/d;

故每批反应液的体积为:V R==39.295m3;

反应液的总体积为:V T= V R/0.7=56.13 m3;

对于此反应可选用国产3

70m不锈钢聚合釜,此釜的直径为3810mm,筒体切线长度为4928mm,长径比为1.293,釜重51660kg。此釜封头高度根据国标h=0.25D=952.5mm,封头直边高度为50mm。反应釜的壳套厚度选取100mm。

4.2 其他设备的选型

其它的设备主要是泵的选择。工业生产中有进料泵、回流泵、塔底泵、循环泵、产品泵等,石油化工泵的选择应该满足流量,扬程、压力、温度、气蚀余量等工艺参数的要求,满足介质特性的要求和现场安装的要求。在选泵时:首先要综合考虑泵的流量。一方面,应按设计要求达到的能力确定泵的流量,并使之与其他设备能力协调平衡;另一方面,也要根据生产需要确定泵的流量。在确定泵的流量时应综合考虑装置的富裕能力及装置内各设备能力的协调平衡。

其次根据生产要求确定泵的扬程。选泵时,由于工艺过程设计中管道系统压力降计算比较复杂,因此泵的扬程要留有适当的余量,一般为正常需要扬程的1.05~1.1倍。

最后根据流体输送设备的特性曲线确定蚌型选泵时,确定哪一种设备,应在生产上所需要的流量和扬程后进行。

5.车间设备布置设计

5.1车间设备布置的原则

5.1.1车间设备布置的原则

1 从经济和压降观点出发,设备布置应顺从工艺流程,但若与安全、维修和施工有矛盾时,允许有所调整。

2 根据地形、主导风向等条件进行设备布置,有效的利用车间建筑面积(包括空间)和土地(尽量采用露天布置及建筑物能合并者尽量合并)。

3 明火设备必须布置在处理可燃液体或气体设备的全年最小频率风向的下侧,并集中布置在装置(车间)边缘。

4控制室和配电室应布置在生产区域的中心部位,并在危险区外。

5 充分考虑本装置(车间)与其他部门在总平面布置图上的位置,力求紧凑、联系方便,缩短输送管线,达到节省管材费用及运行费用的目的。

6 留有发展的余地

7 所采取的劳动保护、防火要求、防腐蚀措施要符合有关标准、规范的要求。

8 有毒、有腐蚀性介质的设备应分别集中布置,并设围堰,以便集中处理。

9 设备安全通道、人流、物流方向应错开。

10 设备布置应整齐,尽量使主要管道走向一致[13]。

5.1.2 车间设备平面布置的原则

车间平面布置首先必须适合全厂总平面布置的要求,应尽可能使个车间的平面布置在总体上达到协调、整齐、紧凑、美观,相互融合,浑成一体。其次,必须从生产需要出发,最大限度的满足生产包括设备维修的要求。即要符合流程、满足生产、便于管理、便于运输、利于设备安装和维修。第三,生产要安全。即要全面妥善的解决防火、防爆、防毒、防腐、卫生等方面的问题,符合国家的各项有关规定。第四,要考虑将来扩建及增建的余地,为今后生产发展、品种改革、技术改造提供方便。但这些一定要最有效的利用车间的建筑面积(包括空间)和土地(设备装置能露天布置的尽量露天布置,建筑物能合并的应尽量合并)。5.1.3 车间设立面布置的原则

厂房的立面形式有单层、多层和单层与多层相结合的形式。多层厂房占地少但造价高,而单层厂房占地多但造价低。采用单层还是多层主要应根据工艺生产的需要。例如制碱车间的碳化塔,根据工艺要求须放在厂房内,但塔有比较高,且操作岗位安排在塔的中部以便观察塔内情况,这样就需要设计多层厂房;另一

种情况是:设备大部分露天布置,厂房内只需要安置泵或风机,这种情况可设计成单层厂房。

对于为新产品工业化生产而设计的厂房,由于生产过程中对工艺流程和设备需要不断改进和完善,一般都设计一个较高的单层厂房,利用便于移动、拆装、改建的钢制操作平台代替钢筋混凝土操作台,以适应工艺流程和设备变化的需要。

5.2车间设备布置

5.2.1车间设备平面布置

车间平面布置按其外形一般分为长方形、L形、T形和Ⅱ形等。长方形便于总平面图的布置,节约用地,有利于设备排列,缩短管线,易于安排交通出入口,有较多可供自然采光和通风的墙面;但有时由于厂房总长度较长,在总图布置有困难时,为了适应地形的要求或者生产的需要,也有采用L形、T形和Ⅱ形的,此时应充分考虑采光、通风和立面等各方面的因素。

5.2.2车间设备立面布置

化工厂厂房可根据工艺流程的需要设计成单层、多层或单层与多层相结合的形式。一般来说单层厂房建设费用较低,因此除了由于工艺流程的需要必须设计成多层外,工程设计中一般多采用单层。有时因受建设场地的限制或者为了节约用地,也有设计成多层的。对于为新产品工业化生产而设计的厂房,由于在生产过程中对于工艺路线还需不断改进和完善,所以一般都设计成一个高单层厂房,利用便于移动、拆装、改建的钢操作台代替钢筋混凝土操作台或多层厂房的楼板,以适应工艺流程改变的需要。

6. 公用工程

6.1供水

化工生产中的大量用水,主要用于工艺用水和冷却用水两类。在本设计中工艺用水不与产品接触,故不做讨论,对于冷却水应该满足下列几点要求:(1)温度尽可能低,全年温度变化小;

(2)不会有水垢和泥渣沉积引起的危害;

(3)对金属的腐蚀性小;

(4)不会促进生物或微生物的生长,从而引起管道和换热设备的堵塞。

6.2供电

车间用电通常有工厂的变电所或由供电网直接供电。车间用电一般最高为6000伏,中小型电机只有380伏。通常在车间附近或在车间内部设置变电室,将电压降低后分配给各用电设备使用。

6.3供暖

采暖目前主要以锅炉方式提供热量,使在较低温度的环境下,仍能保持适宜的工作或生活条件的一种技术手段,它按设备的布置情况主要分为集中采暖和局部采暖。

6.4 通风

车间通风的目的是排除余热、余湿、有害气体和粉尘等,使车间内作业带的空气保持适宜的温度、湿度和卫生要求,以保证操作者的政策卫生条件。通风的方式主要有:自然通风、机械通风两大类,在本设计中主要采用自然通风,但在设备附近有局部通风的设施。

参考文献

[1]严福英等.聚氯乙烯工艺学[M].北京:化学工业出版社,1996.

[2]张洋.高聚物合成工艺设计基础[M].北京:化学工业出版社,2005.

[3]赵德仁等.高聚物合成工艺学[M].北京:化学工业出版社,2002.

[4]谭天恩等.化工原理[M].北京:化学工业出版社,2008.

[5]倪进方等.化工设计[M].华东理工大学出版社,2001.

[6]邴涓林,黄志明等.聚氯乙烯工艺技术.北京:化学工业出版社,2008.

[7]邓云祥.聚氯乙烯生产原理.北京:科学出版社,1982.

[M]陈敏恒,丛德滋,方图南,齐鸣斋等.化工原理.北京:化学工业出版社,2003. [M]潘祖仁.高分子化学.北京:化学工业出版社,2007.

[M]郑石子,颜才南,胡志宏等.聚氯乙烯生产与操作.北京:化学工业出版社,2008. [M]林大钧等.简明化工制图.北京:化学工业出版社,2005.

致谢

首先,感谢我们丁老师对我的指导。两个星期来,我时刻体会着丁老师严肃的科学态度,严谨的治学精神,精益求精的工作作风,我想这是够我一生受用的人格魅力。在课程设计的整个过程,丁老师都给了我无私的指导。正是在丁老师科学、严谨的指导下,我的设计才能顺利进行,也才得以顺利完成。再次向丁老师表示深深的敬意和感谢!

同时也感谢班级其他同学,他们在日常的工作和学习中都给予我很多的帮助和关心,谢谢!

年产万吨聚氯乙烯生产工艺设计

设计课题 年产10万吨聚氯乙烯生产工艺设计方案 2014年 10 月16日

设计说明 聚氯乙烯(PVC)是一种热塑性合成树脂,有优良的电绝缘性,难以自燃,主要用于生产透明薄膜、塑料管件、各类板材等。其再加工产品在全球不同领域都有着非常广泛的应用。 根据设计任务书,本设计进行了年产10万吨聚氯乙烯(PVC)工艺的设计。在查阅、参考大量文献以及对以往部分车间设计的研究学习下,进行了科学的设计以及对相关物料的衡算。 本设计计划采用悬浮聚合法生产聚氯乙烯,原料为氯乙烯单体以及混合用有机过氧化物和偶氮类引发剂、明胶分散剂和去离子水。结合所选择的生产工艺方案和产品生产实际情况,进行了有关物料和热量平衡的计算。安排每日三班次,每班8小时的生产强度,设计可达到日产303吨年产达10万吨的聚氯乙烯生产车间。 本设计也充分考虑到工作人员的工作环境以及工作安全性,尽可能将车间规划为安全的,绿色的,在工作人员遵守车间操作规程的情况下,工作更加安全高效。 本设计由许春华副教授指导,在反应确定、生产流程安排等整个设计过程中提出了许多宝贵意见,使得设计能更高效地完成,在此表示衷心感谢。 鉴于知识和实际经验所限,设计难免存在欠缺,恳请批评指正。

目录 1总论 .................................................... 1.1 概述.................................................................................................................................. 1.1.1 聚氯乙烯(PVC)概述与应用范围......................................................................... 1.1.2 聚氯乙烯(PVC)改性品种..................................................................................... 1.1.3 聚氯乙烯(PVC)生产行业现状及发展前景......................................................... 1.2 聚氯乙烯(PVC)产品的分类和命名............................................................................ 1.2.1 聚氯乙稀(PVC)产品分类..................................................................................... 1.2.2 聚氯乙稀(PVC)产品命名..................................................................................... 1.3 聚氯乙烯(PVC)生产方法[5]......................................................................................... 1.3.1 悬浮聚合法[6] ............................................................................................................ 1.3.2 乳液聚合法............................................................................................................... 1.3.3 本体聚合法............................................................................................................... 1.3.4 溶液聚合法............................................................................................................... 1.4 设计规模原料选择与产品规格 ...................................................................................... 1.4.1设计规模.................................................................................................................... 1.4.2主要原料规格及技术指标 ........................................................................................ 1.4.3产品规格.................................................................................................................... 2工艺设计与计算 .......................................... 2.1 工艺原理.......................................................................................................................... 2.2 工艺条件影响因素 .......................................................................................................... 2.2.1 聚氯乙烯(PVC)聚合主要影响因素................................................................... 2.3 工艺路线选择.................................................................................................................. 2.3.1 工艺路线选择原则................................................................................................... 2.3.2 悬浮法聚氯乙烯(PVC)工艺流程具体工艺路线................................................. 2.3.3 工艺流程示意图..................................................................................................... 2.4 工艺配方与工艺参数 ...................................................................................................... 2.4.1 工艺配方(质量份): ........................................................................................... 2.4.2 工艺参数:............................................................................................................... 2.5 物料衡算........................................................................................................................ 2.5.2 物料衡算的方法与步骤 ........................................................................................... 2.5.3 物料衡算...................................................................................................................

产20万吨PVC合成工段初步设计

产20万吨PVC合成工段初步设计

毕业设计(论文) 题目年产20万吨PVC合成工段 初步设计 作者学院专业学号指导教师

目录 第一章前言 (1) 第二章聚氯乙烯、氯乙烯概述 (3) 2.1 聚氯乙烯、氯乙烯的发现和发展 (3) 2.1.1聚氯乙烯发现和发展 (3) 2.1.2氯乙烯发现和发展 (3) 2.2 聚氯乙烯的发展展望 (4) 2.3 氯乙烯的发展展望 (4) 第三章工艺方案的选择与流程 (5) 3.1 氯乙烯的生产工艺及成本分析 (5) 3.1.1电石乙炔法路线 (5) 3.1.2乙烯氧氯化法路线 (6) 3.1.3两种方法比较 (6) 3.2 生产工艺说明 (6) 3.2.1 影响混合脱水的因素 (6) 3.2.2氯乙烯的合成原理 (7) 3.2.2.1 反应机理 (7) 3.2.2.2对原料气的要求 (7) 3.2.2.3生产工艺流程简述 (9) 第四章工艺计算 (11) 4.1 主要原材料及产品性质 (11) 4.1.1聚氯乙烯(PVC) (11) 4.1.2氯乙烯(VCM) (11) 4.1.3 乙炔 (12) 4.1.4 氯化氢 (13) 4.1.5氯化汞 (13) 4.1.6 HgCl2触媒 (13) 4.2 聚氯乙烯合成工段的工艺计算 (14) 4.2.1物料衡算 (14) 4.2.2主设备计算 (14) 4.3 热量衡算 (20) 4.3.1石墨冷却器 (20) 4.3.2 石墨预热器 (22)

4.3.3 转化器 (22) 4.3.4 石墨冷却器(泡沫水洗系统) (23) 4.4 水量消耗状况 (24) 4.4.1 盐水冷却水 (24) 4.4.2 工业水消耗 (25) 第五章主要设备的设计及工艺管道选择 (27) 5.1 换热器的选择 (27) 5.1.1 石墨冷却器 (27) 5.1.2 石墨预热器 (27) 5.2 转化器的设计计算 (28) 5.2.1 转化器的主要工艺参数 (28) 5.2.2 计算 (29) 5.3 泡沫塔设计计算 (30) 5.3.1塔径的计算 (30) 5.3.2孔的布置 (31) 5.3.3塔板的压降 (31) 5.3.4稳定性 (32) 5.3.5液泛 (32) 5.3.6物沫夹带 (32) 5.4 主要设备一览表 (33) 第六章主要管道计算与选型 (35) 6.1 乙炔气进料管 (35) 6.2 石墨冷却器的进料管 (35) 6.3 多筒过滤器进料管 (36) 6.4 转化器进料管 (36) 6.5 转化器出料管 (37) 6.6 石墨冷却器出口管 (38) 6.7 部分管道一览表 (38) 第七章厂址选择与车间布置 (39) 7.1 厂址选择的依据及原则 (39) 7.2 车间布置要考虑的问题 (40) 7.3 厂房布置实际数据 (41) 7.3.1 厂房平面布置 (41) 7.3.2 设备布置的安全距离 (41)

年产50万吨苯乙烯工艺设计(已附翻译)

第1章 引言 1.1 苯乙烯的性质和用途 苯乙烯,分子式 8 8H C ,结构式 2 56CH CH H C ,是不饱和芳烃最简单、最重 要的成员,广泛用作生产塑料和合成橡胶的原料。如结晶型苯乙烯、橡胶改性抗冲聚苯乙烯、丙烯腈-丁二烯-苯乙烯三聚体(ABS )、苯乙烯-丙烯腈共聚体(SAN )、苯乙烯-顺丁烯二酸酐共聚体(SMA )和丁苯橡胶(SBR)。苯乙烯(SM )是含有饱和侧链的一种简单芳烃,是基本有机化工的重要产品之一。苯乙烯为无色透明液体,常温下具有辛辣香味,易燃。苯乙烯难溶于水,25℃时其溶解度为0.066%。苯乙烯溶于甲醇、乙醇、乙醚等溶剂中。 苯乙烯在空气中允许浓度为0.1ml/L 。浓度过高、接触时间过长则对人体有一定的危害。苯乙烯在高温下容易裂解和燃烧。苯乙烯蒸汽与空气混合能形成爆炸性混合物,其爆炸范围为1.1~6.01%(体积分数)。 苯乙烯(SM )具有乙烯基烯烃的性质,反应性能极强,苯乙烯暴露于空气中,易被氧化而成为醛及酮类。苯乙烯从结构上看是不对称取代物,乙烯基因带有极性而易于聚合。在高于100℃时即进行聚合,甚至在室温下也可产生缓慢的聚合。因此,苯乙烯单体在贮存和运输中都必须加入阻聚剂,并注意用惰性气体密封,不使其与空气接触。 苯乙烯(SM )是合成高分子工业的重要单体,它不但能自聚为聚苯乙烯树脂,也易与丙烯腈共聚为AS 塑料,与丁二烯共聚为丁苯橡胶,与丁二烯、丙烯腈共聚为ABS 塑料,还能与顺丁烯二酸酐、乙二醇、邻苯二甲酸酐等共聚成聚酯树脂等。由苯乙烯共聚的塑料可加工成为各种日常生活用品和工程塑料,用途极为广泛。目前,其生产总量的三分之二用于生产聚苯乙烯,三分之一用于生产各种塑料和橡胶。世界苯乙烯生产能力在1996年已达1900万吨,目前全世界苯乙烯产能约为2150~2250万吨。

聚氯乙烯PVC介绍及配方介绍分解

目录 一、聚氯乙烯 (2) 1聚氯乙烯 (2) 2聚氯乙烯的分类 (2) 3聚氯乙烯的性质 (3) 4 PVC板材性能: (3) 二、PVC配方各物配料比 (3) 高级装饰用软板(质量份) (3) 1.硬质PVC板材基本配方 (4) 2.普通防火板参考配方 (4) 3. 泡沫夹心型防火板参考配方 (4) 4.彩色艺术面层防火板配方 (5) 5.发泡防火板或超轻型防火板参考配方 (6) 6.复合材料珍珠岩板 (6) 三、聚氯乙烯配方介绍 (7) 1.树脂的选择 (7) 2.增塑剂体系 (8) 3.稳定剂体系 (8) 4.润滑剂 (10) 5.填充料 (10) 6.着色剂 (11) 7.发泡剂 (11) 8.阻燃剂 (11)

一、聚氯乙烯 1聚氯乙烯 (英文:PolyVinyl Chloride,简称:PVC)是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。PVC为无定形结构的白色粉末,支化度较小。工业生产的PVC分子量一般在5~12万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加。无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态。其抗张强度60MPa左右,冲击强度5~10kJ/m2;有优异的介电性能。对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并自动催化分解引起变色,在实际应用中必须加入稳定剂以提高对热和光的稳定性。PVC很坚硬,只能溶于环己酮、二氯乙烷和四氢呋喃等少数溶剂中,对有机和无机酸、碱、盐均稳定,化学稳定性随使用温度的升高而降低。 2聚氯乙烯的分类 生产方法的不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC树脂。通用型PVC树脂是由氯乙烯单体在引发剂的作用下聚合形成的;高聚合度PVC树脂是指在氯乙烯单体聚合体系中加入链增长剂聚合而成的树脂;交联PVC树脂是在氯乙烯单体聚合体系中加入含有双烯和多烯的交联剂聚合而成的树脂。 软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂,容易变脆,不易保存,所以其使用范围受到了局限。硬PVC不含柔软剂,柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的开发应用价值。 PVC发泡板具有防腐、防潮、防霉、不吸水、可钻、可锯、可刨、易于热成型、热弯曲加工等特性,因此广泛应用于家具、橱柜、浴柜、展览架用板、箱体芯层、室内外装饰、建材、化工等领域用板,广告标示、印刷、丝印、喷绘、电脑刻字、电子仪表产品包装等行业。 PVC硬塑板具有优良的耐腐蚀性、绝缘性,并有一定的机械强度;经二次加工后可制成硫酸(盐酸)槽(桶箱);医药用空针架,化程架;公共卫生间水箱;加工产品的模板、装饰板、排风管道、设备衬里等各种异型制品、容器。是化工、建材、装饰及其他工业的理想选择材料。 60年代后期退居第二位。由于PVC树脂合成原料丰富,价格低廉需求量增加很快,地位逐渐加强。通用型PVC平均聚合度500~~150高聚和度型PVC平均聚合度为1700以上。我们常用的PVC树脂都为通用型。

聚氯乙烯生产毕业论文设计

聚氯乙烯生产毕业论文设计

毕业设计(论文) (化工系) 题目年产40万吨电石法氯乙烯生产工艺设计专业 班级 姓名 学号 指导教师 完成日期2011年6月25日~2011年10月10日

(论文) 摘要....................................................................... I I 前言 (4) 第一章文献综述 (8) 1.1化学品名称 (8) 1.2成分组成信息 (8) 1.3危险性概述 (8) 第二章电石法制氯乙烯所用的原料及其性质错误!未定义书签。 2.1乙炔氧氯化法生产氯乙烯 ... 错误!未定义书签。 2.2电石乙炔法生产氯乙烯错误!未定义书签。第三章电石法制氯乙烯工艺流程...错误!未定义书签。 3.1乙炔性质 (10) 3.2生产方法 (11) 3.3影响因素 (12) 第四章电石法制氯乙烯工段物料及热量衡算方法......................................... 错误!未定义书签。

4.1制备方法 (13) 4.2盐酸脱吸法生产氯化氢 (15) 4.3副产盐酸脱吸法生产氯化氢 (17) 第五章电石法制氯乙烯工段的主要设备错误!未定义书签。 5.1合成部分设备.............. 错误!未定义书签。 5.2列管式石墨换热器 ..... 错误!未定义书签。 5.3吸收部分设备.............. 错误!未定义书签。总结 ............................................................................................... 错误!未定义书签。致谢 ............................................................................................... 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。 摘要 氯乙烯的制备在PVC的生产过程中是一个非常重要的环节,它把从氯化氢装置送来的干燥氯化氢气体和从乙炔装置送来的精制乙炔气体在这里合成反应生成粗氯乙烯,并经过脱水、净化、精馏等工序后,制成精制氯乙烯,即单体,用来满足聚合的需要。 本设计主要论述了电石法生产氯乙烯,以及原料气的物理性质和化学性质,以及它的用途;还介绍了生产氯乙烯的主要设备,基本原理和工

年产10万吨苯乙烯工艺设计本科毕业设计论文

年产10万吨苯乙烯工艺设计 一、前言 苯乙烯,分子式88H C ,结构式256CH CH H C ,是不饱和芳烃最简单、最重要的成员,广泛用作生产塑料和合成橡胶的原料。如结晶型苯乙烯、橡胶改性抗冲聚苯乙烯、丙烯腈-丁二烯-苯乙烯三聚体(ABS )、苯乙烯-丙烯腈共聚体(SAN )、苯乙烯-顺丁烯二酸酐共聚体(SMA )和丁苯橡胶(SBR)。 苯乙烯是1827年由M · Bonastre 蒸馏一种天然香脂-苏合香时才发现的。1893年E · Simon 同样用水蒸气蒸馏法由苏合香中得到该化合物并命名为苯乙烯。1867年Berthelot 发现乙苯通过赤热陶管能生成苯乙烯,这一发现被视为苯乙烯生产的起源。1930年美国道化学公司首创由乙苯脱氢法生产苯乙烯工艺,但因当时精馏技术未解决而未工业化。直至1937年道化学公司和BASF 公司才在精馏技术上有突破,获得高纯度苯乙烯单体并聚合成稳定、透明、无色塑料。1941~1945年道化学、孟山都化学、Farben 等公司各自开发了自己的苯乙烯生产技术,实现了大规模工业生产。 50年来,苯乙烯生产技术不断提高,到50年代和60年代已经成熟,70年代以后由于能源危机和化工原料价格上升以及消除公害等因素,进一步促进老工艺以节约原料、降低能耗、消除三废和降低成本为目标进行改进,取得了许多显著成果,使苯乙烯生产技术达到新的水平。除传统的苯和乙烯烷基化生产乙苯进而脱氢的方法外,出

现里Halcon乙苯共氧化联产苯乙烯和环氧丙烷工艺,其中环球化学∕鲁姆斯法的UOP∕Lummus的“SMART” SM工艺是最先进的,通过提高乙苯转化率,减少了未转化乙苯的循环返回量,使装置生产能力提高,减少了分离部分的能耗和单耗;以氢氧化的热量取代中间换热,节约了能量;甲苯的生成需要氢,移除氢后减少了副反应的发生;采用氧化中间加热,由反应物流或热泵回收潜热,提高了能量效率,降低了动力费用,因而经济性明显优于传统工艺。

聚氯乙烯的生产工艺

第一章概述 第一节聚氯乙烯简述 氯乙烯的聚合物。英文缩写PVC。聚氯乙烯是仅次于聚乙烯的第二大塑料品种。玻璃化温度80~85℃,密度1.35~1.45克/厘米3,使用温度-15~60℃。PVC具有优良的耐酸碱、耐磨、耐燃及绝缘性能,与大多数增塑剂的混合性好,因此可大幅度改变材料的力学性能。加工性能优良,价格便宜,但对光、热稳定性差,100℃以上或光照下性能迅速下降。 聚氯乙烯用自由基加成聚合制备,方法有悬浮、本体、乳液和溶液等,其中以悬浮法为主,以过氧化物等引发,加分散剂后可得到疏松树脂颗粒,加工性能好。聚合温度高,链转移速率高,产物分子量小,一般应稳定在±0.5℃以内。溶液聚合产物直接用作涂料胶粘剂,乳液聚合产物也可直接应用,或喷雾干燥为固体。 聚氯乙烯(PVC)是五大通用塑料之一,其产量仅次于聚乙烯居第二位。PVC以其具有的阻燃、绝缘、耐磨损等优良的综合性能赢得了广阔市场,广泛应用于轻工、建材、农业、日常生活、包装、电力、公用事业等部门,尤其在建筑塑料、农用塑料、塑料包装材料、日用塑料等领域占有重要地位。 聚氯乙烯(PVC)用途广泛,并是最早用于工业化生产的塑料管道材料,至今仍是管道生产的主导材料。PVC的强度高、造价低、可回收利用、性能受环境影响小、安全卫生,可用于压力和重力管道,也可用于塑料包装、制品等领域,其低廉的价格和突出的均衡性能,已经在工业和消费用途方面成为十分理想的材料。 聚氯乙烯是由液态的氯乙烯单体经悬浮,乳液,本体或溶液法工艺聚合而成,其中悬浮工艺在世界PVC生产装置中大约占百分之九十的比例。在世界PVC总产量中均聚物也占大约百分之九十的比例。PVC是应用最广泛的热塑性树脂,可以制造强度和硬度制品。硬质品目前占PVC总消费量的百分之六十五左右,今后PVC消费量进一步增长的机会主要是在硬质制品应用领域。目前PVC在建筑领域中的消费量占总消费量的一半以上。 第二节国内生产及应用状况

年产PVC工艺设计

题目:年产量2万吨硬质PCV管材车 间工艺设计 作者:揭七 目录 第一章:概述 第二章:原料及配方的选择 第三章: U-PVC管生产车间工艺计算第四章:工艺计算及设备的选择 第五章:工厂及车间的布局以及经济核算

第一章概述 聚氯乙稀塑料的英文缩写是PVC(polyvinyl chloride)。这是一类使人欢喜同时又让人忧的塑料制品,其实是PVC塑料一种乙烯基的悬浮聚合物质。聚氯乙稀的原料来源十分丰富,我们可以从石油、石灰石、焦炭、食盐以及天然气中得到;此外又因为它的制造工艺比较成熟、价格相对低廉、用途也十分广泛,现在已经跃居世界上第二大通用树脂,仅次于聚乙烯树脂,总产量占世界合成树脂的29%。 硬质聚氯乙烯管的简称为U-PVC引水管,它是以氯乙烯单体经过聚合反应得到的无定型热塑性PVC树脂为原料与各种添加剂剂(稳定剂、润滑剂、阻燃剂、增强剂、填充剂等)加热后,在挤出机中通过不同的压力、温度等加工工艺条件下形成不同规格、尺寸的U-PVC管材。因其化学性质稳定、耐磨性好而广泛应用于建筑工程以及日常引水设施等各个方面,越来越受到人们的重视。由于它不仅质轻、光洁、美观,而且水阻小、组配灵活、安装的时候省时省力,所以很受设计和施工单位以及用户的青睐。所以使用U-PVC引水管代替传统的铸铁引水管,它正在以不可逆转的趋势,在国内普及开来。现今包括自来水的输送和生活污水的排放以及建筑电线等所用管材大部分是采用硬质聚氯乙烯管来代替传统的铸铁管材。 U-PVC管在国内的发展已经取得了相当大成绩,但是总的来

说仍然处于发展的初期阶段。本文中主要介绍了运用挤出成型生产工艺生产年产量2万吨的硬质PVC管材的配方以及设备的选择,以及工厂车间的布局和经济核算等相关问题。1.1.1 PVC的行业现状及发展前景 近来十几年我国的塑料管业正在以令全世界人惊奇的速度高速蓬勃发展。我国塑料管的总产量从90年代不到20万吨/年的产量增长到2000年近80万吨/年的高峰,在上世纪的最后十年内增长高达300%。踏入新世纪21世纪以后又不断地高速增长,尽管基数在增加,但年增长率仍然非常高。2007年我国各种塑料管的总产量超过了300万吨。从2000年开始,我国在世界各国塑料管产业排位中已是第2位。 市场 建筑业是聚氯乙烯管材的最大市场,管材分为;两类,一种是耐压管,另一种是无压管。耐压管主要用于自来水管、建筑热水供水管、公用工程供水管(一般采用100mm~900mm直径的管材);无压管大量用于室内下水管和雨水系统管。公用工程排污管(一般采用直径400mm~1.2m的大口径管材)。此外,建筑用串线管和地下电缆护管是聚氯乙烯管材应用的一个市场,现已在我国普遍采用,并具有进一步发展的巨大潜力。表1-1、1-2、1-3显示出我国塑料管的总产量在逐年增长,应用领域也是日益广泛,从而证实了我国对塑料管需求在日益激增,特别地,对PVC管的需求变得更加突出明显。

聚氯乙烯反应釜的设计

摘要 随着国内聚氯乙烯行业的竞争越来越激烈,小规模聚氯乙烯生产设备将越来越表现出不经济性。考虑到今后国内新建聚氯乙烯生产设备规模至少将在20万t/a 以上,60m3聚氯乙烯反应釜及其成套工艺技术具有很大的推广前景。由于引进国外60m3以上聚氯乙烯反应釜及其成套工艺技术的设备和技术费用相当昂贵,在今后较长一段时期内,国产化60m3聚氯乙烯反应釜及其成套工艺技术将是企业的理想选择。因此,60m3聚氯乙烯反应釜的设计和成套工艺技术的开发,将极大的推动国内PVC行业的技术进步和长远发展。本次毕业设计是设计一个60m3聚氯乙烯反应釜,考虑到了筒体所受的内压和外压,进行了罐体和夹套内压强度计算,对罐体进行了外压强度校核,另外还设计了搅拌装置与传动装置,并对其进行了强度和刚度校核。 关键词:聚氯乙烯; 反应釜;设计 Abstract With the domestic PVC industry more competitive, PVC production equipment for small-scale will become more and more non-economic. Tacking into account the future of domestic new PVC production equipment will be at least more than 200,000t/a, 60m3PVC reactor and packaged process have a great spread. The equipment investments and construction investments for bring in the 60m3 PVC reactor and packaged process is so expensive that the companies should choose the 60m3 PVC reactor and packaged process that we have in the near future. So, the design of the 60m3PVC reactor and the study of packaged process have great historical significance and far-reaching impact in the history of domestic PVC production, will greatly promote the development of domestic PVC industry.This graduation design is to design a 60m3PVC reactor.This design considered the cylinder body from the internal pressure and the external pressure,Tank and jacket were calculated compressive strength,and the tank strength of the external pressure was checked.In addition, I also designed a mixing device and transmission device and checked its strength and stiffness. Key words: PVC; reactor; design

年产20万吨PVC合成工段工艺设计毕业设计

毕业设计(论文)任务书 化学化工院化工系(教研室)系(教研室)主任: (签名) 年月日 学生姓名: 学号: 专业: 化学工程与工艺 1 设计(论文)题目及专题:年产20万吨PVC合成工段工艺设计 2 学生设计(论文)时间:自 2 月 20 日开始至 6 月 2 日止 3 设计(论文)所用资源和参考资料:1)化工设计;2)化工设备设计;3)化工工艺设计手册;4)有机合成;5)株洲化工厂现场实习资料。 4.设计(论文)完成的主要内容:1)总论;2)生产流程及生产方案的确定; 3)生产工艺流程叙述;4)工艺计算; 5)工艺管道设计; 6)安全与节能; 7.技术经济. 5.提交设计(论文)形式(设计说明与图纸或论文等) 1. 带控制点生产工艺流程图; 2. 车间立面布置图; 3. 合成塔结构图。 4 厂房设计平面图 6 发题时间:二○一一年二月二十日 指导教师:(签名) 学生(签名)

内容摘要 本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合方法等。本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产PVC树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。并且从物料衡算、热量衡算和设备计算和选型三个方面进行准确的工艺计算,对厂址进行了选择,采取了防火防爆防雷等重要措施,对三废的处理回收等进行了叙述,画出了整个工艺的流程图。 关键词:聚氯乙烯;生产技术;悬浮法;乙炔法;乙烯法; 防粘釜技术;

目录 第一章总论 (2) 1.1 国内外 pvc发展状况及发展趋势 (2) 1.2 单体合成工艺路线 (3) 1.2.1乙炔路线 (3) 1.2.2乙烯路线 (4) 1.3聚合工艺实践方法 (5) 1.3.1本体法聚合生产工艺 (5) 1.3.2乳液聚合生产工艺 (5) 1.3.3悬浮聚合生产工艺 (6) 1.4最佳的配方、后处理设备的选择 (7) 1.4.1配方的选择 (7) 1.4.2后处理设备侧选择 (7) 1.5 防粘釜技术 (9) 1.6原料及产品性能 (9) 1.7 聚合机理 (11) 1.7.1自由基聚合机理 (11) 1.7.2链反应动力学机理 (12) 1.7.3 成粒机理与颗粒形态 (12) 1.8影响聚合及产品质量的因素 (13) 1.9工艺流程叙述 (14)

年产一万吨聚苯乙烯聚合工段工艺设计

. 毕业设计 题目:年产1万吨聚苯乙烯聚合车间工艺设计学院: 专业: 姓名: 学号: 指导老师: 完成时间:

设计说明 本次设计主要是针对年产1万吨聚苯乙烯聚合车间工艺的设计。设计的内容主要包括绪论、聚苯乙烯的聚合机理、聚合工艺介绍、物料衡算、反应釜的设计、热量衡算、自动控制等几部分。本设计采用的是热引发本体聚合的生产工艺,在确定工艺流程的基础上对以下几部分进行了设计计算:物料衡算、反应釜的设计、热量衡算等。本次设计年理论产值是一万吨经计算投料每小时需投入苯乙烯1288.8kg,甲苯175.69kg,每小时生成的聚苯乙烯计算后可知,年产量为1.08万吨。符合设计的要求。釜体容积14.33m3,釜体高度 3.18m。共需反应热为24000000KJ。 关键词:热引发本体聚合聚苯乙烯苯乙烯预聚釜聚合釜

Design Description This design is mainly aimed at the annual output of 10000 tons of polymerization polystyrene workshop process design. Design content mainly includes the introduction, polystyrene introduced the polymerization mechanism, polymerization process, material balance, the design of the reaction kettle, heat balance, automatic control and so on several parts. This design USES a thermal bulk polymerization production process, the technological process is determined on the basis of calculation in design of the following sections: the design of the material balance and the reaction kettle, heat balance, etc. The design theory of value is ten thousand tons of calculating charge per hour need for styrene 1288.8 kg, 175.69 kg, toluene per hour generated polystyrene after calculation, the annual output of 10800 tons. In line with the requirements of design. The kettle body volume of 14.33 m3, body height of 3.18 m. The total heat of reaction of 24000000 kJ. . Keywords:Heat cause Bulk polymerization polystyrene styrene The performed kettle Polymerization kettle

聚氯乙烯合成工艺设计

聚氯乙烯的生产工艺流程 作者:许文 单位:08化学工程与工艺 摘要:本文主要介绍年产5万吨的聚氯乙烯(PVC)这种大宗化学品的生产过程和工艺,以及聚氯乙烯(PVC)的生产装置。我们用“乙烯氧氯化法”的“古德里奇法”制取氯乙烯单体,然后就氯乙烯单体的聚合的“悬浮聚合法”和正式生产做出进一步的说明。 关键词:PVC,乙烯氧氯化法,悬浮聚合法,古德里奇法 引言: 1,PVC的特性和设计背景 聚氯乙烯树脂是世界五大著名的树脂之一,全称Polyvinyl chloride polymer,简称PVC。聚氯乙烯本色为微黄色半透明状,有光泽。透明度胜于聚乙烯、聚丙烯,差于聚苯乙烯,随助剂用量不同,分为软、硬聚氯乙烯,软制品柔而韧,手感粘,硬制品的硬度高于 低密度聚乙烯,而低于聚丙烯,在屈折处会 出现白化现象。常见制品:板材、管材、鞋 底、玩具、门窗、电线外皮、文具等。是一 种使用一个氯原子取代聚乙烯中的一个氢原 子的高分子材料。 它柔韧性好,绝缘性高,强度也高,不易溶解等等,广泛的应用于人们的生产生活。PVC为无定形结构的白色粉末,支化度较小。工业生产的PVC分子量一般在5万~12 万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加;无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态;有较好的机械性能,抗张强度60MPa左右,冲击强度 5~10kJ/m2;有优异的介电性能。 2,我国的发展概况 近几年来我国的PVC从无到有发展迅速,但仍然赶不上发展更快的PVC制品加工需求,自给率只能保持在70%左右。需求的旺盛,国内乙烯资源的不足,反倾销终裁后进口量的下降,国际原油和石化产品的价格不断上升使乙烯法生产成本相应升高,也使得电石法成为许多企业的首选工艺。 中国PVC产业主要有三个发展的方面: 一,企业向规模化、大型化和集约化发展。据有关统计资料表明,我国聚氯乙烯生产能力已达到年4000万吨。根据我国石油化工发展规划,到2010年,已经有几套年产20万吨以上的聚氯乙烯装置在我国落户。这些项目如期完成,使新增聚氯乙烯能力约为年200万吨。 二,采用先进生产工艺。引进和采用先进的二氯乙烷法等多种生产工艺,改进聚合釜,以提高聚氯乙烯生产装置的性能;应用计算机自动化控制系统,使生产实现现代化,

毕业设计---20万吨每年聚氯乙烯聚合及干燥包装工艺设计

摘要 本设计为年产20万吨聚氯乙烯聚合和干燥包装工段的工艺设计。首先介绍了聚氯乙烯的性质、主要用途、技术进展以及由氯乙烯单体聚合成聚氯乙烯的四种常见的工业聚合方法,并确定了以悬浮聚合法作为本设计的聚合工艺生产方法。对聚合及干燥包装工段进行了详细的物料衡算(包括聚合釜的物料衡算、汽提塔的物料衡算、离心干燥工段的物料衡算)和主要设备的热量衡算(包括聚合釜的热量衡算、换热器的热量衡算等),也对设备作了选型计算,得出本设计需采用9个703m(I型)不锈钢聚合釜并联操作,9台703m 出料槽,29台WL-630型离心机,最后对聚氯乙烯聚合过程中的安全注意事项及三废处理问题作了简单的说明。同时绘制了带控制点的PVC聚合及干燥包装工段的工艺流程图、聚合工段主要设备平面布置图、聚合工段主要设备立面布置图以及聚合釜装配图。 关键词:聚氯乙烯;悬浮聚合法;干燥包装;生产工艺

Abstract The design for an annual output of 50,000 tons of PVC dry polymerization processes of the preliminary design, the design documents from design specification and design drawings composed of two parts. In the design of brochures, a brief introduction of the PVC production status, trends, performance and the main purpose of the current PVC also introduced the four common industrial polymer production methods. And a comparison, final Determined to suspension polymerization as a polymerization technology production methods. In the design process, in accordance with the requirements of the mission design, a more detailed material balance and energy balance, the equipment was calculated and the selection process, while the production of PVC in the process of attention to safety issues and "Three wastes" governance made note of the entire device to a simple technical. Drawing the corresponding design drawings, design drawings, including process maps, plans of major equipment assembly, equipment layout plans. Key words: polyvinyl chloride ; suspension polymerization; Dryness ; monomer; Productive technology

聚苯乙烯塑料的生产工艺

聚苯乙烯塑料的生产工艺 聚苯乙烯[1](PS)是一种无色透明的热塑性树脂。PS 具有良好的光学性能及电气性能,容易加工成型,着色性能好。由于它具有良好的性能,因此,现在已经成为世界上应用最广的热塑性树脂,是通用塑料的五大品种之一。PS 注射成型是PS 制品的主要加工方法。PS 是由苯乙烯单体加聚反应得到的无定形聚合物。苯乙烯的聚合方很多,主要有本体聚合、悬浮聚合和乳液聚合等。文章以PS GP-525 制造工艺马为例,对成型技术进行了研究。 1 PS 塑料成型特性分析 1.1 工艺特性 (1)熔点不明显:聚苯乙烯为无定形聚合物,熔融温度范围较宽,且热稳定性较好,约在95 ℃左右开始软化,在190 ℃成为熔体,在270 ℃以上开始出现分解。 (2)比热较低:加热流动和冷却固化速度快,熔体粘度适中,且流动性好,塑化效率较高,易于成型;在模具冷却硬化也比较快,故模塑周期短。 (3)受温度和压力影响较大:成型温度和压力的增加,对聚苯乙烯熔体的流动性有明显增长,其中温度比压力的影响更大,在成型过程中,可以通过改变温度和压力,来调节熔体流动性。 (4)吸水性较低:聚苯乙烯的吸水性<0.05 %,成型中所允许的水分含量通常为0.1 %,因此一般无需进行预干燥处理。 (5)收缩率较低:聚苯乙烯的收缩率一般在0.4 %左右,制品成型稳定性好。 1.2 注塑机工作原理及结构[2] (1)注塑机工作原理:注塑机的工作原理与打针用的注射器相似,它是借助螺杆(或柱塞)的推力,将已塑化好的熔融状态(即粘流态)的塑料注射入闭合好的模腔内,经固化定型后取得制品的工艺过程。注射成型是一个循环的过程,每一周期主要包括:定量加料—熔融塑化—施压注射—充模冷却—启模取件。取出件后又再闭模,然后再进行下一个循环。 (2)注塑机结构,如图1 所示。 图1 注塑机结构图 Fig.1 Structure of injection machine 1.3 制品与模具的设计 (1)制品的壁厚:制品的壁厚应根据树脂情况进行选择。为减少制品的内应力,有利于物料的均匀收缩,在考虑制品的壁厚时,应注意壁厚的均匀性,要求相差不要太大,并避免缺口、尖角的存在,转角、厚薄连接处等部位采取圆弧进行过渡。

相关文档
相关文档 最新文档