文档库 最新最全的文档下载
当前位置:文档库 › 计算光学显微成像理论与关键技术研究

计算光学显微成像理论与关键技术研究

计算光学显微成像理论与关键技术研究

随着计算光学成像理论和技术的快速发展,其与传统显微镜相结合出现的计算光学显微成像技术为显微镜带来了新的发展契机。计算光学显微成像是借助计算光学成像技术实现了以简单的光学系统获取高性能的影像,赋予了传统显微镜无法具有的新颖成像功能。光场显微镜是一种具有大视场、快速三维显微信息获取能力的计算光学显微镜,它能利用二维图像传感器同时记录成像光线的空间位置和角度的四维光场信息,允许对获取的光场图像经不同的后期算法处理实现多视角成像、数字重聚焦成像等新功能。本论文在综述国内外研究文献的基础上,深入系统的研究了计算光学显微成像理论和关键技术,旨在解决光场显微镜相关理论与实际应用方面的若干关键问题,具有重要的理论意义和应用价值。

论文的主要工作和取得的创新性成果如下:1、针对光场显微镜的相位成像问题,提出了将基于光强传输方程的相位成像与光场显微镜相结合的快速相位成像方法。利用光场显微镜的快速三维信息获取能力,通过光场的数字重聚焦算法实现了单帧采集两幅不同成像面上的光强图像。最终在不移动实验系统相机或样品的情况下,实现了显微样品的单帧相位成像。2、针对双平面的光场相位成像存在的严重的低频云雾噪声问题,提出了基于光场数字重聚焦的最优频率选择法,并将该方法与指数函数距离选择策略相结合,实现了多幅不同成像面位置的优化选取,从而实现以少量的一组离焦图像重建高信噪比的相位成像。

通过光场的数字重聚焦算法实现了单帧采集多幅不同成像面上的光强图像,实现了高信噪比的单帧相位成像。该方法有效解决了传统方法中低频云雾噪声与非线性误差难以同时兼顾的问题。3、针对光场显微镜空间分辨率的限制问题,提出了低噪声光场矩显微镜。该方法采用多幅离焦光强度图像,基于最小二乘拟合法估计焦平面位置处的强度微分,解决了传统光场矩成像中,因只用强度差分估计强度微分而引起的非线性误差和噪声误差的权衡问题,提高了传统光场矩显微镜计算重建四维光场的抗噪性与准确性;利用算法计算重建的四维光场,因无需使用微透镜阵列,因此能获取全分辨率的光场。

4、创新性地提出了将光场显微镜技术应用于内窥镜。搭建了光场内窥镜系统,该系统无需复杂的光学系统设计,只需将一片微透镜阵列加入到原来的内窥镜光路中,即可使普通的内窥镜具有获取三维信息的能力,解决了实现三维内窥

镜时成本昂贵、光学系统设计复杂等难题。实验验证了光场内窥镜系统可有效实现数字重聚焦成像。分析了光场内窥镜光学参数与系统的空间分辨率、角度分辨率、景深等物理量之间的关系,给出了其相互之间的物理关系式。

显微成像系统资料

品名型号数量供货单价备注 奥林巴斯生物成像系统显微镜CX31 1套30000元见配置清单奥林巴斯生物显微镜CX23 1套25000元见配置清单备注:以上为人民币含税报价单,含运费和包装培训费,壹年保修期。 生物显微镜CX31技术规格: 用途:可观察普通染色的切片观察。 1.工作条件 1.1 适于在气温为摄氏-40℃~+50℃的环境条件下运输和贮存,在电源220V ( 10%)/50Hz、气温摄氏-5℃~40℃和相对湿度85%的环境条件下运行。 1.2 配置符合中国有关标准要求的插头,或提供适当的转换插座。 2.主要技术指标 2.1 生物显微镜 *2.1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。 2.1.2 放大倍率:40-1000倍 *2.1.3 载物台:钢丝传动,无齿条结构,尺寸为188mm × 134mm,活动范围为 X轴向76mm × Y轴向50mm,双片标本夹 2.1.4 调焦机构:载物台垂直运动由滚柱(齿条—小齿轮)机构导向,采用粗 微同轴旋钮,粗调行程每一圈为36.8mm,总行程量为25mm,微调行程为每圈 0.2mm,具备粗调限位挡块和张力调整环 2.1.5 聚光镜:带有孔径光阑的阿贝聚光镜,N.A. 1.25,带有蓝色滤色片 *2.1.6 照明系统:内置6V30W卤素灯,内置透射光柯勒照明 *2.1.7 三目观察筒:视场数≥20,瞳距调节范围为48-75mm,铰链式 2.1.8 目镜:10X,带眼罩,视场数≥20带目镜测微尺 *2.1.9 物镜:平场消色差物镜4X(N.A.≥0.1)、10X(N.A.≥0.25)、40X(N.A.≥0.65)、 100X(N.A.≥1.25)

光学显微镜的发展历史

光学显微镜的发展历史、现状与趋势 杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '1f

'2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 '2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1'120202β?=≤f y

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

超微型显微成像系统(中英文版)

一、超微型显微成像系统产品介绍如下所示: 1.功能和用途 1.1功能 1.1.1系统组件包括显微镜镜体、固定板、GRIN透镜、CMOS、图像采集卡及采集软件等。 1.1.2在单细胞分辨水平,记录一群神经元的钙信号。 1.1.3适用于自由活动动物的在体实验。 1.1.4通过植入GRIN透镜,可以实现深脑成像。 1.1.5系统体积小、重量轻,不影响小鼠自由运动和行为实验。 2.1用途: 2.1.1用于行为动物在体钙成像的超微型显微成像系统。 2.1.2检测新型可遗传编码的乙酰胆碱和多巴胺等探针的荧光变化,即可实时监测乙酰胆碱、多巴胺等浓度的动态变化情况。 二、产品彩图:

Miniature Fluorescent Microscope 1.1 function 1.1.1 System Components include Miniscope body、Base Plate、GRIN Lens、CMOS、DAQ card and software; 1.1.2 Record the calcium signal of a group of neurons at the single cell resolution level; 1.1.3 experiments for freely moving animals; 1.1.4 Deep brain imaging can be achieved by implanting a GRIN lens; 1.1.5 The system is small in size and light in weight, and does not affect the free movement and behavioral experiments of mice. 2.1 Uses: 2.1.1 Ultra-microscopic microscopic imaging system for in vivo calcium imaging of behavioral animals. 2.1.2 To detect the changes in the fluorescence of new genetically-encoded probes such as acetylcholine and dopamine, the dynamic changes of concentrations of acetylcholine and dopamine can be monitored in real time.

显微镜成像原理

光学显微镜的原理 发布时间:10-05-15 来源:仪表展览网点击量:2284 字段选择:大中小 将微小物体或物体的微细部分高倍放大,以便观察的仪器或设备。它广泛应用于工农业生产及科学研究。生物学和医学工作者在业务中也经常使用显微镜。大致分为光学显微镜和电子显微镜。 光学显微镜即以可见光为光源的显微镜。普通的光学显微镜在结构上可分为光学系统和机械装置两个部分。光学系统主要包括目镜、物镜、聚光器、光阑及光源等部分。机械装置主要包括镜筒、镜柱、载物台、镜座、粗细调节螺旋等部分(图1)。其基本光学原理如图2,图中左边小的凸透镜代表短焦距的一组透镜,称物镜。右边大的凸透镜代表长焦距的一组透镜,称目镜。被观察的物体(AB) 放在物镜焦点(f1)稍外的地方。物体的光线通过物镜后在目镜焦点(f2)稍内方形成一个倒立的放大实像(B'A')。观察者的眼睛通过目镜将该实像(B'A')进一步放大为一个倒立的虚像(B″A″)。 目镜位于显微镜筒的上方,一般由两个凸透镜构成。它除了进一步扩大物镜所形成的实像之外,也限制了眼睛所观察的视野。按放大率分,常用目镜有5倍、10倍和15倍三种。 物镜一般位于显微镜筒的下方,接近所观察的物体。由8~10片透镜组成。其作用一是放大(给物体造成一个放大的实像),二是保证像的质量,三是提高分 辨率。常用物镜可按放大率分为低倍 (4×)、中倍(10×或20×)、高倍(40×) 和油浸物镜(100×)。多个物镜共同镶在换镜转盘上,可以按需要转动转盘选择不同倍数的物镜。 显微镜的放大倍数为目镜倍数乘物镜倍数,如目镜为10倍,物镜为40倍,则放大倍数为40×10倍(放大400倍)。优良的显微镜可放大2000倍,可分辨相距1×10-5cm的两点。 当白光通过凸透镜时,波长较短的光(蓝紫色),其折射度大于长波长的光(红橙色),因此,成像时在像周出现各色光谱围绕,并且有一圈蓝色或红色的辉光,这种颜色上的缺陷称为色差。由于光线进入(和离开)透镜镜面各部分的角度不同,从透镜四周透过的光线与从透镜中心透过的光线相比,其折射角度较大。因此,成像时在像周出现模糊而歪曲的影像。这种成像面弯曲的缺陷称为球面差。一系

显微镜成像系统技术参数

显微镜成像系统技术参数 总体要求:配置三目显微镜、CCD、图文采集系统、电脑等。 一、显微镜技术参数 1、正置显微镜 2、用途:可观察普通染色的切片,适合染色切片观察等广泛生命科学领域的研究。 3、技术要求 3.1、光学系统:IC2S无限远色差反差双重校正光学系统,45mm国际标准物镜齐焦距离。 3.2、调焦:谐波齿轮精细同轴粗微调焦机构,内置免调节防下滑机构,不使用易损坏的外调节松紧调节环,调焦行程25mm,可设置调焦上限。 3.3、明场照明装置: 3.3.1、内置透射光科勒照明器,12V 50W卤素灯; 3.3.2、带杯罩式反射光收集器; 3.3.3、集成式双侧单手亮度调整转盘,可在调焦时方便同时调整光源亮度;3.3.4、集成式减光片转轮和0.25/0.06/0.015减光片; 3.3.5、带白平衡滤色片。 3.4、载物台:高抗磨损性圆角、无槽金属阳极化处理载物台,带控制手柄。3.5、观察镜筒: 3.5.1、超宽视野三目镜筒,视场数≥23mm,倾角30度。 *3.5.2、目镜筒360度自由旋转、上下自由翻转,实现40mm观察高度调节 3.5.3、瞳距48-75mm可调 3.6、目镜 3.6.1、10倍超宽视野目镜,高眼点设计,视场数≥23mm 3.6.2、两个目镜均具有屈光度校正功能 3.6.3、物镜:针对正置显微镜应用优化的高分辨率、高透过率物镜 平场消色差物镜5×,数值孔径:NA≥0.12; 平场消色差物镜10×,数值孔径:NA≥0.25; 平场消色差物镜20×,数值孔径:NA≥0.45; 平场消色差物镜40×,数值孔径:NA≥0.65; 平场消色差物镜100×,数值孔径:NA≥1.25 3.6.4、物镜转换器:6位物镜转盘,一体化设计,增强光路稳定;国际标准的M27物镜接口,具有齐焦功能。 *3.6.7、聚光镜:非摆动式高分辨率多功能聚光镜:NA≥0.9/1.25。在5x物镜观察下,无需摆动操作;带科勒照明调整后锁定装置。

光学显微镜的工作原理

光学显微镜的工作原理 显微镜就是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们瞧到了过去瞧不到的许多微小生物与构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏就是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜与聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片与载玻片等。 (一)、物镜 物镜就是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜与浸液物镜;其中浸液物镜又可分为水浸物镜与油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)与复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径与工作距离。 ①、放大倍数就是指眼睛瞧到像的大小与对应标本大小的比值。它指的就是长度的比值而不就是面积的比值。例:放大倍数为100×,指的就是长度就是1μm的标本,放大后像的长度就是100μm,要就是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜与目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,就是物镜与聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0、05-0、95,油浸物镜(香柏油)的数值孔径为1、25。 ③、工作距离就是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物

光学显微镜的发展历史

杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 ' 1 f

'2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1 '120202β?=≤f y 显微镜的分辨率和有效放大率 光学仪器分辨率 瑞利判据:两个相邻的“点”光源所成的像是两个衍射斑,若两个等光强的非相干点像之间的间隔等于艾里圆的半径,即一个像斑的中心恰好落在另一个像斑的第一暗环处,则这两个点就是可分辨的点。当物面在无穷远时,以两点对光学系统的张角可表示两分辨点的距离,其值为:

光学显微镜成像原理

物体介于物镜的焦距和二倍焦距之间,成倒立放大的实相,据凸透镜成像规律,知实相在异侧二倍焦距之外。实相位于目镜焦点或者焦点之内,被再次放大,形成放大的虚像。而人的眼睛是可以看到虚像的(这个原理自然清楚)。要搞清显微镜的使用原理,就得对物理中的凸透镜成像有所理解。 { 只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1'。为易于观测,一般将该量加大到2',并取此为平均目镜分辨率。物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε 距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率ε=2'的眼睛,能清楚地区分大小为0.15mm的物体细节。 在观测视角小于1'的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。 (一)放大镜的成像原理 表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。 放大镜的放大率 Γ=250/f' 式中250--明视距离,单位为mm f'--放大镜焦距,单位为mm 该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 (二)显微镜的成像原理 显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。只是显微镜比放大镜可以具有更高的放大率而已。 图2是物体被显微镜成像的原理图。图中为方便计,把物镜L1和目镜L2均以单块透镜表示。物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。所以,它经物镜以后,必然形成一个倒立的放大的实像A'B'。A'B'位于目镜的物方焦点F2上,或者在很靠近F2的位置上。再经目镜放大为虚像A''B''后供眼睛观察。虚像A''B''的位置取决于F2和A'B'之间的距离,可以在无限远处(当A'B'位于F2上时),也可以在观察者的明视距离处(当A'B'在图中焦点F2之右边时)。目镜的作用与放大镜一样。所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像。 (三)显微镜的重要光学技术参数 在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。

正置显微成像系统

正置显微成像系统 1.主机 (1)光学系统:无限远校正光学系统,保证光通过目镜到物镜整个光路中的所有棱镜及镜片时的绝对平行; (2)具有明场具有顶部摄像出口; (3)五位物镜转换器; (4)放大倍数:40X-400X; (5)透射光照明:卤素灯光源; (6)调焦:带有同轴粗、微调焦装置;调焦旋钮高度可调节、操作舒适; (7)宽视野三目镜筒,倾角30度 (8)载物台:低位置同轴驱动旋钮的高抗磨损性陶瓷覆盖层载物台; 2. 光学部件 (1)万能聚光镜:带有孔径光阑的聚光镜 (2)物镜:4X或5X(NA=0.12)工作距离≥12mm 10X(NA=0.25)工作距离≥6mm 40X(NA=0.65)工作距离≥0.36mm 100X(NA=1.25)工作距离≥0.17mm (3)目镜:10X宽视野目镜 3. 图像捕捉及分析系统 摄录系统:与显微镜同品牌高分辨率显微成像系统 有效像素≥1000万像素

像素面积:3.4u x 3.4u 彩色深度:36位RGB色彩深度 4. 软件:图像分析系统基本平台: (1)用户界面,工作流程导向用户界面,操作容易和符合人工学要求。优化的数据处理为快速采集图像和大量数据集显示,直观的设定实验条件给快速设置和采集单色通道图像,多次采集后做图像叠加。(2)采图,高速图象采集。完全控制照相机性能如曝光,增益,binning,黑的,白的和伽马值,局部图象采集。图象显示和管理,大图象视窗在采集中或后复览显示单通道,多通道图像。 (3)图象滑动杆作快速地在大量数据集中滚动,实验树结构管理数据如储存、重新命名、拷贝、删除、输出为tif,avi,jpeg.接触实验条件来输出为XML或使用在另外的实验中。

显微红外光学成像系统的设计_郭世苗

显微红外光学成像系统的设计 郭世苗,魏 臻,吴建东 (天津理工大学 电子信息工程学院,天津 300384) 引言 电子设备一旦出现故障,只有进行有效的元件级维修,才能使其正常运行。随着电子技术的迅速发展,被测试系统规模的不断扩大,大规模和超大规模集成电路的广泛使用,电路板上的元器件越来越密集;并且由于电路复杂,使电路板上集成芯片(IC)级故障的实时检测越来越困难。红外热像作为新兴的非接触式测试技术,用于电路板热故障实时检测时,不会因检测不慎而使元件受损,是一种有效的检测手段。同时,对电路板的可测性设计和测试连接设备均无需提出额外要求,能在一次测试中提取电路板上所有元器件的热像,并可进行多重故障诊断[1]。 红外显微系统是利用被测物体发出的红外射线对微小物体,如大规模集成电路板进行热成像,通过对所提取热像的分析,达到检测被观察物体工作状况的目的。红外显微镜作为一种先进的测试仪器,已被广泛的应用于各种领域。目前,红外显微镜仅在部分发达国家生产,且价格昂贵。国内的红外显微检测系统起步较晚,尚无生产红外显微镜的厂家,拥有进口红外显微镜的单位也很少。 1 红外热成像技术 背景 红外热成像技术是现代影像学的一支新军。该技术与 X射线、B超、CT、核磁共振等显像技术的成像原理不同,它不主动发射任何射线,只是被动地接收热源的红外辐射,形成热源的热影像,是热源的表面温度分布图像。 红外热成像技术的主要特点是能采样分布很广的温度值,经过分析处理,最后用伪彩色的形式在显示器上显示出被测物体表面的温度分布图像。通过对该图像的分析,可直观地得到被测物的形状、大小、热分布及热稳定等特性。 电路板在通电时,各元器件相对于室温有一个比较稳定的温度,因此,通过红外测温传感器对电路板上各元器件的分布温度进行有效的非接触测量,并将其数据输入计算机。然后,借助于处理软件把这些元器件上的温度信息转换成伪彩色图像信息,通过显示器提供给观察者。同时,建立同一电路板工作时的标准热模式,并对电路板芯片若干故障现象进行试验。通过对实验结果的比较分析,确定传感器测量值对各诊断元件的隶属度函数,并根据隶属度来确定故障元件。 标准化的制定 实际应用时,红外在线监测结果将受到设备运行情况和测试条件的影响而呈现不同的结果,所以,必须把多个在任意条件下得到的结果进行标准化处理,进行一定程度的统一,只有这样,才有可能做到结果的唯一化。 故障的判断 为了克服目前电路板故障红外诊断中对故障判定的人为性和经验性的影响,应深入开展红外诊断中的模式识别等逻辑诊断方法的研究,以便实现故障判别的人工智能化。虽然目前已经有人研制了一些检测用软件,但是这些软件设计基础还仅仅是己知设备故障的典型红外图谱,而且其数据文件尚未进行标准化处理,其智能化程度还很低。对于热源辨识、辐射率校准、环境温度校准、热像配准和温度信息等因素的处理还不是很理想。因此,这方面的研究工作还应进一步深入开展[2]。 2 红外热像仪 随着半导体技术的迅速发展,被测试系统规模的不断扩大,大规模和超大规模集成电路被广泛安装在印刷电路板(PCB)上。由于电路板上元器件密集,电路原理复杂,使得对数模混合电路板上集成 摘要 红外热成像技术是现代影像学中的一门新兴技术。它与x射线、B超、CT、核磁共振等显像技术的成像原理不同,它不主动发射任何射线,只是被动接受热源所发射出的红外线,经过处理后得到热源的影像。该技术的最大特点是不用接触待测物体。因此,对于一些高危行业,如核工业中元器件的检测将变得非常容易。 本文所叙述的就是利用红外热像技术与显微技术的结合,制作一种红外显微镜。红外显微镜可以将出现故障的大规模集成电路板中数以万计的微小元器件的影像传输到计算机中,经过计算机的分析,可以很容易地分析出具体故障所在。因此,大范围电子元器件故障的快速检测将变得简单、快捷。 关键词 红外热像;显微技术;红外显微镜 28

光学显微镜的工作原理

光学显微镜的工作原理 显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。 (一)、物镜 物镜是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径和工作距离。 ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。

倒置生物显微镜及成像系统技术参数

倒置显微镜技术要求 一、主要技术要求: ★1、研究型主机 1)主机带左、右侧端口,端口成像视场数大成像视场数可达25mm; 2)长寿命LED透射光照明,灯泡使用寿命5万小时; 3)主机标配1.5X中间变倍,可选配2X; 4)可以实现明场\荧光\相差\微分干涉观察. 2、双目镜筒及机械载物台 10X/22mm目镜,双目屈光度均独立可调, 双目头基座带照相端口;人机学,黑色硬铝防蚀涂层,载物台表面经超硬防滑处理,确保经久耐用,配置通用标本夹,载物台行程X\Y 114X73mm. 3、超长工作距离系统聚光器 65mm的工作距离满足培养瓶、培养皿、多孔板等镜下的直接观察,内置相差模块、明视场孔位和关闭位,方便转换和光路的切换,减光片、隔热片,日光平衡片、绿色滤光片齐备; ★4、切趾超级荧光相差物镜(要求每个物镜均可以观测微分干涉):4X N.A≥0.13 , W.D≥16.4mm, PhL 10X N.A≥ 0.30, W.D≥ 15.2 mm, Ph1 20XC N.A≥ 0.45, W.D≥ 8.2-6.9mm 40XC N.A≥ 0.60, W.D≥ 3.6-2.8mm, PH-2 5、载物台: 大面积长行程手动载物台,行程X≥±57mm、行程Y≥±36.5mm,不需要移动多孔板只需移动载物台就可观察整个多孔板,移动行程可3级调节,多种标本夹可选、载物台移动手柄长/中/短可选。 ★6、落射荧光装置: 1)L型荧光主体具备消杂光设计的高质量滤光块,可对中的视场光阑,圆形,方形,长方形三种可任意选; 2)单层六工位荧光转盘,可以扩展至12工位滤光块,配紫外,蓝色,绿色激发滤块, 三色窄带滤光片。 7、数码摄像头: ★1)芯*8.1真实1625万像素(非插值); ★2)芯片尺寸36.0×23.9 mm(1.7英寸); 3)单次拍摄其像素4908×3264像素(全像素)下实现6fps的拍摄速度,1636×1088像素(3×3平均)可获得45fps的拍摄速度;帧率:6fps(满幅); ★4)2.5倍 F接口; 5)曝光时间:100usec-120sec。 8、显微图像采集及分析软件 1)可图像采集。可测量直线长度、曲线长度、矩形面积、圆面积、周长、角度等多个参数,并把测量结果输出到EXcel, 并于后期分析处理; 2)可以对多幅视野相邻的图像做大图拼接; 3)对荧光图片背景处理,多通道图片做色彩合成,方便显示多染标本的图像及荧光共定位分析;在图像上添加注释、箭头等功能,可以方便的表示图像中的重点关注部位;

光学显微镜的工作原理

光学显微镜得工作原理 显微镜就是一种精密得光学仪器,已有300多年得发展史、自从有了显微镜,人们瞧到了过去瞧不到得许多微小生物与构成生物得基本单元——细胞。目前,不仅有能放大千余倍得光学显微镜,而且有放大几十万倍得电子显微镜,使我们对生物体得生命活动规律有了更进一步得认识。在普通中学生物教学大纲中规定得实验中,大部分要通过显微镜来完成,因此,显微镜性能得好坏就是做好观察实验得关键。 一、显微镜得光学系统 显微镜得光学系统主要包括物镜、目镜、反光镜与聚光器四个部件。广义得说也包括照明光源、滤光器、盖玻片与载玻片等、 (一)、物镜 物镜就是决定显微镜性能得最重要部件,安装在物镜转换器上,接近被观察得物体,故叫做物镜或接物镜。 1、物镜得分类 物镜根据使用条件得不同可分为干燥物镜与浸液物镜;其中浸液物镜又可分为水浸物镜与油浸物镜(常用放大倍数为90—100倍)、 根据放大倍数得不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40-65倍)。根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光得色差得物镜)与复色差物镜(能矫正光谱中三种色光得色差得物镜,价格贵,使用少)、 2、物镜得主要参数: 物镜主要参数包括:放大倍数、数值孔径与工作距离。 ①、放大倍数就是指眼睛瞧到像得大小与对应标本大小得比值。它指得就是长度得比值而不就是面积得比值。例:放大倍数为100×,指得就是长度就是1μm得标本,放大后像得长度就是100μm,要就是以面积计算,则放大了10,000倍。 显微镜得总放大倍数等于物镜与目镜放大倍数得乘积。 ②、数值孔径也叫镜口率,简写NA或A,就是物镜与聚光器得主要参数,与显微镜得分辨力成正比。干燥物镜得数值孔径为0、05—0。95,油浸物镜(香柏油)得数值孔径为1、25。 ③、工作距离就是指当所观察得标本最清楚时物镜得前端透镜下面到标本得盖玻片上面得距离。物镜得工作距离与物镜得焦距有关,物镜得焦距越长,放大倍数越低,其工作距离越长、例:10倍物镜上标有10/0.25与160/0.17,其中10为物镜得放大倍数;0、25为数值孔径;160为镜筒长度(单位mm);0。17为盖玻片得标准厚度(单位mm)。10倍物镜有效工作距离为6。5mm,40倍物镜有效工作距离为0。48mm 。 3、物镜得作用就是将标本作第一次放大,它就是决定显微镜性能得最重要得部件——分辨力得高低。 分辨力也叫分辨率或分辨本领。分辨力得大小就是用分辨距离(所能分辨开得两个物点间得最小距离)得数值来表示得、在明视距离(25cm)之处,正常人眼所能瞧清相距0。073mm得两个物点,这个0、073mm得数值,即为正常人眼得分辨距离。显微镜得分辨距离越小,即表示它得分辨力越高,也就就是表示它得性能越好。 显微镜得分辨力得大小由物镜得分辨力来决定得,而物镜得分辨力又就是由它得数值孔径与照明光线得波长决定得、 当用普通得中央照明法(使光线均匀地透过标本得明视照明法)时,显微镜得分辨距离为d=0。61λ/NA 式中d-—物镜得分辨距离,单位nm。

光学显微镜的工作原理汇编

光学显微镜的工作原 理

光学显微镜的工作原理 显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。 (一)、物镜 物镜是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。

根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径和工作距离。 ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为 1.25。 ③、工作距离是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数; 0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。

光学显微镜成像原理

■光学显微镜成像原理 光学显微镜成像原理 使用无限远光学系统的显微镜主要由物镜、管镜和目镜组成。标本经物镜和管镜放大后,形成放大倒立的实象;实象经目镜再次放大后,形成放大的虚象。 标本(AB)在物镜(Lo)焦点上,通过物镜(Lo)和管镜(Le)在象方形成放大倒立的实象(A’B’);靠近人眼一方的目镜(Le)对中间象(A’B’)再次放大,在明视距离(对人眼来说约为250mm)处形成一个虚象(A”B”)。 人眼通过显微镜所观察到的象就是一个被放大了的虚象A”B”。 ■电子显微镜成像原理 电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。 电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜最大放大倍率超过300万倍,而光学显微镜的最大放大倍率约为2000倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵 一、折射望远镜用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱。在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。为了增大相对口径和视场,可采用多透镜物镜组。折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多。

【蔡司显微镜知识】光学显微镜的原理

旗开得胜光学显微镜原理 洋葱皮细胞(200倍) 六世纪末发明以来,光学显微镜加深了我们对基础生物学、生 断和材料科学的认识。光学显微镜最多可将物体放大1000 细节。如今,这项技术已远远超出罗伯特·虎克和列文虎克( nhoek)所发明的第一台显微镜的水平。人类研发的特殊技 出活细胞的结构和生化机能。显微镜甚至已进入数字时代, D)和数码相机来捕捉图像。然而,这些高级显微镜的基本 生平第一节生物课上用过的学生显微镜非常相似。 微镜的工作原理与折射望远镜极为相似,仅有一些细微的差 我们简单地了解一下望远镜的工作原理。 要从昏暗、遥远的物体上采集大量光线,因此需要巨大的物 些光线并使物体看起来更加明亮。物镜很大,因而物体的图 外的焦点位置,这就是为何望远镜比显微镜长得多的原因。 镜随后放大图像,使物体就像在您眼前一样。 18

旗开得胜 普通学生光学显微镜的示意图,显示各个部件和光路 与望远镜相反,显微镜必须从距离很近、范围极小、厚度极薄且明亮清晰的样 本上采集光线。因此显微镜不需要巨大的物镜。相反,显微镜的物镜很小,而且呈 球形,这就意味着显微镜两侧的焦距都要短得多。物镜将物体的图像对焦在显微镜 镜筒内的不远处。随后图像由第二个透镜放大,这个透镜称为接目镜或目镜,使物 体如同在您眼前一般。 望远镜和显微镜之间另一个主要区别在于,显微镜带有光源和聚光器。聚光器 是一种透镜系统,用于将光源的光线聚焦到样本上的一个微小而明亮的点,即物镜 检查的同一区域。 显微镜与望远镜之间还有一个不同之处:后者配有固定物镜和可换目镜,而前 者配有可换物镜和固定目镜。通过更换物镜(从相对扁平、低放大倍数的物镜到较 圆、高放大倍数的物镜),显微镜可以观察越来越微小的区域——采光不是显微镜 物镜的主要任务,但却是望远镜的。 本文后半部分将详细讨论显微镜的组成部件。 制作简易显微镜您可以用放大镜和纸片制作简易显微镜: 18

计算光学显微成像理论与关键技术研究

计算光学显微成像理论与关键技术研究 随着计算光学成像理论和技术的快速发展,其与传统显微镜相结合出现的计算光学显微成像技术为显微镜带来了新的发展契机。计算光学显微成像是借助计算光学成像技术实现了以简单的光学系统获取高性能的影像,赋予了传统显微镜无法具有的新颖成像功能。光场显微镜是一种具有大视场、快速三维显微信息获取能力的计算光学显微镜,它能利用二维图像传感器同时记录成像光线的空间位置和角度的四维光场信息,允许对获取的光场图像经不同的后期算法处理实现多视角成像、数字重聚焦成像等新功能。本论文在综述国内外研究文献的基础上,深入系统的研究了计算光学显微成像理论和关键技术,旨在解决光场显微镜相关理论与实际应用方面的若干关键问题,具有重要的理论意义和应用价值。 论文的主要工作和取得的创新性成果如下:1、针对光场显微镜的相位成像问题,提出了将基于光强传输方程的相位成像与光场显微镜相结合的快速相位成像方法。利用光场显微镜的快速三维信息获取能力,通过光场的数字重聚焦算法实现了单帧采集两幅不同成像面上的光强图像。最终在不移动实验系统相机或样品的情况下,实现了显微样品的单帧相位成像。2、针对双平面的光场相位成像存在的严重的低频云雾噪声问题,提出了基于光场数字重聚焦的最优频率选择法,并将该方法与指数函数距离选择策略相结合,实现了多幅不同成像面位置的优化选取,从而实现以少量的一组离焦图像重建高信噪比的相位成像。 通过光场的数字重聚焦算法实现了单帧采集多幅不同成像面上的光强图像,实现了高信噪比的单帧相位成像。该方法有效解决了传统方法中低频云雾噪声与非线性误差难以同时兼顾的问题。3、针对光场显微镜空间分辨率的限制问题,提出了低噪声光场矩显微镜。该方法采用多幅离焦光强度图像,基于最小二乘拟合法估计焦平面位置处的强度微分,解决了传统光场矩成像中,因只用强度差分估计强度微分而引起的非线性误差和噪声误差的权衡问题,提高了传统光场矩显微镜计算重建四维光场的抗噪性与准确性;利用算法计算重建的四维光场,因无需使用微透镜阵列,因此能获取全分辨率的光场。 4、创新性地提出了将光场显微镜技术应用于内窥镜。搭建了光场内窥镜系统,该系统无需复杂的光学系统设计,只需将一片微透镜阵列加入到原来的内窥镜光路中,即可使普通的内窥镜具有获取三维信息的能力,解决了实现三维内窥

光学显微镜工作原理

光学显微镜工作原理 1. 1. 引言 2. 2. 显微镜基本原理 3. 3. 显微镜图像质量 4. 4. 显微技术的类型 5. 5. 荧光显微技术 6. 6. 光学显微镜的组成部件 7.7. 了解更多信息 8.8. 阅读所有物理学类文章 自十六世纪末发明以来,光学显微镜加深了我们对基础生物 学、生物医学研究、医疗诊断和材料科学的认识。光学显微 镜最多可将物体放大1000倍,以展现其微观细节。如今,这 项技术已远远超出罗伯特·虎克和列文虎克(Antoni van Leeuwenhoek)所发明的第一台显微镜的水平。人类研发的特 殊技术和光学设备可以揭示出活细胞的结构和生化机能。显 微镜甚至已进入数字时代,利用电荷耦合器件(CCD)和数码 相机来捕捉图像。然而,这些高级显微镜的基本原理却与您 生平第一节生物课上用过的学生显微镜非常相似。 光学显微镜的工作原理与折射望远镜极为相似,仅有一些细微的差别。下面让我们简单地了解一下望远镜的工作原理。 望远镜要从昏暗、遥远的物体上采集大量光线,因此需要巨大的物镜,以尽可能多采集一些光线并使物体看起来更加明亮。物镜很大,因而物体的图像会出现在一段距离之外的焦点位置,这就是为何望远镜比显微镜长得多的原因。望远镜的目镜随后放大图像,使物体就像在您眼前一样。 洋葱皮细胞(200倍) 光学显微镜工作原理

普通学生 光学显微镜的示意图,显示各个部件和光路 与望远镜相反,显微镜必须从距离很近、范围极小、厚度极薄且明亮清晰的样本上采集光线。因此显微镜不需要巨大的物镜。相反,显微镜的物镜很小,而且呈球形,这就意味着显微镜两侧的焦距都要短得多。物镜将物体的图像对焦在显微镜镜筒内的不远处。随后图像由第二个透镜放大,这个透镜称为接目镜或目镜,使物体如同在您眼前一般。 望远镜和显微镜之间另一个主要区别在于,显微镜带有光源和聚光器。聚光器是一种透镜系统,用于将光源的光线聚焦到样本上的一个微小而明亮的点,即物镜检查的同一区域。 显微镜与望远镜之间还有一个不同之处:后者配有固定物镜和可换目镜,而前者配有可换物镜和固定目镜。通过更换物镜(从相对扁平、低放大倍数的物镜到较圆、高放大倍数的物镜),显微镜可以观察越来越微小的区域——采光不是显微镜物镜的主要任务,但却是望远镜的。 本文后半部分将详细讨论显微镜的组成部件。 制作简易显微镜 您可以用放大镜和纸片制作简易显微镜: 1. 准备两片放大镜和一张印有图像的纸。 2. 将一片放大镜固定在纸张上方不远处。印刷图像看起来变 大了一点。 3. 将另一个放大镜放在您的眼睛和第一个放大镜之间。 4. 上下移动第二个放大镜,直到印刷图像清晰为止。您会发 现印刷图像要比在第一个放大镜中看到的图像更大。 此外,您还可以制作一个类似针孔相机的简易针孔显微镜。 显微镜图像质量 使用显微镜观察样本时,您所看到的图像质量将在以下几方面进行评估:

相关文档