文档库 最新最全的文档下载
当前位置:文档库 › 脱硫塔的设计必须满足以下几个准则[ 2]

脱硫塔的设计必须满足以下几个准则[ 2]

脱硫塔的设计必须满足以下几个准则[ 2]

宝钢自备电厂1 × 350 MW机组脱

硫装置,其喷淋塔见图1。该装置采用空塔式喷淋

塔,吸收塔规格为 13. 2 m × 32. 4 m,吸收塔截面积136. 8 m2 ,BMCR 点烟气排放量为160 × 104 m3 / h,烟气含尘100 ~ 250 mg /m3 ,设计有4 层喷淋层,对应4 层喷淋层,每台浆液喷淋量6 900 m3 / h,各层喷淋层

错开布置,保证吸收塔的喷淋覆盖率超过300%。吸

收塔进口烟气温度约100 ℃,出口烟气温度约45 ℃。

喷淋层采用螺旋型喷嘴将浆液充分雾化,喷嘴进口压

力0. 03 MPa,雾化液滴直径1 320 ~ 2 950 μm,喷嘴出口流速为8 m / s,液滴在吸收塔内的停留时间为1 ~

10 s,小液滴在一定条件下呈悬浮状态。在吸收塔内

液滴和进口烟气逆流接触,脱除其中的SO2、粉尘等

有害杂质的烟气,经除雾器分离液滴后排放。

图1 喷淋吸收塔简图

3 喷淋塔除尘效果分析

脱硫喷淋塔的主要功能是脱硫和除尘。脱硫的

最佳液滴直径为1 500 ~ 2 500 μm,在液滴直径一定

的情况下,除尘效率的主要影响因素包括: 粉尘特

性、烟气流速、喷淋密度等。

3. 1 粉尘特性

3. 1. 1 粉尘的浸润性

粉尘的浸润性是选择除尘方式的依据之一。粉

尘的

脱硫设计计算

4.2废气处理工艺选择 综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高(>95%),吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。 4.2.2 工艺说明 脱硫工艺原理: 干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na2SO3溶液,Na2SO3溶液与石灰反应,生成CaSO3和NaOH,CaSO3经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。 工艺过程分为三个部分: 1石灰熟化工艺: 生石灰干粉由罐车直接运送到厂内,送入粉仓。在粉仓下部经给料机直接供熟化池。为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。 配制浆液和溶液量通过浓度计检测。 2吸收、再生工艺: 脱硫塔内循环池中的NaOH溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSO3浆液。将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH值后加入碱液,脱硫工艺要求的PH值为9~11。 3废液处理系统:

最新烟气脱硫 设计工艺实例

烟气脱硫工艺设计说明书

目录 1 概述 1.1 工程概况 1.2 脱硫岛的设计范围 2 设计基础数据及主要设计原则 2.1 设计基础数据 2.2 吸收剂分析资料 2.3 脱硫用水资料 2.4 主要工艺设计原则 2.5 脱硫工艺部分设计接口 3 吸收剂供应和脱硫副产物处置 3.1 吸收剂来源 3.2 脱硫副产物 4 工艺系统及主要设备 4.1 工艺系统拟定 4.2 吸收剂系统 4.3 烟气系统 4.4 SO2吸收系统 4.5 排放系统 4.6 石膏脱水系统 4.7 工艺水系统

4.8 压缩空气系统 4.9 物料平衡计算(二台锅炉BMCR工况时烟气量) 4.10 主要设备和设施选择 5 起吊与检修 6 保温油漆及防腐 6.1 需要保温、油漆的设备、管道及设计原则 6.2 防腐 7 脱硫装置的布置 8 劳动安全及职业卫生 8.1 脱硫工艺过程主要危险因素分析 8.2 防尘、防毒、防化学伤害 8.3 防机械伤害及高处坠落 8.4 防噪声、防震动 8.5 检修安全措施 8.6 场地安全措施 9 烟气脱硫工艺系统运行方式 9.1 FGD启动 9.2 FGD系统整组正常停运 9.3 FGD紧急停运 9.4 FGD装置负荷调整 9.5 FGD停运措施

1 概述 1.1 工程概况 锅炉:华西能源工业股份有限公司生产的超高压自然循环汽包炉,单炉膛,一次中间再热,固态排渣,受热面采用全悬吊方式,炉架采用全钢结构、双排布置。 汽轮机:东方电气集团东方汽轮机有限公司公司生产的超高压参数、一次中间再热、单轴、双缸双排汽、6级回热、直接空冷抽汽凝汽式汽轮机。 发电机:山东济南发电设备厂生产的空冷却、静止可控硅励磁发电机。 本期工程需同步建设烟气脱硫装置,因有大量石灰石资源,且生产电石亦需要大量石灰石,故暂定采用石灰石—石膏湿法烟气脱硫装置(以下简称FGD),不设GGH,脱硫装置效率不低于95%,设备可用率不低于95%,按照《GB13223-2003 火电厂大气污染物排放标准》执行。 本章所述采用的环境保护标准、脱硫方式、脱硫效率等环保措施均以批复的环境影响报告书为准。 1.2 脱硫岛的设计范围 本工程脱硫岛设计范围包括:烟气脱硫工程需要的工艺、电气、控制、供水、消防、建筑、结构、暖通等,本卷册说明中包括的内容为工艺、起吊检修、保温防腐方面内容,其它见相关专业说明书中内容。脱

新型脱硫塔高效除雾器的应用

新型脱硫塔高效除雾器的应用 北极星节能环保网来源:德创环保2016/4/1 12:03:01 我要投稿 所属频道: 大气治理关键词:脱硫湿法脱硫除雾器北极星节能环保网讯:1. 前言 国内的烟气脱硫目前大都采用的是湿法工艺,其核心装置就是吸收塔,由于吸收塔内的反应大部分都采用喷淋管喷射洗涤,处理过的烟气中含有大量的浆液滴,因此烟气在经过洗涤后要通过除雾器,目的是将烟气中夹带的浆液滴通过撞击除雾器叶片分离出来,顺着除雾器叶片通道流向塔内,以免随烟气排除塔外污染环境。 除雾器是湿法脱硫中必不可少的设备。目前广泛使用的除雾器(包括屋脊式、平板式和烟道式),但是从现运行的脱硫系统中,可以发现除雾器主要存在以下2点问题。 (1)除雾效率不高,致使烟囱下“石膏雨” 石膏雨产生的原因是除雾器出口烟气携带的液滴超标,现大多数脱硫系统都不设GGH 的脱硫系统,由于排烟温度较低,烟气扩散条件不利,烟气携带的液滴会在烟囱出口形成“石膏雨”(即脱硫塔浆液池内的大量石膏浆液随上升烟气从烟囱口飘出,严重影响周围环境)。 目前两级平板或屋脊除雾器只能保证出口雾滴浓度不大于75mg/Nm3已经远远不能满 足主流环保公司和电厂出口雾滴浓度不大于20mg/Nm3的目标,改进势在必行。 (2)除雾器板片结垢堵塞,冲冼失常,造成除雾器坍塌 当除雾器冲洗系统受吸收塔液位影响不能按正常程序运行时,除雾器板片上结垢往往得不到及时冲洗,恶性循环愈演愈烈,塔内布置的除雾器板片上的亚硫酸钙与硫酸钙堆积物越来越多,最终使得除雾器不堪重负而坍塌。 我公司最新研发的高效除雾器叶片在福建华电可门2号烟气脱硫EPC项目上的应用,显示出在脱水除雾方面的高效性。该技术为脱硫塔的脱水除雾带来了新的技术理论和应用思路,有利于跟上日益严苛的环保要求。 2 . 脱硫项目概况

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

大气污染控制工程课程设计——脱硫塔

《大气污染控制工程》 课程设计 学院:生态与环境学院 专业班级:环境工程 年级: 学号: 姓名: 指导教师: 完成日期:

目录 摘要 (1) 1. 背景介绍 (2) 1.1. 硫氧化物污染 (2) 1.2. 燃煤脱硫技术 (3) 1.2.1. 燃烧前脱硫 (3) 1.2.2. 燃烧中脱硫 (3) 1.2.3. 燃烧后脱硫 (3) 1.3. 湿法脱硫技术 (3) 1.3.1. 石灰石/石膏湿法脱硫 (3) 1.3.2. 氧化镁法脱硫 (4) 1.3.3. 双碱法脱硫 (4) 1.3.4. 氨法脱硫 (4) 1.3.5. 海水脱硫 (4) 2. 石灰石/石膏湿法脱硫技术 (5) 2.1. 主要特点 (5) 2.2. 反应原理 (5) 2.2.1. 吸收剂的反应 (5) 2.2.2. 吸收反应 (5) 2.2.3. 氧化反应 (6) 2.2.4. 其他污染物 (6) 2.3. 工艺流程 (7) 3. 设计任务与目的 (8) 3.1. 任务 (8) 3.2. 目的 (8) 3.3. 设计依据 (8) 4. 脱硫系统的设计 (9) 4.1. 脱硫系统设计的初始条件 (9) 4.2. 初始条件参数的确定 (9) 4.2.1. 处理风量的确定 (9) 4.2.2. 燃料的含S率及消耗量 (10) 4.2.3. 进气温度的确定 (10) 4.2.4. SO2初始浓度的确定 (10) 4.2.5. SO2排放浓度的确定 (10) 5. 脱硫系统的设计计算 (11) 5.1. 参数定义 (11) 5.2. 脱硫系统的组成及主要设备选型 (12) 5.2.1. SO2吸收系统 (12) 5.2.2. 烟气系统 (18) 5.2.3. 石灰石浆液制备系统 (20) 5.2.4. 石膏脱水系统 (21) 6. 参考文献 (25)

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石 - 石膏湿法脱硫系统 设计 (内部资料) 编制: x xxxx 环境保护有限公司 2014年 8 月 1.石灰石 - 石膏法主要特点 ( 1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达 95%以上。(2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于 3%的高硫燃料,还是含 硫量小于 1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到 90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石 - 石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触 ,循环浆液吸收大部分 SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→ H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+(结晶) H+ +HCO3-→ H2CO3(中和) H2CO3→ CO 2+H2O 总反应式: SO2+ CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分 HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→ CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) 4)其他污染物

工业锅炉烟气脱硫除尘系统一体化设计(正式版)

文件编号:TP-AR-L9456 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 工业锅炉烟气脱硫除尘系统一体化设计(正式版)

工业锅炉烟气脱硫除尘系统一体化 设计(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 随着我国城市化进度的加快,人们对城市供暖质 量要求的不断提高,工业锅炉烟气对环境的污染越来 越严重,因此对工业锅炉烟气脱硫除尘装置的研究探 讨,具有非常现实的意义。本文首先介绍了我国锅炉 装置的现状,其次介绍了锅炉烟气脱硫装置的一体化 设计,最后简要的介绍了装置的运用。 随着我国科技发展和人民生活水平的不断提高, 人们的生活质量也随之提高。比如,在选择食品时, 其标准是天然、绿色和健康,在选择居住时,其标准 是优美环境和健康生态;在日常生活中,人们越来越

关注生活质量、生活环境和健康圣体情况。在人类接触的自然资源中,空气是最常见,也是最紧密的资源,空气的质量与人们的生活质量息息相关,而且直接影响人们的生活质量。随着工业的快速发展,工业锅炉烟气污染越来越严重,除去烟气中的硫、尘等严重危害空气中的有害物质,因此,必须要提高工业锅炉烟气脱硫除尘系统,从而有效的提高空气中的质量。 我国锅炉装置的现状 随着我国社会的不断进步,从而推动了我国各个方面的快速革新,比如,平房被楼房代替,小型作坊也被大型工厂替代。由于我国处于北半球,因此,大部分地区,在冬季需要采用锅炉来供暖,经济发展较快的地区采用的大物业集中供热,在很多大型的工厂中,锅炉取暖也运用比较广泛。随着锅炉供暖的广泛

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1、石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别就是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论就是含硫量大于3%的高硫燃料,还就是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,就是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2、反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中与) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其她污染物

烟气脱硫技术方案

烟气脱硫工程设计方案 二〇〇九年七月

目录 第一章概述 (1) 1.1 设计依据 (1) 1.2 设计参数 (1) 1.3 设计指标 (1) 1.4 设计原则 (1) 1.5 设计范围 (2) 1.6 技术标准及规范 (2) 第二章脱硫工艺概述 (4) 2.1 脱硫技术现状 (4) 2.2 工艺选择 (5) 2.3 本技术工艺的主要优点 (9) 2.4 物料消耗 (10) 第三章脱硫工程内容 (13) 3.1 脱硫剂制备系统 (12) 3.2 烟气系统 (12) 3.3 SO 吸收系统 (13) 2 3.4 脱硫液循环和脱硫渣处理系统 (15) 3.5 消防及给水部分 (17) 3.6 浆液管道布置及配管 (17) 3.7 电气系统 (17) 3.8 工程主要设备投资估算及构筑物 (18) 第四章项目实施及进度安排 (19) 4.1 项目实施条件 (19) 4.2 项目协作 (19) 4.3 项目实施进度安排 (19) 第五章效益评估和投资收益 (20)

5.1 运行费用估算统 (21) 5.2 经济效益评估 (21) 5.3 环境效益及社会效益 (21) 第六章结论 (22) 6.1 主要技术经济指标总汇 (22) 6.2 结论 (22) 第七章售后服务 (23) 附图1 脱硫系统工艺流程图24

第一章概述 1.1设计依据 根据厂方提供的有关技术资料及要求为参考依据,并严格按照所有相关的设计规范与标准,编制本方案: §《锅炉大气污染物排放标准》GB13271-2001; §厂方提供的招标技术文件; §国家相关标准与规范。 1.2设计参数 本工程的设计参数,主要依据招标文件中的具体参数,其具体参数见表1-1。 表1-1 烟气参数 1.3设计指标 设计指标严格按照国家统一标准治理标准和业主的招标文件的要求,设计参数下表1-2。 表1-2 设计指标 1.4设计原则 §认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准。 §选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

石灰石石膏湿法脱硫系统的设计计算

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。(4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分

SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其它污染物 烟气中的其它污染物如SO3、Cl-、F-和尘都被循环浆液吸收和捕集。SO3、HCl和HF与悬浮液中的石灰石,按以下反应式发生反应: SO2+H2O→2H++SO32- Ca CO3 +2HCl<==>CaCl2 + H2O+ CO2 Ca CO3 +2HF <==>CaF2 +H2O+ CO2 3.工艺流程

烟气脱硫技术方案

技术方案

2.工艺描述 。烟 24小时计)的吸收剂耗量设计。石灰石浆液制备罐设计满足工艺要求,配置合理。全套吸收剂供应系统满足FGD所有可能的负荷范围。 (3)设备 吸收剂浆液制备系统全套包括,但不限于此:

卸料站:采用浓相仓泵气力输送把石灰石送入料仓。 石灰石粉仓:石灰石粉仓根据确认的标准进行设计,出料口设计有防堵的措施;顶部有密封的人孔门,该门设计成能用铰链和把手迅速打开,并且顶部有紧急排气阀门; :其 能安全连续运行。 在烟气脱硫装置的进、出口烟道上设置密封挡板门用于锅炉运行期间脱硫装置的隔断和维护,旁路挡板门具有快速开启的功能,全开到全关的开启时间≤25s。系统设计合理布置烟道和挡板门,考虑锅炉低负荷运行的工况,并确保净烟气不倒灌。 压力表、温度计等用于运行和观察的仪表,安装在烟道上。在烟气系统中,设有人

孔和卸灰门。所有的烟气挡板门易于操作,在最大压差的作用下具有100%的严密性。我方提供所有烟道、挡板、FGD风机和膨胀节等的保温和保护层的设计。 (1)烟道及其附件 用碳 筋统一间隔排列。加强筋使用统一的规格尺寸或尽量减少加强筋的规格尺寸,以便使敷设在加强筋上的保温层易于安装,并且增加外层美观,加强筋的布置要防止积水。 烟气系统的设计保证灰尘在烟道的沉积不会对运行产生影响,在烟道必要的地方(低位)设置清除粉尘的装置。另外,对于烟道中粉尘的聚集,考虑附加的积灰荷重。 所有烟道在适当位置配有足够数量和大小的人孔门和清灰孔,以便于烟道(包括膨

胀节和挡板门)的维修和检查以及清除积灰。另外,人孔门与烟道壁分开保温,以便于开启。 烟道的设计尽量减小烟道系统的压降,其布置、形状和内部件(如导流板和转弯处 每个挡板的操作灵活方便和可靠。驱动挡板的执行机构可进行就地配电箱(控制箱)操作和脱硫自控系统远方操作,挡板位置和开、关状态反馈进入脱硫自控系统系统。 执行器配备两端的位置限位开关,两个方向的转动开关,事故手轮和维修用的机械联锁。 所有挡板/执行器的全开全关位配有四开四闭行程开关,接点容量至少为

脱硫塔烟气系统

本体.吸收塔为圆柱形,尺寸为Φ15.3×36.955m,结构如图8-1 所示。 由锅炉引风机来的烟气,经增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从塔顶侧向离开吸收塔。塔的下部为浆液池,设四个侧进式搅拌器。氧化空气由四根矛式喷射管送至浆池的下部,每根矛状管的出口都非常靠近搅拌器。烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区的下部设置一合金托盘,托盘上方设三个喷淋层,喷淋层上方为除雾器,共二级。塔身共设六层钢平台,每个喷淋层、托盘及每级除雾器各设一个钢平台,钢平台附近及靠近地面处共设六个人孔门。 图8-1 吸收塔本体1-烟气出口2-除雾器3-喷淋层4-喷淋区5-冷却区6-浆液循环泵7-氧化空气管8-搅拌器9-浆液池10-烟7进口11-喷淋管12-除雾器清洗喷嘴13-碳化硅空心锥喷嘴 技术特点该FGD 装置吸收塔采用美国B&W公司开发并具有多年成功运行经验的带托盘的就地强制氧化喷淋塔,该塔具有以下特点: 1)吸收塔包括一个托盘,三层喷淋装置,每层喷淋装置上布置有549 +122 个空心锥喷嘴,流量为51. 8m3/h 的喷嘴549 个,喷嘴流量为59.62m3/h 的122 个,进口压头为103.4KPa,喷淋层上部布置有两级除雾器。 2)液/气比较低,从而节省循环浆液泵的电耗。 3)吸收塔内部表面及托盘无结垢、堵塞问题。 4)优化了PH 值、液/气比、钙/硫比、氧化空气量、浆液浓度、烟气流速等性能参数,从而保证FGD 系统连续、稳定、经济地运行。 5)氧化和结晶主要发生在吸收塔浆池中。吸收塔浆液池的尺寸保证能提供足够的浆液停留时间完成亚硫酸钙的氧化和石膏(CaSO4.2H2O)的结晶。吸收塔浆池上设置4 台侧进式搅拌器使浆液罐中的固体颗粒保持悬浮状态并强化亚硫酸钙的氧化。 6)吸收塔浆池中的混合浆液由浆液循环泵通过喷淋管组送到喷嘴, 形成非常细小的液滴喷入塔内。 7)在吸收塔浆池的溢流管道上设置了吸收塔溢流密封箱,它可以容纳吸收塔在压力密封时发生的溢流。密封箱的液位由周期性地补充工艺水来维

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h 引风机量1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HS O3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4 Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

脱硫塔技术方案

第一章项目条件1.1 工程概述 )排放超本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO 2 标的问题,通过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 窑炉排出的烟气的基础数据

4GB12348-2008《工厂企业界噪声标准》5GB13268∽3270-97《大气中粉尘浓度测定》设计标准 序号编号名称1GB50034-2013《工业企业照明设计标准》

2GB50037-96《建筑地面设计规范》 3GB50046-2008《工业建筑防蚀设计规范》 4HG20679-1990《化工设备、管道外防腐设计规定》 5GB50052-2009《供配电系统设计规范》 6GB50054-2011《低压配电设计规范》 17GB7231-2003《工业管道的基本识别色和识别符号的安全知识》18GB50316-2008《工业金属管道设计规范》 19GBZ1-2010《工业企业设计卫生标准》 20HG/T20646-1999《化工装置管道材料设计规定》

21GB4053.4-1983《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1GB/T13927-2008《通用阀门压力试验》 2GB/T3092-2008《低压流体输送焊接钢管》 施工及验收标准 序号编号名称 1GB50205-2001《钢结构工程施工质量验收规范》2GB50212-2002《建筑防腐蚀工程施工及验收规范》

脱硫计算公式比较全

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量V ol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃) =0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃ 氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)

相关文档